forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsum-of-all-odd-length-subarrays.cpp
30 lines (28 loc) · 1.15 KB
/
sum-of-all-odd-length-subarrays.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
// Time: O(n)
// Space: O(1)
class Solution {
public:
int sumOddLengthSubarrays(vector<int>& arr) {
// begin\pos |0 i (n-1)
// ----------------------------
// 0 --101.... ↑
// 1 -010.... i-0+1
// i 101.... ↓
// ← (n-1-i+1) →
//
// for each number x with its position i, as the graph depicted above,
// (begin, pos) pair represents a subarray arr[begin:pos+1] containing x, marked 1 if odd length else 0,
// so the total number of 0 and 1 are exactly the total number of subarrays with x, which is (i-0+1)*((len(arr)-1)-i+1),
// because the number of 1 is always equal to or one more than the number of 0, (always begins with 1010... and alternatively flips)
// so there are ceil(count/2) odd length subarrays with x
int result = 0;
for (int i = 0; i < size(arr); ++i) {
result += arr[i] * ceil_divide((i - 0 + 1) * ((size(arr) - 1) - i + 1), 2);
}
return result;
}
private:
int ceil_divide(int a, int b) {
return (a + (b - 1)) / b;
}
};