forked from skaae/Lasagne-CTC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlasagne_ctc.py
186 lines (148 loc) · 6 KB
/
lasagne_ctc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import numpy as np
import pickle
import theano
import theano.tensor as T
import lasagne
import gzip
#from ctc_cost import CTC
n_epochs = 200
num_hidden = 100
MODEL_SEQ_LEN = 700
BATCH_SIZE = 16
NUM_CLASSES = len("XMIO")
NUM_INPUTS = len("ARNDCQEGHILKMFPSTWYVX")
def print_pred(y_hat):
blank_symbol = NUM_CLASSES
res = []
for i, s in enumerate(y_hat):
if (s != blank_symbol) and (i == 0 or s != y_hat[i - 1]):
res += [s]
return np.asarray(res)
def load_training_data(val_split, test_split, model_seq_len, batch_size):
# data is formatted aa, tar, name, input_mask, target_mask
train_split = [i for i in range(10) if i not in [val_split, test_split]]
with open("ctc_data.pkl", "rb") as pkl_file:
data = pickle.load(pkl_file)
val_data = data[val_split]
test_data = data[test_split]
train_data = []
for i in train_split:
train_data += data[i]
return train_data, val_data, test_data
train_data, val_data, test_data = load_training_data(
0, 1, MODEL_SEQ_LEN, BATCH_SIZE)
def create_train_batch():
"""
Converts the data to batches.
"""
shuffle = np.random.permutation(BATCH_SIZE)
batch = [train_data[s] for s in shuffle]
# data is formatted aa, tar, tar_ctc, name, input_mask, target_mask
input = np.concatenate([map(lambda x: x[0], batch)]).astype('float32')
labels = np.concatenate([map(lambda x: x[1], batch)]).astype('float32')
labels_ctc = np.concatenate([map(lambda x: x[2], batch)]).astype('float32')
input_mask = np.concatenate([map(lambda x: x[4], batch)]).astype('float32')
labels_ctc_mask = np.concatenate(
[map(lambda x: x[5], batch)]).astype('float32')
return input, labels, labels_ctc, input_mask, labels_ctc_mask
# S = 100 (num batches)
# T = 30 seqlen
# B = 10 batchsize
# D = 4, inputdim
# L = target length, varies in the example....
# inputs : S x T x B x inputdim (num_batches, seq_len, batch_size, input_dim)
# inputs_mask : S x T x B (num_batches, seq_len, batch_size)
# labels : L x B (L varies probably because the sequences arex = tensor.tensor3('x', dtype=floatX)
# T x B
x_sym = T.matrix('x', dtype='float32') # B x T x F # only matrix because i use embedding...
x_mask_sym = T.matrix('x_mask', dtype='float32') # B x T
y_sym = T.matrix('y', dtype='float32') # B x L
y_mask_sym = T.matrix('y_mask', dtype='float32') # B x L
y_hat_mask_sym = x_mask_sym
y_hat_sym = T.tensor3('y_hat', dtype='float32') # B x L x C+1
l_inp = lasagne.layers.InputLayer((BATCH_SIZE, MODEL_SEQ_LEN))
l_emb = lasagne.layers.EmbeddingLayer(
l_inp, input_size=NUM_INPUTS, output_size=50)
l_rec = lasagne.layers.LSTMLayer(l_emb, num_units=num_hidden)
l_shp = lasagne.layers.reshape(l_rec, (BATCH_SIZE*MODEL_SEQ_LEN, num_hidden))
l_softmax = lasagne.layers.DenseLayer(l_shp, num_units=NUM_CLASSES,
nonlinearity=T.nnet.softmax)
l_out = lasagne.layers.reshape(l_softmax,
(BATCH_SIZE, MODEL_SEQ_LEN, NUM_CLASSES))
# The input format to CTC is seq_len, batch_size, num_inputs
output = lasagne.layers.get_output(l_out, T.cast(x_sym, 'int32'))
output_eval = lasagne.layers.get_output(l_out, T.cast(x_sym, 'int32'),
deterministic=True)
eval = theano.function([x_sym], output_eval)
#input, labels, labels_ctc, input_mask, labels_ctc_mask = create_train_batch()
#print eval(input).shape
#print "Eval...Done"
all_params = lasagne.layers.get_all_params(l_out, trainable=True)
output_flat = T.reshape(output, (BATCH_SIZE*MODEL_SEQ_LEN, NUM_CLASSES))
cost = T.nnet.categorical_crossentropy(output_flat,
T.cast(y_sym.flatten(), 'int32'))
cost = T.mean(cost)
#cost = CTC().apply(y_sym, output, y_mask_sym, y_hat_mask_sym,
# 'log_scale')
all_grads = T.grad(cost, all_params)
updates = lasagne.updates.rmsprop(all_grads, all_params, learning_rate=0.001)
train = theano.function([x_sym, y_sym],
[cost, output], updates=updates)
#def create_val_batches():
# n_val_batches = len(val_data) // BATCH_SIZE
# n_val_samples = n_val_batches*BATCH_SIZE
# data = val_data[:n_val_samples]
#
# batches = []
# for i in range(n_val_batches):
#
# batch_idx = [train_data[s] for s in range(i*BATCH_SIZE, (i+1)*BATCH_SIZE)]
#
# # data is formatted aa, tar, name, input_mask, target_mask
# input = np.concatenate(
# [map(lambda x: x[0], batch_idx)]).astype('float32')
# labels = np.concatenate(
# [map(lambda x: x[1], batch_idx)]).astype('float32')
# input_mask = np.concatenate(
# [map(lambda x: x[3], batch_idx)]).astype('float32')
# labels_mask = np.concatenate(
# [map(lambda x: x[4], batch_idx)]).astype('float32')
#
# batches.append([input, labels, input_mask, labels_mask])
#
#
# return batches
#
#
#test = create_val_batches()
print "Training"
cost_lst = []
epoch = 0
for i in range(1000000):
if (i %25) == 0:
if len(cost_lst) > 0:
epoch += 1
print "--------EPOCH--------", epoch
print np.mean(cost_lst)
cost_lst = []
(input, labels,
labels_ctc,
input_mask,
labels_ctc_mask) = create_train_batch()
cst, prd = train(input, labels)
cost_lst.append(cst)
# if (i%200) == 0:
# print "X"*25
# val_batches = create_val_batches()
# for vb in val_batches:
# input, labels, input_mask, labels_mask = vb
# prd = eval(input)
#
# for j in range(BATCH_SIZE):
# print "".join(map(str, list(print_pred(np.argmax(prd[j], axis=-1)))))
# print "".join(map(lambda x: str(int(x)), list(labels[j])))
# print "-"*25
# data[i%batch_size].astype('float32'),
# labels[i%batch_size].astype('float32'),
# labels_mask[i%batch_size].astype('float32'),
# inputs_mask[i%batch_size].astype('float32')))