python format_train_data.py \
--model intfloat/e5-base-v2 \
--train_data_path <numpy_train_path> \
--output_path numpy.pt
python train.py \
--train_data_path numpy.pt \
--model_name intfloat/e5-base-v2 \
--epochs 1 \
--batch_size 32 \
--lr 2e-5 \
--wd 0.01 \
--num_linear_warmup_steps 100 \
--checkpoint_dir numpy_checkpoints \
--wandb_name numpy
Refer to the normal T2V evaluation code, but pass in the checkpoint of the trained model.
python format_train_data_toolbench.py \
--model intfloat/e5-base-v2 \
--toolbench_data_dir <toolbench_data_dir> \
--category G3 \
--output_path toolbench.pt
python train_toolbench.py \
--train_data_path toolbench.pt \
--model_name intfloat/e5-base-v2 \
--epochs 1 \
--batch_size 32 \
--lr 1e-5 \
--wd 0.01 \
--num_linear_warmup_steps 1600 \
--checkpoint_dir toolbench_checkpoints \
--wandb_name toolbench
Refer to the normal T2V evaluation code, but pass in the checkpoint of the trained model.