-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_binary_bct.py
463 lines (386 loc) · 19.4 KB
/
train_binary_bct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import os
import time
import argparse
import datetime
import numpy as np
import faiss
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from timm.utils import accuracy, AverageMeter, ModelEmaV2
from vfp.config import get_config
from vfp.models import build_binary_head
from vfp.data import build_loader, data_prefetcher
from vfp.lr_scheduler import build_scheduler
from vfp.optimizer import build_optimizer
from vfp.logger import create_logger
from vfp.utils import load_checkpoint, save_checkpoint, get_grad_norm, \
auto_resume_helper, reduce_tensor, load_feature, load_img_path, merge_feat_npy
from vfp.loss import PairwiseCompatibleLoss, PairwiseContrastiveLoss
from vfp.queue import Queue
try:
# noinspection PyUnresolvedReferences
from apex import amp
except ImportError:
amp = None
def parse_option():
parser = argparse.ArgumentParser('Compatible training script', add_help=False)
parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', )
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+',
)
# easy config modification
# dataset
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
# training config
parser.add_argument('--batch-size', type=int, help="batch size for single GPU")
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--resume-key', default='model', help='resume checkpoint key')
parser.add_argument('--output', default='output', type=str, metavar='PATH',
help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)')
parser.add_argument('--tag', help='tag of experiment')
# distributed training
parser.add_argument("--local_rank", type=int, help='local rank for DistributedDataParallel')
args, unparsed = parser.parse_known_args()
config = get_config(args)
return args, config
def main(config):
# build dataset
dataset_train, data_loader_train = build_loader(config, is_train=True)
dataset_query, dataset_gallery, data_loader_query, data_loader_gallery = build_loader(config, is_train=False)
# build model
logger.info(f"Creating binary transformation:{config.BINARY.TRANS.TYPE}")
model, num_features = build_binary_head(config.BINARY, config.BINARY.TRANS.RBE.INPUT_DIM)
if config.BINARY.MODEL.RESUME:
load_checkpoint(config.BINARY, model, logger, state_dict_key=config.BINARY.MODEL.RESUME_KEY)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(f"number of params: {n_parameters}")
model.cuda()
logger.info(str(model))
# build optimizer
optimizer = build_optimizer(config, model)
if config.AMP_OPT_LEVEL != "O0":
model, optimizer = amp.initialize(model, optimizer, opt_level=config.AMP_OPT_LEVEL)
lr_scheduler = build_scheduler(config, optimizer, len(data_loader_train))
max_accuracy = 0.0
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.LOCAL_RANK], broadcast_buffers=False)
model_ema = None
queue = {}
queue['old'] = None
queue['new'] = None
if config.TRAIN.LOSS.QUEUE>0:
# assert model_ema is not None, "model_ema is required for queue"
assert config.TRAIN.LOSS.QUEUE % (config.DATA.BATCH_SIZE * dist.get_world_size()) == 0
queue['old'] = Queue(num_features, K=config.TRAIN.LOSS.QUEUE)
queue['new'] = Queue(num_features, K=config.TRAIN.LOSS.QUEUE)
if config.TRAIN.AUTO_RESUME:
resume_file = auto_resume_helper(config.OUTPUT)
if resume_file:
config.defrost()
config.MODEL.RESUME = resume_file
config.freeze()
max_accuracy = load_checkpoint(config, model.module, logger, optimizer, lr_scheduler, state_dict_key='model')
if model_ema is not None:
load_checkpoint(config, model_ema.module.module, logger, state_dict_key='model_ema')
logger.info(f'auto resuming from {resume_file}')
else:
logger.info(f'no checkpoint found in {config.OUTPUT}, ignoring auto resume')
stm = torch.cuda.Stream()
no_norm = True
if config.TRAIN.LOSS.TYPE == 'rbe_loss':
no_norm = False
# build loss
criterion = {}
criterion['base'] = PairwiseContrastiveLoss(temp=config.TRAIN.LOSS.TEMP,
margin=config.TRAIN.LOSS.MARGIN,
rm_duplicated=config.TRAIN.LOSS.RM_DUP,
hard_topk_neg=config.TRAIN.LOSS.HARD_TOPK,
loss_type=config.TRAIN.LOSS.TYPE,
queue=queue['new'],
no_norm=no_norm).cuda()
if config.COMPATIBLE.ACTIVATE:
criterion['bct'] = PairwiseCompatibleLoss(temp=config.TRAIN.LOSS.TEMP,
margin=config.TRAIN.LOSS.MARGIN,
rm_duplicated=config.TRAIN.LOSS.RM_DUP,
hard_topk_neg=config.TRAIN.LOSS.HARD_TOPK,
loss_type=config.TRAIN.LOSS.TYPE,
queue=queue['old'],
no_norm=no_norm).cuda()
logger.info("Start training")
start_time = time.time()
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
if epoch == 1 and config.MODEL.EMA:
model_ema = ModelEmaV2(model, decay=config.MODEL.EMA_DECAY)
data_loader_train.sampler.set_epoch(epoch)
train_one_epoch(stm, config, model, criterion, data_loader_train, optimizer, epoch, lr_scheduler, model_ema=model_ema, queue=queue)
if dist.get_rank() == 0 and ((epoch+1) % config.SAVE_FREQ == 0 or (epoch+1) == config.TRAIN.EPOCHS):
if model_ema is not None:
save_checkpoint(config, epoch, model.module, max_accuracy, optimizer, lr_scheduler, logger, model_ema=model_ema.module.module)
else:
save_checkpoint(config, epoch, model.module, max_accuracy, optimizer, lr_scheduler, logger)
if ((epoch+1) % config.EVAL_FREQ == 0 or (epoch+1) == config.TRAIN.EPOCHS):
logger.info(f"==============> Start testing model....................")
extract_features(stm, config, data_loader_query, model, 'q')
extract_features(stm, config, data_loader_gallery, model, 'db')
dist.barrier()
acc_bc, acc_new= 0.0, 0.0
if (dist.get_rank() == 0):
acc_bc, acc_new = faiss_search(config)
dist.barrier()
acc_bc_ema, acc_ema_new = 0.0, 0.0
if model_ema is not None:
logger.info(f"==============> Start testing ema model....................")
extract_features(stm, config, data_loader_query, model_ema.module, 'q_ema')
extract_features(stm, config, data_loader_gallery, model_ema.module, 'db_ema')
dist.barrier()
if (dist.get_rank() == 0):
acc_bc_ema, acc_ema_new = faiss_search(config, tag='_ema')
logger.info(f' * [Epoch {epoch}] Top-{config.TEST.TOP_K} New PR: {acc_new:.2f}%, Backward PR: {acc_bc:.2f}% (EMA New PR: {acc_ema_new:.2f}%, Backward PR: {acc_bc_ema:.2f}%)')
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
def train_one_epoch(stm, config, model, criterion, data_loader, optimizer, epoch, lr_scheduler, model_ema=None, queue=None):
model.module.train()
optimizer.zero_grad()
if queue is not None and queue['new'] is not None and queue['old'] is not None:
queue['new'].reset()
queue['old'].reset()
num_steps = len(data_loader)
batch_time = AverageMeter()
loss_meter = AverageMeter()
norm_meter = AverageMeter()
start = time.time()
end = time.time()
prefetcher = data_prefetcher(data_loader, stm)
samples, samples_old, targets, vids, flag = prefetcher.next()
idx = -1
while samples is not None:
idx += 1
new_feat = model(samples)
old_feat = samples_old
if (new_feat.size(1)>old_feat.size(1)):
new_feat_bct = torch.nn.functional.normalize(new_feat, p=2, dim=1)[:, :old_feat.size(1)]
else:
new_feat_bct = new_feat
if epoch > 0 and model_ema is not None and queue['new'] is not None and queue['old'] is not None:
with torch.no_grad():
new_feat_ema = model_ema.module(samples)
loss = criterion['base'].forward_with_queue(new_feat, new_feat_ema, targets, vids)
queue['new']._dequeue_and_enqueue(new_feat_ema, vids)
else:
loss = criterion['base'](new_feat, targets, vids)
if config.COMPATIBLE.ACTIVATE:
if epoch > 0 and model_ema is not None and queue['new'] is not None and queue['old'] is not None:
loss += criterion['bct'].forward_with_queue(new_feat_bct, old_feat, targets, vids)
queue['old']._dequeue_and_enqueue(old_feat, vids)
else:
loss += criterion['bct'](new_feat_bct, old_feat, targets, vids)
optimizer.zero_grad()
if config.AMP_OPT_LEVEL != "O0":
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
if config.TRAIN.CLIP_GRAD:
grad_norm = torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), config.TRAIN.CLIP_GRAD)
else:
grad_norm = get_grad_norm(amp.master_params(optimizer))
else:
loss.backward()
if config.TRAIN.CLIP_GRAD:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.TRAIN.CLIP_GRAD)
else:
grad_norm = get_grad_norm(model.parameters())
optimizer.step()
lr_scheduler.step_update(epoch * num_steps + idx)
torch.cuda.synchronize()
if model_ema is not None:
model_ema.update(model)
loss_meter.update(loss.item(), targets.size(0))
norm_meter.update(grad_norm)
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
lr = optimizer.param_groups[0]['lr']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
logger.info(
f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t'
f'mem {memory_used:.0f}MB')
if not flag:
break
samples, samples_old, targets, vids, flag = prefetcher.next()
epoch_time = time.time() - start
logger.info(f"EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}")
del prefetcher
@torch.no_grad()
def extract_features(stm, config, data_loader, model, tag):
model.module.eval()
rank = dist.get_rank()
batch_time = AverageMeter()
# feat_file = open(os.path.join(config.OUTPUT, f'feat_{tag}_new_{rank}.txt'), 'w')
# feat_file_old = open(os.path.join(config.OUTPUT, f'feat_{tag}_old_{rank}.txt'), 'w')
feat_size = len(data_loader) * config.DATA.BATCH_SIZE
feat_dim = config.BINARY.TRANS.RBE.OUTPUT_DIM
new_feat_all = np.zeros((feat_size, feat_dim), dtype=np.float32)
old_feat_all = np.zeros((feat_size, feat_dim), dtype=np.float32)
end = time.time()
prefetcher = data_prefetcher(data_loader, stm)
samples, samples_old, targets, _, flag = prefetcher.next()
idx = -1
cnt = 0
while samples is not None:
idx += 1
new_feat = model(samples)
# new_feat = new_feat[:, :old_feat.size(1)]
# old_feat = old_feat.cpu().data.squeeze().numpy()
# for item in old_feat:
# feat_file_old.write("{}\n".format(list(item)))
new_feat = new_feat.cpu().data.numpy()
old_feat = samples_old.cpu().data.numpy()
# for item in new_feat:
# feat_file.write("{}\n".format(list(item)))
new_feat_all[cnt : (cnt + new_feat.shape[0])] = new_feat
old_feat_all[cnt : (cnt + old_feat.shape[0])] = old_feat
cnt += new_feat.shape[0]
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(
f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
if not flag:
break
samples, samples_old, targets, _, flag = prefetcher.next()
del prefetcher
np.save(os.path.join(config.OUTPUT, f'feat_{tag}_new_{rank}.npy'), new_feat_all[:cnt])
np.save(os.path.join(config.OUTPUT, f'feat_{tag}_old_{rank}.npy'), old_feat_all[:cnt])
# feat_file.close()
# if (feat_file_old is not None):
# feat_file_old.close()
def faiss_search(config, tag=''):
# merge txt
gpu_num = dist.get_world_size()
q_feat = merge_feat_npy(config.OUTPUT, f'feat_q{tag}_new', gpu_num)
db_feat = merge_feat_npy(config.OUTPUT, f'feat_db{tag}_new', gpu_num)
q_feat_old = merge_feat_npy(config.OUTPUT, f'feat_q{tag}_old', gpu_num)
db_feat_old = merge_feat_npy(config.OUTPUT, f'feat_db{tag}_old', gpu_num)
np.save(os.path.join(config.OUTPUT, f'feat_q{tag}_new.npy'), q_feat)
np.save(os.path.join(config.OUTPUT, f'feat_db{tag}_new.npy'), db_feat)
np.save(os.path.join(config.OUTPUT, f'feat_q{tag}_old.npy'), q_feat_old)
np.save(os.path.join(config.OUTPUT, f'feat_db{tag}_old.npy'), db_feat_old)
os.system("rm {}".format(os.path.join(config.OUTPUT, f'feat_q{tag}_new_{{0..{gpu_num-1}}}.npy')))
os.system("rm {}".format(os.path.join(config.OUTPUT, f'feat_db{tag}_new_{{0..{gpu_num-1}}}.npy')))
os.system("rm {}".format(os.path.join(config.OUTPUT, f'feat_q{tag}_old_{{0..{gpu_num-1}}}.npy')))
os.system("rm {}".format(os.path.join(config.OUTPUT, f'feat_db{tag}_old_{{0..{gpu_num-1}}}.npy')))
QueryImgPath = load_img_path(config.DATA.QUERY_LIST)
DbImgPath = load_img_path(config.DATA.GALLERY_LIST)
if (config.TEST.DIS_METRIC == 'cos'):
db_feat = db_feat / np.linalg.norm(db_feat,axis=1)[:,np.newaxis]
db_feat_old = db_feat_old / np.linalg.norm(db_feat_old,axis=1)[:,np.newaxis]
q_feat = q_feat / np.linalg.norm(q_feat,axis=1)[:,np.newaxis]
q_feat_old = q_feat_old / np.linalg.norm(q_feat_old,axis=1)[:,np.newaxis]
def build_index(dim):
if (config.TEST.DIS_METRIC == 'cos'):
index = faiss.IndexFlatIP(dim)
elif (config.TEST.DIS_METRIC == 'l2'):
index = faiss.IndexFlatL2(dim)
else:
raise NotImplementedError("Unknown distance metric: {}".format(config.TEST.DIS_METRIC))
return index
def eval(sort_index, fqueryImg, fdbImg):
retrieval = 0
for row, LIndex in enumerate(sort_index):
queryImgName = fqueryImg[row].split('/')[-1]
query_vid = queryImgName.split('_')[0]
count = 0
for item in LIndex:
dbImgName = fdbImg[item].split('/')[-1]
db_vid = dbImgName.split('_')[0]
if query_vid == db_vid:
count += 1
retrieval += count
return retrieval
acc_bc = 0.0
if config.COMPATIBLE.ACTIVATE:
# test backward compatibility
dim = db_feat_old.shape[1]
index = build_index(dim)
index.add(db_feat_old)
if (q_feat.shape[1] > dim):
q_feat_cut = q_feat[:,:dim].copy(order='C')
if (config.TEST.DIS_METRIC == 'cos'):
q_feat_cut = q_feat_cut / np.linalg.norm(q_feat_cut,axis=1)[:,np.newaxis]
elif (q_feat.shape[1] == dim):
q_feat_cut = q_feat
else:
raise "Query dimension is smaller than gallery dimenson"
_, I = index.search(q_feat_cut, config.TEST.TOP_K)
retrival = eval(I, QueryImgPath, DbImgPath)
acc_bc = float(retrival) / len(DbImgPath) * 100.
# test new model
dim = db_feat.shape[1]
index = build_index(dim)
index.add(db_feat)
_, I = index.search(q_feat, config.TEST.TOP_K)
retrival = eval(I, QueryImgPath, DbImgPath)
acc_new = float(retrival) / len(DbImgPath) * 100.
return acc_bc, acc_new
if __name__ == '__main__':
_, config = parse_option()
if config.AMP_OPT_LEVEL != "O0":
assert amp is not None, "amp not installed!"
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
master_address = os.environ['MASTER_ADDR']
master_port = int(os.environ['MASTER_PORT'])
print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}")
print(f"MASTER_ADDR and MASTER_PORT in environ: {master_address}:{master_port}")
config.defrost()
config.LOCAL_RANK = rank % torch.cuda.device_count()
config.freeze()
torch.cuda.set_device(config.LOCAL_RANK)
torch.distributed.init_process_group(backend="nccl",
init_method='tcp://{}:{}'.format(master_address, master_port),
rank=rank,
world_size=world_size
)
torch.distributed.barrier()
seed = config.SEED + dist.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# linear scale the learning rate according to total batch size, may not be optimal
linear_scaled_lr = config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
linear_scaled_min_lr = config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
# gradient accumulation also need to scale the learning rate
if config.TRAIN.ACCUMULATION_STEPS > 1:
linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_warmup_lr = linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS
config.defrost()
config.TRAIN.BASE_LR = linear_scaled_lr
config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr
config.TRAIN.MIN_LR = linear_scaled_min_lr
config.freeze()
os.makedirs(config.OUTPUT, exist_ok=True)
logger = create_logger(output_dir=config.OUTPUT, dist_rank=dist.get_rank(), name=f"{config.MODEL.NAME}")
if dist.get_rank() == 0:
path = os.path.join(config.OUTPUT, "config.json")
with open(path, "w") as f:
f.write(config.dump())
logger.info(f"Full config saved to {path}")
# print config
logger.info(config.dump())
main(config)