-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
67 lines (53 loc) · 2.02 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
import torchvision.transforms as transforms
import torchvision
import matplotlib.pyplot as plt
from bdjscc import BDJSCC_ada as BDJSCC_ada # [bdjscc.py](bdjscc.py)
from train import store_test_image # [train.py](train.py)
import os
def compute_psnr(mse):
return 10 * torch.log10(torch.tensor(1.0)) - 10 * torch.log10(torch.tensor(mse))
if __name__ == "__main__":
torch.cuda.set_device(0)
seed = 42
g = torch.Generator()
g.manual_seed(seed)
# Create model
model = BDJSCC_ada(channel_type='awgn').cuda()
# Optionally load a checkpoint if available
checkpoint = torch.load('checkpoints/checkpoint_ada_thick_rprelu_omini.tar')
model.load_state_dict(checkpoint['model'], strict=False)
model.eval()
# Dataloader
val_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
val_dataset = torchvision.datasets.ImageFolder('/data/Users/lanli/ReActNet-master/dataset/imagenet/val', transform=val_transform)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=256, shuffle=True, num_workers=16, pin_memory=True, generator=g)
# Get first batch
images, _ = next(iter(val_loader))
images = images.cuda()
snr_values = range(0, 21, 2)
psnrs = []
criterion = torch.nn.MSELoss()
for snr in snr_values:
model.snr_db = snr
with torch.no_grad():
output = model(images)
mse = criterion(output, images).item()
psnrs.append(compute_psnr(mse).item())
# Store a sample image from this batch
store_test_image(images[0].unsqueeze(0), output[0].unsqueeze(0), snr, 0)
# Plot the SNR-PSNR chart
plt.plot(snr_values, psnrs, marker='o')
print(snr_values)
print(psnrs)
plt.xlabel('SNR (dB)')
plt.ylabel('PSNR (dB)')
plt.title('BDJSCC_ada Performance vs. SNR')
plt.grid(True)
# Save the plot
if not os.path.exists('results'):
os.makedirs('results')
plt.savefig('results/performance_vs_snr.png')