forked from Ade-karl/pyElectrochem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathButler-Volmer.py
executable file
·135 lines (97 loc) · 5.14 KB
/
Butler-Volmer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Butler-Volmer relationship
For an unknown reason, running directly this script with ./Butler-Volmer.py generates errors while executing it as a python script with python 3 Bulter-Volmer.py works fine
Description
------------
This program simulates the evolution of the Butler-Volmer relationship for a rapid system where the system is always limited by the electron transfer (ie c(0) = C(infty) )
The exchange current as well as the transfer coefficient can be varied and the different curves can be selected.
The convention adopted is the IUPAC one (i>O for an oxydation)
Informations
------------
Author : Martin Vérot from the ENS de Lyon, France, with the help of some scripts to create the buttons and sliders taken from https://github.com/araoux/python_agregation (written by P Cladé, A Raoux and F Levrier)
Licence : Creative Commons CC-BY-NC-SA 4.0
WARNING this program requires the widgets.py file to work
"""
import matplotlib.pyplot as plt
import numpy as np
import widgets
import scipy.constants as constants
from matplotlib import rc
#rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
## for Palatino and other serif fonts use:
#rc('font',**{'family':'serif','serif':['Palatino']})
#rc('text', usetex=True)
title = "Butler-Volmer relationship"
description = """This program simulates the i-E curves when the current is limited by the electronic transfer.
$I=I_0\left( \exp\left( \dfrac{\\alpha n F \eta}{RT} \\right) - \exp\left( -\dfrac{\left( 1-\\alpha \\right) n F \eta}{RT} \\right)\\right)$
$\eta=E-E^0$, $\\alpha$ is the transfer coefficient for the oxydation
Here, 1 electron exchanged and the standard potential is equal to 0.77 V/ESH. The electrode area is supposed to be equal to 1 m$^2$."""
#===========================================================
# --- Initial parameters ---------------------
#===========================================================
parameters = {
'alpha' : widgets.FloatSlider(value=0.5, description='transfer coefficient -- $\\alpha$', min=0, max=1),
'logI' : widgets.FloatSlider(value=-1.35, description='$\log(I_0)$', min=-5, max=5),
}
#default parameter for the potential of the couple considered : E0, temperature T, number of exchanged electrons n
E0 = 0.77
T = 298.15
n = 1
F = constants.physical_constants['Faraday constant'][0]
R = constants.R
#===========================================================
# --- Functions to plot-------------------------------------
#===========================================================
def currentOx(E0, alpha, logI, V,n,T,F,R):
"""
Oxidation current as a function of the voltage, the input for I° is transformed from a logarithmic scale to it corresponding value first
"""
I = 10**logI
return I*np.exp(alpha*n*F*(V-E0)/(R*T))
def currentRed(E0, alpha, logI, V,n,T,F,R):
"""
Reduction current as a function of the voltage, the input for I° is transformed from a logarithmic scale to it corresponding value first
"""
I = 10**logI
return -I*np.exp(-(1-alpha)*n*F*(V-E0)/(R*T))
def currentTotal(E0, alpha, logI, V,n,T,F,R):
"""
Total current (sum of oxydation and reduction current)
"""
return currentOx(E0, alpha, logI, V,n,T,F,R)+currentRed(E0, alpha, logI, V,n,T,F,R)
#===========================================================
# --- Plot of the updated curves ---------------------------
#===========================================================
# This function is called when the sliders are changed
def plot_data(alpha, logI):
lines['i-ox'].set_data(V,currentOx(E0, alpha, logI, V,n,T,F,R))
lines['i-red'].set_data(V,currentRed(E0, alpha, logI, V,n,T,F,R))
lines['i-tot'].set_data(V,currentTotal(E0, alpha, logI, V,n,T,F,R))
fig.canvas.draw_idle()
#===========================================================
# --- Initialization of the plot ---------------------------
#===========================================================
fig = plt.figure(figsize=(12,6))
fig.suptitle(title)
#plot of the text
fig.text(0.01, .9, widgets.justify(description), multialignment='left', verticalalignment='top')
#fig.text(0.02, 0.6,"$I=I_0\left( \exp\left( \dfrac{\\alpha n F \eta}{RT} \\right) - \exp\left( -\dfrac{\left( 1-\\alpha \\right) n F \eta}{RT} \\right)\\right)$")
#fig.text(0.02, 0.6,"$I=I_0\left( \exp\left( \dfrac{\\alpha n F \eta}{RT} \\right) - \exp\left( -\dfrac{\left( 1-\\alpha \\right) n F \eta}{RT} \\right)\\right)$")
ax = fig.add_axes([0.35, 0.3, 0.6, 0.6])
ax.axhline(0, color='k')
lines = {}
lines['i-ox'], = ax.plot([], [], linestyle='--', lw=2, color='red', visible=True)
lines['i-red'], = ax.plot([], [], linestyle='--', lw=2,color='blue', visible=True)
lines['i-tot'], = ax.plot([], [], lw=2, color='green')
V = np.linspace(E0-1., E0+1, 1001)
ax.set_xlim(V.min(), V.max())
ax.set_ylim(-1.1, 1.1)
ax.set_xlabel('Tension (V/ESH)')
ax.set_ylabel('Current (A)')
param_widgets = widgets.make_param_widgets(parameters, plot_data, slider_box=[0.35, 0.07, 0.4, 0.15])
choose_widget = widgets.make_choose_plot(lines, box=[0.015, 0.25, 0.2, 0.15])
reset_button = widgets.make_reset_button(param_widgets)
if __name__=='__main__':
plt.show()