-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathHSPMS.m
114 lines (105 loc) · 2.92 KB
/
HSPMS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
clc;
clear;
close all;
global NFE;
NFE=0;
%% Problem
I=20; % Tasks
J=6; % Machines
Pmin=10; % Process time min
Pmax=50; % Process time max
Smin=3; % Setup time min
Smax=9; % Setup time max
model=CreateModel(I,J,Pmin,Pmax,Smin,Smax); % Create Model of the Problem
CostFunction=@(x) MyCost(x,model); % Cost Function
nVar=model.nVar; % Number of Decision Variables
VarSize=[1 nVar]; % Size of Decision Variables Matrix
VarMin = 0; % Lower Bound of Decision Variables
VarMax = 1; % Upper Bound of Decision Variables
tic
%% Harmony Search Parameters
MaxIt = 100; % Maximum Number of Iterations
HMS = 20; % Harmony Memory Size
nNew = 10; % Number of New Harmonies
HMCR = 0.9; % Harmony Memory Consideration Rate
PAR = 0.1; % Pitch Adjustment Rate
FW = 0.02*(VarMax-VarMin); % Fret Width (Bandwidth)
FW_damp = 0.995; % Fret Width Damp Ratio
%% Start
% Empty Harmony Structure
empty_harmony.Position = [];
empty_harmony.Cost = [];
empty_harmony.Sol = [];
% Initialize Harmony Memory
HM = repmat(empty_harmony, HMS, 1);
% Create Initial Harmonies
for i = 1:HMS
HM(i).Position = unifrnd(VarMin, VarMax, VarSize);
[HM(i).Cost HM(i).Sol] = CostFunction(HM(i).Position);
end
% Sort Harmony Memory
[~, SortOrder] = sort([HM.Cost]);
HM = HM(SortOrder);
% Update Best Solution Ever Found
BestSol = HM(1);
% Array to Hold Best Cost Values
BestCost = zeros(MaxIt, 1);
%% Harmony Search Body
for it = 1:MaxIt
% Initialize Array for New Harmonies
NEW = repmat(empty_harmony, nNew, 1);
% Create New Harmonies
for k = 1:nNew
% Create New Harmony Position
NEW(k).Position = unifrnd(VarMin, VarMax, VarSize);
for j = 1:nVar
if rand <= HMCR
% Use Harmony Memory
i = randi([1 HMS]);
NEW(k).Position(j) = HM(i).Position(j);
end
% Pitch Adjustment
if rand <= PAR
%DELTA = FW*unifrnd(-1, +1); % Uniform
DELTA = FW*randn(); % Gaussian (Normal)
NEW(k).Position(j) = NEW(k).Position(j)+DELTA;
end
end
% Apply Variable Limits
NEW(k).Position = max(NEW(k).Position, VarMin);
NEW(k).Position = min(NEW(k).Position, VarMax);
% Evaluation
[NEW(k).Cost NEW(k).Sol] = CostFunction(NEW(k).Position);
end
% Merge Harmony Memory and New Harmonies
HM = [HM
NEW];
% Sort Harmony Memory
[~, SortOrder] = sort([HM.Cost]);
HM = HM(SortOrder);
% Truncate Extra Harmonies
HM = HM(1:HMS);
% Update Best Solution Ever Found
BestSol = HM(1);
% Store Best Cost Ever Found
BestCost(it) = BestSol.Cost;
% Store NFE
nfe(it)=NFE;
% Iteration
disp(['In Iteration ' num2str(it) ': NFE = ' num2str(nfe(it)) ', Cost is = ' num2str(BestCost(it))]);
% Plot Res
figure(1);
PlotSolution(BestSol.Sol,model);
end
%% Show Results
% figure(1);
% PlotSolution(BestSol.Sol,model);
figure;
plot(BestCost,'k','LineWidth',2);
xlabel('Iteration');
ylabel('Best Cost');
ax = gca;
ax.FontSize = 12;
ax.FontWeight='bold';
grid on;
toc