forked from mlfoundations/open_lm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate.py
88 lines (71 loc) · 3.13 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
"""Script to generate text from a trained model using HuggingFace wrappers."""
import argparse
import json
import builtins as __builtin__
import torch
from composer.utils import dist, get_device
from open_lm.utils.transformers.hf_model import OpenLMforCausalLM
from open_lm.utils.transformers.hf_config import OpenLMConfig
from open_lm.utils.llm_foundry_wrapper import SimpleComposerOpenLMCausalLM
from open_lm.model import create_params
from open_lm.params import add_model_args
from transformers import GPTNeoXTokenizerFast, LlamaTokenizerFast
builtin_print = __builtin__.print
@torch.inference_mode()
def run_model(open_lm: OpenLMforCausalLM, tokenizer, args):
dist.initialize_dist(get_device(None), timeout=600)
input = tokenizer(args.input_text)
input = {k: torch.tensor(v).unsqueeze(0).cuda() for k, v in input.items()}
composer_model = SimpleComposerOpenLMCausalLM(open_lm, tokenizer)
composer_model = composer_model.cuda()
generate_args = {
"do_sample": args.temperature > 0,
"pad_token_id": 50282,
"max_new_tokens": args.max_gen_len,
"use_cache": args.use_cache,
"num_beams": args.num_beams,
}
# If these are set when temperature is 0, they will trigger a warning and be ignored
if args.temperature > 0:
generate_args["temperature"] = args.temperature
generate_args["top_p"] = args.top_p
output = composer_model.generate(
input["input_ids"],
**generate_args,
)
output = tokenizer.decode(output[0].cpu().numpy())
print("-" * 50)
print("\t\t Model output:")
print("-" * 50)
print(output)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--checkpoint")
parser.add_argument("--model", type=str, default="open_lm_1b", help="Name of the model to use")
parser.add_argument("--input-text", required=True)
parser.add_argument("--max-gen-len", default=200, type=int)
parser.add_argument("--temperature", default=0.8, type=float)
parser.add_argument("--top-p", default=0.95, type=float)
parser.add_argument("--use-cache", default=False, action="store_true")
parser.add_argument("--tokenizer", default="EleutherAI/gpt-neox-20b", type=str)
parser.add_argument("--num-beams", default=1, type=int)
add_model_args(parser)
args = parser.parse_args()
print("Loading model into the right classes...")
open_lm = OpenLMforCausalLM(OpenLMConfig(create_params(args)))
if "gpt-neox-20b" in args.tokenizer:
tokenizer = GPTNeoXTokenizerFast.from_pretrained("EleutherAI/gpt-neox-20b")
elif "llama" in args.tokenizer:
tokenizer = LlamaTokenizerFast.from_pretrained(args.tokenizer)
else:
raise ValueError(f"Unknown tokenizer {args.tokenizer}")
if args.checkpoint is not None:
print("Loading checkpoint from disk...")
checkpoint = torch.load(args.checkpoint)
state_dict = checkpoint["state_dict"]
state_dict = {x.replace("module.", ""): y for x, y in state_dict.items()}
open_lm.model.load_state_dict(state_dict)
open_lm.model.eval()
run_model(open_lm, tokenizer, args)
if __name__ == "__main__":
main()