-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnalytics_Algorithm.py
128 lines (103 loc) · 3.67 KB
/
Analytics_Algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import csv
import random
import math
#from bson.son import SON
import requests
from flask import Flask, request,redirect,url_for
from flask_pymongo import PyMongo
from flask_restful import reqparse, abort, Api, Resource
app = Flask(__name__)
api = Api(app)
app.config['MONGO_DBNAME'] = 'BMC'
mongo = PyMongo(app)
def loadCsv(filename):
lines = csv.reader(open('/home/ubuntu/newdata.csv', "r"))
dataset = list(lines)
for i in range(len(dataset)):
dataset[i] = [float(x) for x in dataset[i]]
return dataset
def splitDataset(dataset, splitRatio):
trainSize = int(len(dataset) * splitRatio)
trainSet = []
copy = list(dataset)
while len(trainSet) < trainSize:
index = random.randrange(len(copy))
trainSet.append(copy.pop(index))
return [trainSet, copy]
def separateByClass(dataset):
separated = {}
for i in range(len(dataset)):
vector = dataset[i]
if (vector[-1] not in separated):
separated[vector[-1]] = []
separated[vector[-1]].append(vector)
return separated
def mean(numbers):
return sum(numbers)/float(len(numbers))
def stdev(numbers):
avg = mean(numbers)
variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
return math.sqrt(variance)
def summarize(dataset):
summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)]
#print('Summaries: {0}%'.format(summaries))
del summaries[-1]
return summaries
def summarizeByClass(dataset):
separated = separateByClass(dataset)
#print('Separated: {0}'.format(separated.items()))
summaries = {}
for classValue, instances in separated.items():
summaries[classValue] = summarize(instances)
# summaries={0.0: [(0.4035714285714286, 0.2387985035018546)], 1.0: [(0.687142857142857, 0.19328848791492878)]}
return summaries
def calculateProbability(x, mean, stdev):
exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent
def calculateClassProbabilities(summaries, testSet):
probabilities = {}
#print('Summary: {0}%'.format(summaries.items()))
for classValue, classSummaries in summaries.items():
probabilities[classValue] = 1
for i in range(len(classSummaries)):
mean, stdev = classSummaries[i]
x = testSet[i]
probabilities[classValue] *= calculateProbability(x, mean, stdev)
return probabilities
def predict(summaries, testSet):
probabilities = calculateClassProbabilities(summaries, testSet)
bestLabel, bestProb = None, -1
for classValue, probability in probabilities.items():
if bestLabel is None or probability > bestProb:
bestProb = probability
bestLabel = classValue
return bestLabel
def getPredictions(summaries, testSet):
predictions = []
result = predict(summaries, testSet[0])
predictions.append(result)
return predictions
class Analysis(Resource):
def get(self,mean,hostName):
#mean1=request.args['mean1']
#mean2=request.args['mean2']
filename = 'newdata.csv'
splitRatio = 1
dataset = loadCsv(filename)
trainingSet=dataset
testSet=[[mean]]
print mean;
summaries = summarizeByClass(trainingSet)
predictions = getPredictions(summaries, testSet)
if(format(predictions)=='[0.0]'):
#r = requests.get('http://127.0.0.1:5003/email')
print('Prediction: {0}'.format(predictions))
return 'Ok'
else:
r = requests.get('http://127.0.0.1:5003/email/%s'% (hostName))
print('Prediction: {0}'.format(predictions))
return 'not ok'
api.add_resource(Analysis, '/analysis/<float:mean>/<string:hostName>')
#api.add_resource(Analysis, '/analysis')
if __name__ == '__main__':
app.run(debug=True,port=5001)