-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_data.py
597 lines (525 loc) · 28.9 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import wget
import os
import argparse
import gzip
import shutil
from ogb.nodeproppred import DglNodePropPredDataset
import zipfile
import torch
from torch.utils.data import Dataset , DataLoader
from transformers import AutoTokenizer , AutoModel
import pandas as pd
import numpy as np
from tqdm import tqdm
from sentence_transformers import SentenceTransformer
import gdown
import dgl
from scipy.sparse import csr_matrix
from localgraphclustering import *
from collections import namedtuple
import multiprocessing
import os.path as osp
import json
from sklearn.preprocessing import StandardScaler
MODEL_NAME={"e5":"intfloat/e5-small-v2", "ofa": "../../cache/transformer-model/multi-qa-distilbert-cos-v1"}
short_name = {"ogbn-papers100M":"100M","ogbn-arxiv":"arxiv","ogbn-products":"products"}
def decompress_gz(file_path, output_path):
with gzip.open(file_path, 'rb') as f_in:
with open(output_path, 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
print(f"Decompressed file to {output_path}")
def unzip_file(zip_file_path, extract_to_path):
try:
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(extract_to_path)
print(f"Extracted {zip_file_path} to {extract_to_path} successfully")
except zipfile.BadZipFile:
print(f"Error: {zip_file_path} is not a valid ZIP file")
except Exception as e:
print(f"Error extracting {zip_file_path}: {e}")
def move_folder_contents(src_folder, dest_folder):
if not os.path.exists(src_folder):
print(f"{src_folder} not exit")
return
if not os.path.exists(dest_folder):
os.makedirs(dest_folder)
for item in os.listdir(src_folder):
src_path = os.path.join(src_folder, item)
dest_path = os.path.join(dest_folder, item)
shutil.move(src_path, dest_path)
def convert_1d_array_to_ego_graph_list(path_or_data, salt=-200000000):
if type(path_or_data) == str:
array = np.load(path_or_data)
else:
array = path_or_data
index = np.where(array < 0)[0]
array[index] -= salt
ego_graphs = np.split(array, index[1:])
return ego_graphs
class Ogb_dataset(Dataset):
def __init__(self, datas):
self.data = datas
self.length = len(self.data)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.length
class Tokenizer(object):
def __init__(self, tokenizer,args):
super(Tokenizer, self).__init__()
self.max_token_len = args.max_token_len
self.tokenizer = tokenizer
self.padding = "max_length"
self.truncation = True
def __call__(self, examples):
if isinstance(examples, str):
return self.tokenizer(examples, padding=self.padding, truncation=self.truncation ,max_length=self.max_token_len, return_tensors="pt")
else:
return self.tokenizer(examples["text"], padding=self.padding, truncation=self.truncation ,max_length=self.max_token_len, return_tensors="pt")
def my_sweep_cut(g, node):
vol_sum = 0.0
in_edge = 0.0
conds = np.zeros_like(node, dtype=np.float32)
for i in range(len(node)):
idx = node[i]
vol_sum += g.d[idx]
denominator = min(vol_sum, g.vol_G - vol_sum)
if denominator == 0.0:
denominator = 1.0
in_edge += 2*sum([g.adjacency_matrix[idx,prev] for prev in node[:i+1]])
cut = vol_sum - in_edge
conds[i] = cut/denominator
return conds
def calc_local_clustering(args):
i, log_steps, num_iter, ego_size, method = args
if i % log_steps == 0:
print(i)
node, ppr = approximate_PageRank(graphlocal, [i], iterations=num_iter, method=method, normalize=False)
d_inv = graphlocal.dn[node]
d_inv[d_inv > 1.0] = 1.0
ppr_d_inv = ppr * d_inv
output = list(zip(node, ppr_d_inv))[:ego_size]
node, ppr_d_inv = zip(*sorted(output, key=lambda x: x[1], reverse=True))
assert node[0] == i
node = np.array(node, dtype=np.int32)
conds = my_sweep_cut(graphlocal, node)
return node, conds
def norm_feats(x):
scaler = StandardScaler()
feats = x
scaler.fit(feats)
mean = scaler.mean_
std = scaler.scale_
return mean, std
class Gen_ogb_data():
def __init__(self,args):
self.args = args
self.download_raw_data(args.dataset_name)
self.get_text_data(args.dataset_name)
self.get_emb(args.dataset_name)
self.get_graph_label_split_scale(args.dataset_name)
self.localclustering(args.dataset_name)
if args.dataset_name == "ogbn-papers100M":
self.reduce_100M_memory_cost(args.dataset_name)
def average_pool(self, last_hidden_states,
attention_mask):
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def download_raw_data(self,dataset_name="ogbn-arxiv"):
os.makedirs(self.args.data_save_path, exist_ok=True)
dataset_path = os.path.join(self.args.data_save_path, dataset_name)
os.makedirs(dataset_path, exist_ok=True)
if dataset_name == "ogbn-arxiv":
# downlaod ogbn-data raw text
if not os.path.exists(os.path.join(dataset_path, "titleabs.tsv")):
url = "https://snap.stanford.edu/ogb/data/misc/ogbn_arxiv/titleabs.tsv.gz"
wget.download(url, os.path.join(dataset_path, "titleabs.tsv.gz"))
decompress_gz(os.path.join(dataset_path, "titleabs.tsv.gz"),os.path.join(dataset_path, "titleabs.tsv"))
os.remove(os.path.join(dataset_path, "titleabs.tsv.gz"))
self.dgl_dataset = DglNodePropPredDataset(dataset_name, root=os.path.join(self.args.data_save_path, "ogb-official-data"))
elif dataset_name == "ogbn-products":
# downlaod ogbn-data raw text
if not os.path.exists(os.path.join(dataset_path, "tst.json")):
gdown.download("https://drive.google.com/uc?id=1gsabsx8KR2N9jJz16jTcA0QASXsNuKnN", os.path.join(dataset_path, "Amazon-3M.raw.zip"), quiet=False)
unzip_file(os.path.join(dataset_path, "Amazon-3M.raw.zip"), os.path.join(dataset_path, "Amazon-3M"))
decompress_gz(os.path.join(dataset_path, "Amazon-3M", "Amazon-3M.raw", "trn.json.gz"), os.path.join(dataset_path, "trn.json"))
decompress_gz(os.path.join(dataset_path, "Amazon-3M", "Amazon-3M.raw", "tst.json.gz"), os.path.join(dataset_path, "tst.json"))
os.remove(os.path.join(dataset_path, "Amazon-3M.raw.zip"))
shutil.rmtree(os.path.join(dataset_path, "Amazon-3M"))
self.dgl_dataset = DglNodePropPredDataset(dataset_name, root=os.path.join(self.args.data_save_path, "ogb-official-data"))
elif dataset_name == "ogbn-papers100M":
if not os.path.exists(os.path.join(dataset_path, "paperinfo")):
wget.download("https://snap.stanford.edu/ogb/data/misc/ogbn_papers100M/paperinfo.zip", os.path.join(dataset_path, "paperinfo.zip"))
unzip_file(os.path.join(dataset_path, "paperinfo.zip"), os.path.join(dataset_path, "paperinfo"))
os.remove(os.path.join(dataset_path, "paperinfo.zip"))
self.dgl_dataset = DglNodePropPredDataset(dataset_name, root=os.path.join(self.args.data_save_path, "ogb-official-data"))
def get_text_data(self, dataset_name="ogbn-arxiv"):
dataset_path = os.path.join(self.args.data_save_path, dataset_name)
ogbn_official_path = os.path.join(self.args.data_save_path, "ogb-official-data")
if dataset_name=="ogbn-products":
decompress_gz(os.path.join(ogbn_official_path,"ogbn_products","mapping",'nodeidx2asin.csv.gz'),os.path.join(ogbn_official_path,"ogbn_products","mapping",'nodeidx2asin.csv'))
self.nodeid2contentid = pd.read_csv(os.path.join(ogbn_official_path,"ogbn_products","mapping",'nodeidx2asin.csv')) #(2449029*2)
self.df = {"contentid":[],"title":[],"content":[]}
for line in open(os.path.join(dataset_path,"trn.json")):
one_dict=json.loads(line)
self.df["contentid"].append(one_dict["uid"])
self.df["title"].append(one_dict["title"])
self.df["content"].append(one_dict["content"])
for line in open(os.path.join(dataset_path,"tst.json")) :
one_dict=json.loads(line)
self.df["contentid"].append(one_dict["uid"])
self.df["title"].append(one_dict["title"])
self.df["content"].append(one_dict["content"])
self.df = pd.DataFrame(self.df)
self.df.columns = ["paperid", "title", "abs"]
self.nodeid2contentid.columns = ["nodeid", "paperid"]
data = pd.merge(self.nodeid2contentid, self.df, how="left", on="paperid")
Datasets = data.values[:,2:]
elif dataset_name=="ogbn-arxiv":
self.df = pd.read_csv(os.path.join(dataset_path,'titleabs.tsv'), sep='\t')
decompress_gz(os.path.join(ogbn_official_path,"ogbn_arxiv","mapping",'nodeidx2paperid.csv.gz'),os.path.join(ogbn_official_path,"ogbn_arxiv","mapping",'nodeidx2paperid.csv'))
self.nodeid2contentid = pd.read_csv(os.path.join(ogbn_official_path,"ogbn_arxiv","mapping",'nodeidx2paperid.csv'))
self.df.columns = ["paperid", "title", "abs"]
self.nodeid2contentid.columns = ["nodeid", "paperid"]
data = pd.merge(self.nodeid2contentid, self.df, how="left", on="paperid")
Datasets = data.values[:,2:]
elif dataset_name=="ogbn-papers100M":
abstract = pd.read_csv(os.path.join(dataset_path, "paperinfo","idx_abs.tsv"), sep='\t', header=None)
title = pd.read_csv(os.path.join(dataset_path, "paperinfo", "idx_title.tsv"), sep='\t', header=None)
title.columns = ["ID", "Title"]
title["ID"] = title["ID"].astype(np.int64)
abstract.columns = ["ID", "Abstract"]
abstract["ID"] = abstract["ID"].astype(np.int64)
data = pd.merge(title, abstract, how="outer", on="ID", sort=True)
paper_id_path_csv = os.path.join(ogbn_official_path,"ogbn_papers100M","mapping", "nodeidx2paperid.csv.gz")
paper_ids = pd.read_csv(paper_id_path_csv, usecols=[0])
paper_ids.columns = ["ID"]
data.columns = ["ID", "Title", "Abstract"]
data["ID"] = data["ID"].astype(np.int64)
data = pd.merge(paper_ids, data, how="left", on="ID")
Datasets = data.values[:,1:]
dataframe = pd.DataFrame(Datasets)
dataframe.to_csv(os.path.join(dataset_path,f'{dataset_name}_title_content.csv'),index=False)
print(f"{dataset_name} title_content.csv has been saved!")
def get_emb(self, dataset_name="ogbn-arxiv"):
dataset_path = os.path.join(self.args.data_save_path, dataset_name)
if dataset_name in ["ogbn-arxiv","ogbn-products","ogbn-papers100M"]:
Datas = []
data = pd.read_csv(os.path.join(dataset_path,f'{dataset_name}_title_content.csv')).values
for k in range(data.shape[0]):
data_dict = {}
if pd.isnull(data[k][0]) and pd.isnull(data[k][1]):
data_dict["text"] = " . "
elif pd.isnull(data[k][1]):
data_dict["text"] = data[k][0]
elif pd.isnull(data[k][0]):
data_dict["text"] = data[k][1]
else:
data_dict["text"] = data[k][0]+". "+data[k][1]
Datas.append(data_dict)
text_dataset = Ogb_dataset(Datas)
text_dataloader = DataLoader(text_dataset, shuffle=False, batch_size=self.args.batch_size)
else:
raise ValueError
if self.args.Model == "e5":
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME[self.args.Model])
model_tokenizer = Tokenizer(tokenizer, self.args)
model = AutoModel.from_pretrained(MODEL_NAME[self.args.Model])
model.to(self.args.device)
model.eval()
nodes_embed=[]
epoch_iter = tqdm(text_dataloader)
print(f"Generating {self.args.Model} embedding!")
with torch.no_grad():
for batch in epoch_iter:
batch = model_tokenizer(batch)
batch = {k: v.to(self.args.device) for k, v in batch.items()}
outputs = model(**batch)
embeddings = self.average_pool(outputs.last_hidden_state, batch['attention_mask'])
for i in range(embeddings.shape[0]):
nodes_embed.append(embeddings[i].cpu().numpy().astype(self.args.dtype))
nodes_embed = np.stack(nodes_embed,axis=0)
np.save(os.path.join(dataset_path,f"{short_name[dataset_name]}_embedding_{self.args.Model}_{self.args.dtype}.npy"), nodes_embed)
print(f"{short_name[dataset_name]}_embedding_{self.args.Model}_{self.args.dtype}.npy has been saved!")
elif self.args.Model == "ofa":
model = SentenceTransformer(MODEL_NAME[self.args.Model])
model.to(self.args.device)
model.eval()
with torch.no_grad():
texts = []
for d in Datas:
texts.append(d["text"])
embeddings = model.encode(texts, batch_size=self.args.batch_size, show_progress_bar=True, convert_to_tensor=False, convert_to_numpy=not to_tensor )
np.save(os.path.join(dataset_path,f"{short_name[dataset_name]}_embedding_{self.args.Model}_{self.args.dtype}.npy"), embeddings.astype(self.args.dtype))
print(f"{short_name[dataset_name]}_embedding_{self.args.Model}_{self.args.dtype}.npy has been saved!")
else:
raise ValueError
def localclustering(self, dataset_name="ogbn-arxiv"):
dataset_path = os.path.join(self.args.data_save_path, dataset_name)
np.random.seed(0)
graph, label = self.dgl_dataset[0]
if "year" in graph.ndata:
del graph.ndata["year"]
if not graph.is_multigraph:
graph = dgl.to_bidirected(graph)
graph = graph.remove_self_loop().add_self_loop()
split_idx = self.dgl_dataset.get_idx_split()
save_path = os.path.join(dataset_path, f"{dataset_name}-lc-ego-graphs-256.pt")
N = graph.num_nodes()
edge_index = graph.edges()
edge_index = (edge_index[0].numpy(), edge_index[1].numpy())
adj = csr_matrix((np.ones(edge_index[0].shape[0]), edge_index), shape=(N, N))
global graphlocal
graphlocal = GraphLocal.from_sparse_adjacency(adj)
print('graphlocal generated')
train_idx = split_idx["train"].cpu().numpy()
valid_idx = split_idx["valid"].cpu().numpy()
test_idx = split_idx["test"].cpu().numpy()
ego_size=256
num_iter=1000
log_steps=10000
num_workers=32
method='acl'
with multiprocessing.Pool(num_workers) as pool:
ego_graphs_train, conds_train = zip(*pool.imap(calc_local_clustering, [(i, log_steps, num_iter, ego_size, method) for i in train_idx], chunksize=512))
with multiprocessing.Pool(num_workers) as pool:
ego_graphs_valid, conds_valid = zip(*pool.imap(calc_local_clustering, [(i, log_steps, num_iter, ego_size, method) for i in valid_idx], chunksize=512))
with multiprocessing.Pool(num_workers) as pool:
ego_graphs_test, conds_test = zip(*pool.imap(calc_local_clustering, [(i, log_steps, num_iter, ego_size, method) for i in test_idx], chunksize=512))
ego_graphs = [ego_graphs_train, ego_graphs_valid, ego_graphs_test]
torch.save(ego_graphs, save_path)
print(f"{dataset_name}-lc-ego-graphs-256.pt has been saved!")
def get_graph_label_split_scale(self, dataset_name="ogbn-arxiv"):
dataset_path = os.path.join(self.args.data_save_path, dataset_name)
#graph
graph, label = self.dgl_dataset[0]
graph = dgl.graph((graph.edges()[0].to(torch.int32), graph.edges()[1].to(torch.int32)), num_nodes=graph.number_of_nodes())
dgl.save_graphs(os.path.join(dataset_path,f"dgl_graph_{short_name[dataset_name]}_int32"),graph)
#label
if dataset_name in ["ogbn-arxiv","ogbn-products"]:
torch.save(label.reshape(-1), os.path.join(dataset_path, f'{short_name[dataset_name]}_label.pt'))
elif dataset_name in ["ogbn-papers100M"]:
shutil.copy(os.path.join(ogbn_official_path,"ogbn_papers100M","raw", "node-label.npz") , os.path.join(dataset_path, "100M-node-label.npz"))
#split
if dataset_name in ["ogbn-arxiv","ogbn-products"]:
split_idx = self.dgl_dataset.get_idx_split()
torch.save(split_idx, os.path.join(dataset_path, f'{short_name[dataset_name]}_split.pt'))
elif dataset_name in ["ogbn-papers100M"]:
for n in ["train","test","valid"]:
shutil.copy(os.path.join(ogbn_official_path,"ogbn_papers100M","split", "time", f"{n}.csv.gz") , os.path.join(dataset_path, f"100M_{n}_split.csv.gz"))
#scale
mean, std = norm_feats(np.load(os.path.join(dataset_path,f"{short_name[dataset_name]}_embedding_{self.args.Model}_{self.args.dtype}.npy")))
torch.save((torch.from_numpy(mean), torch.from_numpy(std)), os.path.join(dataset_path, f'{dataset_name}_stats.pt'))
def reduce_100M_memory_cost(self,dataset_name):
dataset_path = os.path.join(self.args.data_save_path, dataset_name)
#cal repeat node:
if os.path.exists(os.path.join(dataset_path,"ogbn-papers100M-lc-ego-graphs-256-int32.npy")):
ego_graph = np.load(os.path.join(dataset_path,"ogbn-papers100M-lc-ego-graphs-256-int32.npy"))
ego_graph = convert_1d_array_to_ego_graph_list(ego_graph)
else:
assert os.path.exists(os.path.join(dataset_path,"ogbn-papers100M-lc-ego-graphs-256.pt"))
ego_graph = torch.load(os.path.join(dataset_path,"ogbn-papers100M-lc-ego-graphs-256.pt"))
ego_graph = ego_graph[0]+ego_graph[1]+ego_graph[2]
unique_numbers = set()
for g in ego_graph:
unique_numbers.update(g)
unique_numbers_list = sorted(list(unique_numbers))
unique_numbers_list = np.array(unique_numbers_list)
np.save(os.path.join(dataset_path,"used_node.npy"), unique_numbers_list)
#reduce feature
feat = np.load(os.path.join(dataset_path,f"{short_name[dataset_name]}_embedding_{self.args.Model}_{self.args.dtype}.npy"))
feat = feat[unique_numbers_list]
np.save(os.path.join(dataset_path,f"{short_name[dataset_name]}_embedding_{self.args.Model}_{self.args.dtype}_used.npy"), feat)
#reduce graph
graph = dgl.load_graphs(os.path.join(dataset_path,f"dgl_graph_{short_name[dataset_name]}_int32"))[0][0]
src, dst = graph.edges()
src = src.numpy()
dst = dst.numpy()
mask1 = np.isin(src, unique_numbers_list)
mask2 = np.isin(dst, unique_numbers_list)
tot_mask = mask1*mask2
new_src = src[tot_mask]
new_dst = dst[tot_mask]
new_g = dgl.DGLGraph()
new_g.add_nodes(graph.number_of_nodes())
new_g.add_edges(new_src,new_dst)
dgl.save_graphs(os.path.join(dataset_path,f"dgl_graph_{short_name[dataset_name]}_int32_used"),new_g)
class Gen_fewshot_data():
def __init__(self,args):
self.args = args
self.dataset_path = os.path.join(args.data_save_path, args.dataset_name)
self.move_raw_data()
if self.args.dataset_name in ["FB15K237", "WN18RR"]:
self.bulid_entityid_to_description()
self.bulid_graph_feats_label_split_data()
elif self.args.dataset_name in ["Cora"]:
self.cora_bulid_graph_feats_label_split_data()
def move_raw_data(self):
os.makedirs(self.args.data_save_path, exist_ok=True)
dataset_path = os.path.join(self.args.data_save_path, self.args.dataset_name)
os.makedirs(dataset_path, exist_ok=True)
move_folder_contents(f"./fewshot_data/{self.args.dataset_name}",dataset_path)
def average_pool(self, last_hidden_states,attention_mask):
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def bulid_entityid_to_description(self):
self.entity_lst = []
self.text_lst = []
if self.args.dataset_name == "FB15K237":
with open(osp.join(self.dataset_path, "entity2wikidata.json"), "r") as f:
data = json.load(f)
for k in data:
self.entity_lst.append(k)
self.text_lst.append(
"entity nammes: "
+ data[k]["label"]
+ ", entity alternatives: "
+ ", ".join(data[k]["alternatives"])
+ ". entity descriptions:"
+ data[k]["description"]
if data[k]["description"] is not None
else "None"
)
self.entity2id = {entity: i for i, entity in enumerate(self.entity_lst)}
elif self.args.dataset_name == "WN18RR":
with open(osp.join(self.dataset_path, "entity2text.txt"), "r") as f:
lines = f.readlines()
for line in lines:
tmp = line.strip().split("\t")
self.entity_lst.append(tmp[0])
self.text_lst.append(tmp[1])
self.entity2id = {entity: i for i, entity in enumerate(self.entity_lst)}
def bulid_graph_feats_label_split_data(self):
names = ["train", "valid", "test"]
name_dict = {n: osp.join(self.dataset_path, n + ".txt") for n in names}
relation2id = {}
converted_triplets = {}
rel_list = []
rel = len(relation2id)
for file_type, file_path in name_dict.items():
edges = []
edge_types = []
with open(file_path) as f:
file_data = [line.split() for line in f.read().split("\n")[:-1]]
unknown_entity = 0
for triplet in file_data:
if triplet[0] not in self.entity2id:
self.text_lst.append("entity names: Unknown")
self.entity_lst.append(triplet[0])
self.entity2id[triplet[0]] = len(self.entity2id)
unknown_entity += 1
if triplet[2] not in self.entity2id:
self.text_lst.append("entity names: Unknown")
self.entity_lst.append(triplet[2])
self.entity2id[triplet[2]] = len(self.entity2id)
unknown_entity += 1
if triplet[1] not in relation2id:
relation2id[triplet[1]] = rel
rel_list.append(triplet[1])
rel += 1
edges.append(
[
self.entity2id[triplet[0]],
self.entity2id[triplet[2]],
]
)
edge_types.append(relation2id[triplet[1]])
print(file_type+" unknown_entity:", unknown_entity)
converted_triplets[file_type] = [edges, edge_types]
#graph feats label split
#bulid graph
num_nodes = len(self.entity2id)
self.total_nodes = num_nodes
for graph_type in ["train_edge","full_edge"]:
if graph_type=="train_edge":
edges = torch.tensor(converted_triplets["train"][0]).T
graph = dgl.graph((edges[0].to(torch.int32), edges[1].to(torch.int32)), num_nodes=num_nodes)
print(graph)
dgl.save_graphs(os.path.join(self.dataset_path, f"dgl_graph_{self.args.dataset_name}_trainedge_int32"), graph)
elif graph_type=="full_edge":
edges = torch.tensor(converted_triplets["train"][0]+converted_triplets["valid"][0]+converted_triplets["test"][0]).T
graph = dgl.graph((edges[0].to(torch.int32), edges[1].to(torch.int32)), num_nodes=num_nodes)
print(graph)
dgl.save_graphs(os.path.join(self.dataset_path, f"dgl_graph_{self.args.dataset_name}_fulledge_int32") ,graph)
#bulid feats
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME[self.args.Model])
model_tokenizer = Tokenizer(tokenizer, self.args)
model = AutoModel.from_pretrained(MODEL_NAME[self.args.Model])
model.to(self.args.device)
model.eval()
nodes_embed=[]
with torch.no_grad():
for data in self.text_lst:
batch = model_tokenizer(data)
batch = {k: v.to(self.args.device) for k, v in batch.items()}
outputs = model(**batch)
embeddings = self.average_pool(outputs.last_hidden_state, batch['attention_mask'])
for i in range(embeddings.shape[0]):
nodes_embed.append(embeddings[i].cpu().numpy().astype(self.args.dtype))
nodes_embed=np.stack(nodes_embed,axis=0)
data_len = nodes_embed.shape[0]
assert self.total_nodes == data_len
np.save(os.path.join(self.dataset_path, f"{self.args.dataset_name}_embedding_{self.args.Model}_{self.args.dtype}.npy"), nodes_embed)
#bulid labels
labels = torch.tensor(converted_triplets["train"][1]+converted_triplets["valid"][1]+converted_triplets["test"][1] ,dtype=torch.int64)
print("labels shape:",labels.shape)
torch.save(labels, os.path.join(self.dataset_path, f"{self.args.dataset_name}_labels_trvate.pt"))
#bulid split:
splits = {"train":converted_triplets["train"][0],"valid":converted_triplets["valid"][0],"test":converted_triplets["test"][0]}
with open(os.path.join(self.dataset_path,f"{self.args.dataset_name}_data_split.json"), 'w') as json_file:
json.dump(splits, json_file)
def cora_bulid_graph_feats_label_split_data(self):
data = torch.load(os.path.join(self.dataset_path, "cora.pt"))
#graph
edges = data.edge_index
g = dgl.graph((edges[0].to(torch.int32),edges[1].to(torch.int32)), num_nodes=len(data.raw_texts))
self.total_nodes = g.num_nodes()
g = dgl.to_bidirected(g)
dgl.save_graphs(os.path.join(self.dataset_path, f"dgl_graph_{self.args.dataset_name}_undirect_int32") ,g)
#bulid feats
text = data.raw_texts
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME[self.args.Model])
model_tokenizer = Tokenizer(tokenizer, self.args)
model = AutoModel.from_pretrained(MODEL_NAME[self.args.Model])
model.to(self.args.device)
model.eval()
nodes_embed=[]
with torch.no_grad():
for d in text:
batch = model_tokenizer(d)
batch = {k: v.to(self.args.device) for k, v in batch.items()}
outputs = model(**batch)
embeddings = self.average_pool(outputs.last_hidden_state, batch['attention_mask'])
for i in range(embeddings.shape[0]):
nodes_embed.append(embeddings[i].cpu().numpy().astype(self.args.dtype))
nodes_embed=np.stack(nodes_embed,axis=0)
data_len = nodes_embed.shape[0]
assert self.total_nodes == data_len
np.save(os.path.join(self.dataset_path, f"{self.args.dataset_name}_embedding_{self.args.Model}_{self.args.dtype}.npy"), nodes_embed)
#bulid labels
labels = data.y
print("labels shape:",labels.shape)
torch.save(labels, os.path.join(self.dataset_path, "Cora_labels.pt"))
#bulid split:
splits = {"train":np.where(data.train_masks[0].numpy()==True)[0].tolist() ,"valid": np.where(data.val_masks[0].numpy()==True)[0].tolist() ,"test":np.where(data.test_masks[0].numpy()==True)[0].tolist()}
with open(os.path.join(self.dataset_path,"Cora_data_split.json"), 'w') as json_file:
json.dump(splits, json_file)
parser = argparse.ArgumentParser(description="")
parser.add_argument('--data_save_path', type=str, default='./data')
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--Model', type=str, default='e5')
parser.add_argument('--batch_size', type=int, default=512)
parser.add_argument('--dataset_name', type=str, nargs="+", default=["ogbn-arxiv","ogbn-products","ogbn-papers100M","FB15K237","Cora","WN18RR"])
parser.add_argument('--max_token_len', type=int, default=512)
parser.add_argument('--dtype', type=str, default="float16")
if __name__ == "__main__":
args = parser.parse_args()
print(args)
total_datasets_to_process = args.dataset_name
for dn in total_datasets_to_process:
if dn in ["ogbn-arxiv","ogbn-products","ogbn-papers100M"]:
args.dataset_name = dn
Gen_ogb_data(args)
elif dn in ["FB15K237","Cora","WN18RR"]:
args.dataset_name = dn
Gen_fewshot_data(args)