-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5 VLSTM SDG with 20 Percent Excluded for Synthesizing.py
178 lines (142 loc) · 7.41 KB
/
5 VLSTM SDG with 20 Percent Excluded for Synthesizing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
%reset -f
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler, LabelEncoder
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, LSTM, Dense
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import time
# Start time for the overall process
start_time = time.time()
# Load data
data = pd.read_csv('tr.csv')
features = data.iloc[:, :-1].values
labels = data.iloc[:, -1].values
# Normalize features
scaler = MinMaxScaler()
features_normalized = scaler.fit_transform(features)
# Encode labels
label_encoder = LabelEncoder()
labels_encoded = label_encoder.fit_transform(labels)
num_classes = len(np.unique(labels_encoded))
# Separate 20% of data from each class for synthetic generation and model training
train_features = []
train_labels = []
remaining_features = []
remaining_labels = []
unique_labels = np.unique(labels_encoded)
for label in unique_labels:
label_data = features_normalized[labels_encoded == label]
label_targets = labels_encoded[labels_encoded == label]
train_x, remaining_x, train_y, remaining_y = train_test_split(label_data, label_targets, test_size=0.8, random_state=42)
train_features.append(train_x)
train_labels.append(train_y)
remaining_features.append(remaining_x)
remaining_labels.append(remaining_y)
train_features = np.vstack(train_features)
train_labels = np.concatenate(train_labels)
remaining_features = np.vstack(remaining_features)
remaining_labels = np.concatenate(remaining_labels)
# Reshape features for LSTM model
train_features = train_features.reshape((train_features.shape[0], train_features.shape[1], 1))
remaining_features = remaining_features.reshape((remaining_features.shape[0], remaining_features.shape[1], 1))
# Parameters
input_dim = train_features.shape[1]
epochs = 10
batch_size = 32
# Build the LSTM model with variational dropout
def build_lstm_model(input_shape):
inputs = Input(shape=input_shape)
# Add dropout to LSTM layers
x = LSTM(64, return_sequences=True, dropout=0.2, recurrent_dropout=0.2)(inputs)
x = LSTM(32, return_sequences=False, dropout=0.2, recurrent_dropout=0.2)(x)
output = Dense(input_shape[0], activation='linear')(x)
model = Model(inputs=inputs, outputs=output)
model.compile(optimizer='adam', loss='mse')
return model
model = build_lstm_model(train_features.shape[1:])
# Train the model on the remaining 80% data
model.fit(train_features, train_features, epochs=epochs, batch_size=batch_size, verbose=1)
# Generate synthetic data with corresponding labels
def generate_synthetic_data_with_labels(model, data, labels, num_samples):
sampled_indices = np.random.choice(np.arange(len(data)), size=num_samples, replace=True)
sampled_data = data[sampled_indices]
sampled_labels = labels[sampled_indices]
# Predict synthetic data using the model
synthetic_data = model.predict(sampled_data)
# Generate noise to add to the synthetic data
noise = np.random.normal(0, 0.1, synthetic_data.shape)
# Add noise to the synthetic data
synthetic_data_noisy = synthetic_data + noise
return synthetic_data_noisy, sampled_labels
# Usage-------------------------------
num_samples = 2000
synthetic_data, synthetic_labels = generate_synthetic_data_with_labels(model, remaining_features, remaining_labels, num_samples)
# Saving to CSV------------------------
synthetic_df = pd.DataFrame(synthetic_data, columns=[f'Feature_{i+1}' for i in range(synthetic_data.shape[1])])
synthetic_df['Label'] = synthetic_labels
synthetic_df.to_csv('Synthetic_Data_LSTM.csv', index=False)
# Print the runtime
end_time = time.time()
runtime_seconds = end_time - start_time
runtime_minutes = runtime_seconds / 60
print(f"\nTotal Runtime: {runtime_seconds:.2f} seconds ({runtime_minutes:.2f} minutes)")
# XGB Classifier----------------------
from xgboost import XGBClassifier
# Flatten the synthetic data if it's 3D (if the last dimension is features)
if len(synthetic_data.shape) == 3:
synthetic_data = synthetic_data.reshape(synthetic_data.shape[0], -1)
# Flatten train_features if it's still 3D, for consistency with XGBoost input requirements
train_features = train_features.reshape(train_features.shape[0], -1)
remaining_features = remaining_features.reshape(remaining_features.shape[0], -1)
# Combine remaining original and synthetic data, ensuring all are 2-dimensional
combined_features = np.vstack((remaining_features, synthetic_data))
combined_labels = np.concatenate((remaining_labels, synthetic_labels))
# Function to run experiments, ensuring XGBoost receives the correct input shape
def run_experiments(data, labels, n_runs=5):
accuracies = []
all_confusion_matrices = []
for run in range(n_runs):
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.3, random_state=42)
model = XGBClassifier(use_label_encoder=False, eval_metric='mlogloss')
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracies.append(accuracy_score(y_test, y_pred) * 100) # Convert accuracy to percentage before appending
# Store confusion matrices for each run
cm = confusion_matrix(y_test, y_pred, labels=np.arange(num_classes))
all_confusion_matrices.append(cm)
# Store last run's y_test and y_pred for final reporting
if run == n_runs - 1:
final_y_test = y_test
final_y_pred = y_pred
# Average confusion matrix
avg_confusion_matrix = np.mean(all_confusion_matrices, axis=0)
# Print the confusion matrix
print("Average Confusion Matrix:\n", avg_confusion_matrix)
# Ensure target names are strings
target_names = label_encoder.classes_.astype(str)
# Classification report for the last run
print("\nClassification Report:\n", classification_report(final_y_test, final_y_pred, target_names=target_names))
mean_accuracy = np.mean(accuracies)
std_deviation = np.std(accuracies) / 100 # Return standard deviation as a proportion
return mean_accuracy, std_deviation
# Running experiments on synthetic data
synthetic_accuracy, synthetic_std = run_experiments(synthetic_data, synthetic_labels)
print(f"Synthetic Data - Average Accuracy: {synthetic_accuracy:.2f}%, Std Dev: {synthetic_std:.4f}")
# Running experiments on combined data
combined_accuracy, combined_std = run_experiments(combined_features, combined_labels)
print(f"Combined Data - Average Accuracy: {combined_accuracy:.2f}%, Std Dev: {combined_std:.4f}")
# MSE--------------------------------------
from sklearn.metrics import mean_squared_error
if len(synthetic_data.shape) == 3:
synthetic_data = synthetic_data.reshape(synthetic_data.shape[0], -1)
# Ensure synthetic data and original data (features_normalized) are the same size
min_size = min(features_normalized.shape[0], synthetic_data.shape[0])
# Truncate both datasets to the minimum size for a fair comparison
original_truncated = features_normalized[:min_size]
synthetic_truncated = synthetic_data[:min_size]
# Calculate the MSE between the truncated datasets
mse_value = mean_squared_error(original_truncated, synthetic_truncated)
print(f"Mean Squared Error between Original and Synthetic Data: {mse_value:.4f}")