-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
269 lines (240 loc) · 10.8 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"""
Performs inference on a trained model for a given dataset
"""
import os
import transformers
import datasets
import argparse
from transformers import TextClassificationPipeline, AutoModel, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, AutoModelForTokenClassification, TokenClassificationPipeline
from transformers import DataCollatorForTokenClassification, DataCollatorWithPadding, Trainer
from omegaconf import OmegaConf, dictconfig
from datasets import load_dataset
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SequentialSampler
import torch.nn.functional as F
import evaluate
import json
import numpy as np
from transformers.trainer_pt_utils import nested_concat
MIMIC_PROTOCOLING_DIR = '/PATH_TO//data/mimic_autoprocedure_selection/' #TODO: fix relative import
STANZA_DIR = '/PATH_TO//data/radiology_NER/Radiology-NER/' #TODO: fix relative import
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default='../results/classification/_gatortron_mimiciii_ct_procedure/run-4/checkpoint-2270')
parser.add_argument('--dataset_name', type=str, default='mimiciii_ct_procedure')
parser.add_argument('--data_split', type=str, default='val')
parser.add_argument('--output_type', type=str, default='score') #score vs logits
parser.add_argument('--output_dir', type=str, default='./predictions/gatortron_mimiciii_ct_procedure_val/')
args = parser.parse_args()
return args
def get_pipeline(model_path, dataset_name, output_type):
if dataset_name == 'mimiciii_ct_procedure':
config = AutoConfig.from_pretrained(model_path)
pretrained_model = AutoModelForSequenceClassification.from_pretrained(model_path, config=config)
tokenizer = AutoTokenizer.from_pretrained(model_path)
if output_type == 'score':
pipeline = TextClassificationPipeline(
model=pretrained_model,
tokenizer=tokenizer,
top_k=None,
batch_size=32,
device=0,)
elif output_type == 'logits':
pipeline = TextClassificationPipeline(
model=pretrained_model,
tokenizer=tokenizer,
top_k=None,
batch_size=32,
device=0,
function_to_apply="none")
else:
raise NotImplementedError('output_type {} is not implemented'.format(output_type))
if dataset_name == 'stanza':
config = AutoConfig.from_pretrained(model_path)
pretrained_model = AutoModelForTokenClassification.from_pretrained(model_path, config=config)
tokenizer = AutoTokenizer.from_pretrained(model_path)
pipeline = TokenClassificationPipeline(
model=pretrained_model,
tokenizer=tokenizer,
batch_size=1,
device=0,
aggregation_strategy='first')
return pipeline, pretrained_model, tokenizer
def tokenize_and_align_labels(examples, tokenizer, text_column_name, label_column_name, max_seq_length, label_to_id, b_to_i_label,
label_all_tokens=False):
#TODO: fix to import from fine-tuning script
tokenized_inputs = tokenizer(
examples[text_column_name],
padding=False,
truncation=True,
max_length=max_seq_length,
is_split_into_words=True,
)
labels = []
for i, label in enumerate(examples[label_column_name]):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
# ignored in the loss function.
if word_idx is None:
label_ids.append(-100)
# We set the label for the first token of each word.
elif word_idx != previous_word_idx:
label_ids.append(label_to_id[label[word_idx]])
else:
if label_all_tokens:
label_ids.append(b_to_i_label[label_to_id[label[word_idx]]])
else:
label_ids.append(-100)
previous_word_idx = word_idx
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
def load_data(fpaths):
"""
TODO: import from fine-tuning script instead
Load data from a filepath
"""
if isinstance(fpaths, dictconfig.DictConfig) or isinstance(fpaths, dict):
if '.csv' in fpaths['train']:
dset = load_dataset('csv', data_files=dict(fpaths))
elif '.json' in fpaths['train']:
dset = load_dataset('json', data_files=dict(fpaths))
return dset
elif fpaths[0].endswith('.csv'): #TODO make this compatible with dict not list
return load_dataset('csv', data_files={'train':[x for x in fpaths if 'train' in x]}), \
load_dataset('csv', data_files={'test':[x for x in fpaths if 'test' in x]})
else:
raise NotImplementedError('Loading data from {} is not implemented'.format(fpaths[0].split('.')[-1]))
def get_data_files_by_task(task):
"""
TODO: import from fine-tuning script instead
Get the data files for a given task
"""
if task == 'mimiciii_ct_procedure':
text_col = 'indication'
label_col = 'procedure_label'
id_col = 'ROW_ID'
return {'train': os.path.join(MIMIC_PROTOCOLING_DIR, 'mimiciii_ct_procedure_train.csv'),
'val': os.path.join(MIMIC_PROTOCOLING_DIR, 'mimiciii_ct_procedure_dev.csv'),
'test': os.path.join(MIMIC_PROTOCOLING_DIR, 'mimiciii_ct_procedure_test.csv')}, text_col, label_col, id_col
if task == 'stanza':
text_col = 'words'
label_col = 'ner'
id_col = None
return {'train': os.path.join(STANZA_DIR, 'train.json'),
'val': os.path.join(STANZA_DIR, 'dev.json'),
'test': os.path.join(STANZA_DIR, 'test.json')}, text_col, label_col, id_col
else:
raise NotImplementedError('Loading data from {} is not implemented'.format(task))
def eval_using_trainer(pipeline, tokenizer, model, dataset, text_col, label_col, id_col, task, model_path, output_dir):
#TODO: check
metric = evaluate.load("seqeval")
def compute_metrics(p):
predictions, labels = p
predictions = np.argmax(predictions, axis=2)
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
true_labels = [
[label_list[l] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
results = metric.compute(predictions=true_predictions, references=true_labels)
if True:
# Unpack nested dictionaries
final_results = {}
for key, value in results.items():
if isinstance(value, dict):
for n, v in value.items():
final_results[f"{key}_{n}"] = v
else:
final_results[key] = value
return final_results
else:
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
from transformers import TrainingArguments
trainer = Trainer(model=model,
args=None,
train_dataset=None,
eval_dataset=val_dataset,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
trainer.evaluate()
class NumpyEncoder(json.JSONEncoder):
"""from https://stackoverflow.com/a/47626762/10307491"""
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
def main():
args = parse_args()
pipeline, model, tokenizer = get_pipeline(args.model_path, args.dataset_name, args.output_type)
data_files, text_col, label_col, id_col = get_data_files_by_task(args.dataset_name)
dataset = load_data(data_files)
dataset = dataset[args.data_split]
data_collator = DataCollatorForTokenClassification(tokenizer)
label_list = [pipeline.model.config.id2label[k] for k in pipeline.model.config.id2label]
b_to_i_label = []
for idx, label in enumerate(label_list):
if label.startswith("B-") and label.replace("B-", "I-") in label_list:
b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
else:
b_to_i_label.append(idx)
data_collator = DataCollatorForTokenClassification(tokenizer)
dataset = dataset.map(
tokenize_and_align_labels,
fn_kwargs={
'tokenizer': pipeline.tokenizer,
'text_column_name': text_col,
'label_column_name': label_col,
'max_seq_length': None,
'label_to_id': pipeline.model.config.label2id,
'b_to_i_label': b_to_i_label,
'label_all_tokens': False,
},
batched=True,
desc="Running tokenizer on validation dataset",
)
dataset = dataset.remove_columns(['ner','words'])
dl = DataLoader(dataset,
sampler=SequentialSampler(dataset),
batch_size=1,
collate_fn=data_collator)
model.to('cuda:0')
preds = {}
preds['id2labeldict'] = pipeline.model.config.id2label
for i,batch in enumerate(dl):
preds[i] = {}
preds[i]['input_ids'] = batch['input_ids'].numpy().tolist()[0]
preds[i]['labels'] = batch['labels'].numpy().tolist()[0]
output = model(**{k:v.to('cuda:0') for k,v in batch.items()})
logits = output.logits[0]
softmax = F.softmax(logits, dim=1)
preds[i]['logits'] = logits.cpu().detach().numpy()
preds[i]['softmax'] = softmax.cpu().detach().numpy()
preds[i]['pred_labels'] = softmax.argmax(axis=1).tolist()
# if id_col is not None:
# row_ids = dataset[id_col]
# else:
# row_ids = list(range(len(dataset)))
# preds_dict = {row_id:pred for row_id, pred in zip(row_ids, predictions)}
# Save predictions
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
with open(os.path.join(args.output_dir, 'predictions.json'), 'w') as f:
json_string = json.dumps(preds, cls=NumpyEncoder)
f.write(json_string)
if __name__=='__main__':
main()