-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathtrain.py
127 lines (107 loc) · 5.07 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import time
import hydra
import torch
from omegaconf import DictConfig, OmegaConf
from composer.core import Precision
from composer.utils import dist, reproducibility
from composer.algorithms import GradientClipping
from composer.algorithms.low_precision_layernorm import apply_low_precision_layernorm
from micro_diffusion.models.utils import text_encoder_embedding_format
torch.backends.cudnn.benchmark = True # 3-5% speedup
@hydra.main(version_base=None)
def train(cfg: DictConfig) -> None:
"""Train a micro-diffusion model using the provided configuration.
Args:
cfg (DictConfig): Configuration object loaded from yaml file.
"""
if not cfg:
raise ValueError('Config not specified. Please provide --config-path and --config-name, respectively.')
reproducibility.seed_all(cfg['seed'])
assert cfg.model.precomputed_latents, "For microbudget training, we assume that latents are already precomputed for all datasets"
model = hydra.utils.instantiate(cfg.model)
# Set up optimizer with special handling for MoE parameters
moe_params = [p[1] for p in model.dit.named_parameters() if 'moe' in p[0].lower()]
rest_params = [p[1] for p in model.dit.named_parameters() if 'moe' not in p[0].lower()]
if len(moe_params) > 0:
print('Reducing learning rate of MoE parameters by 1/2')
opt_dict = dict(cfg.optimizer)
opt_name = opt_dict['_target_'].split('.')[-1]
del opt_dict['_target_']
optimizer = getattr(torch.optim, opt_name)(
params=[{'params': rest_params}, {'params': moe_params, 'lr': cfg.optimizer.lr / 2}], **opt_dict)
else:
optimizer = hydra.utils.instantiate(cfg.optimizer, params=model.dit.parameters())
# Convert ListConfig betas to native list to avoid ValueError when saving optimizer state
for p in optimizer.param_groups:
p['betas'] = list(p['betas'])
# Set up data loaders
cap_seq_size, cap_emb_dim = text_encoder_embedding_format(cfg.model.text_encoder_name)
train_loader = hydra.utils.instantiate(
cfg.dataset.train,
image_size=cfg.dataset.image_size,
batch_size=cfg.dataset.train_batch_size // dist.get_world_size(),
cap_seq_size=cap_seq_size,
cap_emb_dim=cap_emb_dim,
cap_drop_prob=cfg.dataset.cap_drop_prob)
print(f"Found {len(train_loader.dataset)*dist.get_world_size()} images in the training dataset")
time.sleep(3)
eval_loader = hydra.utils.instantiate(
cfg.dataset.eval,
image_size=cfg.dataset.image_size,
batch_size=cfg.dataset.eval_batch_size // dist.get_world_size(),
cap_seq_size=cap_seq_size,
cap_emb_dim=cap_emb_dim)
print(f"Found {len(eval_loader.dataset)*dist.get_world_size()} images in the eval dataset")
time.sleep(3)
# Initialize training components
logger, callbacks, algorithms = [], [], []
# Set up loggers
for log, log_conf in cfg.logger.items():
if '_target_' in log_conf:
if log == 'wandb':
wandb_logger = hydra.utils.instantiate(log_conf, _partial_=True)
logger.append(wandb_logger(init_kwargs={'config': OmegaConf.to_container(cfg, resolve=True, throw_on_missing=True)}))
else:
logger.append(hydra.utils.instantiate(log_conf))
# Configure algorithms
if 'algorithms' in cfg:
for alg_name, alg_conf in cfg.algorithms.items():
if alg_name == 'low_precision_layernorm':
apply_low_precision_layernorm(model=model.dit,
precision=Precision(alg_conf['precision']),
optimizers=optimizer)
elif alg_name == 'gradient_clipping':
algorithms.append(GradientClipping(clipping_type='norm', clipping_threshold=alg_conf['clip_norm']))
else:
print(f'Algorithm {alg_name} not supported.')
# Set up callbacks
if 'callbacks' in cfg:
for _, call_conf in cfg.callbacks.items():
if '_target_' in call_conf:
print(f'Instantiating callbacks: {call_conf._target_}')
callbacks.append(hydra.utils.instantiate(call_conf))
scheduler = hydra.utils.instantiate(cfg.scheduler)
# disable online evals if using torch.compile
if cfg.misc.compile:
cfg.trainer.eval_interval = 0
trainer = hydra.utils.instantiate(
cfg.trainer,
train_dataloader=train_loader,
eval_dataloader=eval_loader,
optimizers=optimizer,
model=model,
loggers=logger,
algorithms=algorithms,
schedulers=scheduler,
callbacks=callbacks,
precision='amp_bf16' if cfg.model['dtype'] == 'bfloat16' else 'amp_fp16', # fp16 by default
python_log_level='debug',
compile_config={} if cfg.misc.compile else None # it enables torch.compile (~15% speedup)
)
# Ensure models are on correct device
device = next(model.dit.parameters()).device
model.vae.to(device)
model.text_encoder.to(device)
return trainer.fit()
if __name__ == '__main__':
train()