-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchat_completion.py
170 lines (147 loc) · 6.74 KB
/
chat_completion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import argparse
import copy
import json
import os
import openai
import dataclasses
import logging
import tiktoken
from tqdm import tqdm
from typing import Optional, Sequence, Union, List
from tenacity import (
retry,
stop_after_attempt,
wait_random_exponential,
) # for exponential backoff
from prompt_templates import ConversationPromptAttribute,ConversationPrompt
# from generate_attributes import OpenAIDecodingArguments
def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301"):
"""
Returns the number of tokens used by a list of messages.
See https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
"""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model in {
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-4-0314",
"gpt-4-32k-0314",
"gpt-4-0613",
"gpt-4-32k-0613",
}:
tokens_per_message = 3
tokens_per_name = 1
elif model == "gpt-3.5-turbo-0301":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif "gpt-3.5-turbo" in model:
print("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.")
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0613")
elif "gpt-4" in model:
print("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.")
return num_tokens_from_messages(messages, model="gpt-4-0613")
else:
raise NotImplementedError(
f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
)
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens
def construct_prompt_gpt35(input_dic: dict, template: ConversationPrompt, max_tokens=2048, model="gpt-3.5-turbo-0301"):
'''
# cut long completion
# assert the max length of chatgpt is 4096
# therefore, 4096 = completion (max_tokens) + messages
'''
if "16k" in model:
raise NotImplementedError("we haven't test the 16k version yet, which may result in unexpected errors.")
user_content = template.query_prompt.format_map(input_dic)
messages = [
{"role": "system", "content": template.system},
{"role": "user", "content": user_content}
]
message_tok_num = num_tokens_from_messages(messages=messages, model=model)
# the sum of tokens of messages and completion should be less than 4096
if message_tok_num + max_tokens > 4096:
max_tokens = max(4096 - message_tok_num - 100, 0) # 100 is a buffer
logging.warning("since the message is too long ({}), reduce the max_tokens of completion to {}".format(message_tok_num, max_tokens))
return messages, max_tokens
def construct_prompt_gpt4(input_dic: dict, template: ConversationPrompt, max_tokens=2048, model="gpt-4"):
'''
# cut long completion
# assert the max length of gpt-4 is 8192
# therefore, 8192 = completion (max_tokens) + messages
'''
if "32k" in model:
raise NotImplementedError("we haven't test the 32k version yet, which may result in unexpected errors.")
user_content = template.query_prompt.format_map(input_dic)
messages = [
{"role": "system", "content": template.system},
{"role": "user", "content": user_content}
]
message_tok_num = num_tokens_from_messages(messages=messages, model=model)
# the sum of tokens of messages and completion should be less than 4096
if message_tok_num + max_tokens > 8192:
max_tokens = max(8192 - message_tok_num - 100, 0) # 100 is a buffer
logging.warning("since the message is too long ({}), reduce the max_tokens of completion to {}".format(message_tok_num, max_tokens))
return messages, max_tokens
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(16))
def completion_with_backoff(**kwargs):
'''
# Retry with exponential backoff
# See https://github.com/openai/openai-cookbook/blob/main/examples/How_to_handle_rate_limits.ipynb
'''
result = openai.ChatCompletion.create(**kwargs)
return result
def openai_chat_completion(
input_dic: dict,
template: ConversationPrompt,
decoding_args,
model_name="gpt-3.5-turbo-0301", # TODO: 0301 will be deprecated in the future
**decoding_kwargs,
):
'''
For each input x, do single-turn chat completion
args:
- input_dic: a dictionary of the input.
- template: a string template that is waiting for filling in the values in the input_dic.
return:
- content: the content of the response
- cost: the number of tokens used by this completion
return (None, None) if the input is too long (exceeds the max length of ChatGPT)
'''
batch_decoding_args = copy.deepcopy(decoding_args)
# construct the prompt, and try to reduce max_tokens of completion if the message is too long
if "gpt-3.5-turbo" in model_name:
messages, batch_decoding_args.max_tokens = construct_prompt_gpt35(input_dic, template, max_tokens=batch_decoding_args.max_tokens, model=model_name)
elif "gpt-4" in model_name:
messages, batch_decoding_args.max_tokens = construct_prompt_gpt4(input_dic, template, max_tokens=batch_decoding_args.max_tokens, model=model_name)
else:
raise NotImplementedError("we only support gpt-3.5-turbo and gpt-4 series, instead of {}".format(model_name))
if batch_decoding_args.max_tokens == 0:
# the input is too long that exceeds the max length of GPT (4096 or 8192), return None to skip this instance
return None, None
shared_kwargs = dict(
model=model_name,
messages=messages,
**batch_decoding_args.__dict__,
**decoding_kwargs,
)
completion = completion_with_backoff(**shared_kwargs)
# completion = openai.ChatCompletion.create(**shared_kwargs)
choices = completion.choices
reponse = choices[0].message.content
cost = completion.usage.total_tokens
# extract the contents from the response
content = template.extract_content(reponse)
return content, cost