-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathsql_direct_config.py
51 lines (44 loc) · 1.23 KB
/
sql_direct_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""Example of using PandasAI with a CSV file."""
import os
from pandasai import Agent
from pandasai.connectors import PostgreSQLConnector
# With a PostgreSQL database
order = PostgreSQLConnector(
config={
"host": "localhost",
"port": 5432,
"database": "testdb",
"username": "postgres",
"password": "123456",
"table": "orders",
}
)
order_details = PostgreSQLConnector(
config={
"host": "localhost",
"port": 5432,
"database": "testdb",
"username": "postgres",
"password": "123456",
"table": "order_details",
}
)
products = PostgreSQLConnector(
config={
"host": "localhost",
"port": 5432,
"database": "testdb",
"username": "postgres",
"password": "123456",
"table": "products",
}
)
# By default, unless you choose a different LLM, it will use BambooLLM.
# You can get your free API key signing up at https://pandabi.ai (you can also configure it in your .env file)
os.environ["PANDASAI_API_KEY"] = "your-api-key"
agent = Agent(
[order, products, order_details],
config={"direct_sql": True},
)
response = agent.chat("return orders with count of distinct products")
print(response)