-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
283 lines (243 loc) · 9.31 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import streamlit as st
import pandas as pd
import os
from crewai import Crew
from langchain_groq import ChatGroq
import streamlit_ace as st_ace
import traceback
import contextlib
import io
from crewai_tools import FileReadTool
import matplotlib.pyplot as plt
import glob
from dotenv import load_dotenv
from autotabml_agents import initialize_agents
from autotabml_tasks import create_tasks
TEMP_DIR = "temp_dir"
OUTPUT_DIR = "Output_dir"
# Ensure the temporary directory exists
if not os.path.exists(TEMP_DIR):
os.makedirs(TEMP_DIR)
# Ensure the Output directory exits
if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)
# Function to save uploaded file
def save_uploaded_file(uploaded_file):
file_path = os.path.join(TEMP_DIR, uploaded_file.name)
with open(file_path, 'wb') as f:
f.write(uploaded_file.getbuffer())
return file_path
# load the .env file
load_dotenv()
# Set up Groq API key
groq_api_key = os.environ.get("GROQ_API_KEY") # os.environ["GROQ_API_KEY"] =
def main():
# Set custom CSS for UI
set_custom_css()
# Initialize session state for edited code
if 'edited_code' not in st.session_state:
st.session_state['edited_code'] = ""
# Initialize session state for whether the initial code is generated
if 'code_generated' not in st.session_state:
st.session_state['code_generated'] = False
# Header with futuristic design
st.markdown("""
<div class="header">
<h1>AutoTabML</h1>
<p>Automated Machine Learning Code Generation for Tabluar Data</p>
</div>
""", unsafe_allow_html=True)
# Sidebar for customization options
st.sidebar.title('LLM Model')
model = st.sidebar.selectbox(
'Model',
["llama3-70b-8192"]
)
# Initialize LLM
llm = initialize_llm(model)
# User inputs
user_question = st.text_area("Describe your ML problem:", key="user_question")
uploaded_file = st.file_uploader("Upload a sample .csv of your data", key="uploaded_file")
try:
file_name = uploaded_file.name
except:
file_name = "dataset.csv"
# Initialize agents
agents = initialize_agents(llm,file_name,TEMP_DIR)
# Process uploaded file
if uploaded_file:
try:
file_path = save_uploaded_file(uploaded_file)
df = pd.read_csv(uploaded_file)
st.write("Data successfully uploaded:")
st.dataframe(df.head())
data_upload = True
except Exception as e:
st.error(f"Error reading the file: {e}")
data_upload = False
else:
df = None
data_upload = False
# Process button
if st.button('Process'):
tasks = create_tasks("Process",user_question,file_name, data_upload, df, None, st.session_state['edited_code'], None, agents)
with st.spinner('Processing...'):
crew = Crew(
agents=list(agents.values()),
tasks=tasks,
verbose=2
)
result = crew.kickoff()
if result: # Only call st_ace if code has a valid value
code = result.strip("```")
try:
filt_idx = code.index("```")
code = code[:filt_idx]
except:
pass
st.session_state['edited_code'] = code
st.session_state['code_generated'] = True
st.session_state['edited_code'] = st_ace.st_ace(
value=st.session_state['edited_code'],
language='python',
theme='monokai',
keybinding='vscode',
min_lines=20,
max_lines=50
)
if st.session_state['code_generated']:
# Show options for modification, debugging, and running the code
suggestion = st.text_area("Suggest modifications to the generated code (optional):", key="suggestion")
if st.button('Modify'):
if st.session_state['edited_code'] and suggestion:
tasks = create_tasks("Modify",user_question,file_name, data_upload, df, suggestion, st.session_state['edited_code'], None, agents)
with st.spinner('Modifying code...'):
crew = Crew(
agents=list(agents.values()),
tasks=tasks,
verbose=2
)
result = crew.kickoff()
if result: # Only call st_ace if code has a valid value
code = result.strip("```")
try:
filter_idx = code.index("```")
code = code[:filter_idx]
except:
pass
st.session_state['edited_code'] = code
st.write("Modified code:")
st.session_state['edited_code']= st_ace.st_ace(
value=st.session_state['edited_code'],
language='python',
theme='monokai',
keybinding='vscode',
min_lines=20,
max_lines=50
)
debugger = st.text_area("Paste error message here for debugging (optional):", key="debugger")
if st.button('Debug'):
if st.session_state['edited_code'] and debugger:
tasks = create_tasks("Debug",user_question,file_name, data_upload, df, None, st.session_state['edited_code'], debugger, agents)
with st.spinner('Debugging code...'):
crew = Crew(
agents=list(agents.values()),
tasks=tasks,
verbose=2
)
result = crew.kickoff()
if result: # Only call st_ace if code has a valid value
code = result.strip("```")
try:
filter_idx = code.index("```")
code = code[:filter_idx]
except:
pass
st.session_state['edited_code'] = code
st.write("Debugged code:")
st.session_state['edited_code'] = st_ace.st_ace(
value=st.session_state['edited_code'],
language='python',
theme='monokai',
keybinding='vscode',
min_lines=20,
max_lines=50
)
if st.button('Run'):
output = io.StringIO()
with contextlib.redirect_stdout(output):
try:
globals().update({'dataset': df})
final_code = st.session_state["edited_code"]
with st.expander("Final Code"):
st.code(final_code, language='python')
exec(final_code, globals())
result = output.getvalue()
success = True
except Exception as e:
result = str(e)
success = False
st.subheader('Output:')
st.text(result)
figs = [manager.canvas.figure for manager in plt._pylab_helpers.Gcf.get_all_fig_managers()]
if figs:
st.subheader('Generated Plots:')
for fig in figs:
st.pyplot(fig)
if success:
st.success("Code executed successfully!")
else:
st.error("Code execution failed! Waiting for debugging input...")
# Move the generated files section to the sidebar
with st.sidebar:
st.header('Output_dir :')
files = glob.glob(os.path.join(OUTPUT_DIR, '*'))
for file in files:
if os.path.isfile(file):
with open(file, 'rb') as f:
st.download_button(label=f'Download {os.path.basename(file)}', data=f, file_name=os.path.basename(file))
# Function to set custom CSS for futuristic UI
def set_custom_css():
st.markdown("""
<style>
body {
background: #0e0e0e;
color: #e0e0e0;
font-family: 'Roboto', sans-serif;
}
.header {
background: linear-gradient(135deg, #6e3aff, #b839ff);
padding: 10px;
border-radius: 10px;
}
.header h1, .header p {
color: white;
text-align: center;
}
.stButton button {
background-color: #b839ff;
color: white;
border-radius: 10px;
font-size: 16px;
padding: 10px 20px;
}
.stButton button:hover {
background-color: #6e3aff;
color: #e0e0e0;
}
.spinner {
display: flex;
justify-content: center;
align-items: center;
}
</style>
""", unsafe_allow_html=True)
# Function to initialize LLM
def initialize_llm(model):
return ChatGroq(
temperature=0,
groq_api_key=groq_api_key,
model_name=model
)
if __name__ == "__main__":
main()