-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_cmd.py
546 lines (479 loc) · 28.6 KB
/
main_cmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
# -*- coding: <encoding name> -*- : # -*- coding: utf-8 -*-···
import argparse
import warnings
import numpy as np
import time
from sklearn.metrics.cluster import normalized_mutual_info_score
from tensorboardX import SummaryWriter
import config
from utils import dataloader, dataloader_BERT
from utils import tool_box as tl
from utils import messager
from utils.Evaluation import ClusterEvaluation
from modules.module.BasicModule import BasicModel
from modules import more
from modules.Cluster import K_means, K_means_BERT, mean_shift, mean_shift_BERT
def k_means_cluster_evaluation(model: BasicModel, opt: config.Option, test_data, test_data_label, loger):
print(">>> last step model test")
with torch.no_grad():
cluster_result, cluster_msg, cluster_center, features = K_means_BERT(test_data, model.pred_vector,
test_data_label,
opt) if opt.BERT else K_means(test_data,
model.pred_vector,
len(np.unique(
test_data_label)),
opt)
cluster_b3 = ClusterEvaluation(test_data_label, cluster_result).printEvaluation(
print_flag=opt.print_losses, extra_info=True)
NMI_scores_last = normalized_mutual_info_score(test_data_label, cluster_result)
print("last step b3:", cluster_b3)
print("last step NMI:", NMI_scores_last)
model.save_last_step(opt.save_model_name)
model.load_model(opt.save_model_name + "_best.pt")
with torch.no_grad():
cluster_result, cluster_msg, cluster_center, features = K_means_BERT(test_data, model.pred_vector,
test_data_label,
opt) if opt.BERT else K_means(test_data,
model.pred_vector,
len(np.unique(
test_data_label)),
opt)
cluster_eval_b3 = ClusterEvaluation(test_data_label, cluster_result).printEvaluation(
print_flag=opt.print_losses, extra_info=True)
NMI_score = normalized_mutual_info_score(test_data_label, cluster_result)
if opt.whether_visualize:
loger.add_embedding(features, metadata=test_data_label, label_img=None,
global_step=0, tag='test_ground_truth',
metadata_header=None)
loger.add_embedding(features, metadata=cluster_result, label_img=None,
global_step=0, tag='test_prediction',
metadata_header=None)
loger.add_scalar('test_NMI', NMI_score, global_step=0)
loger.add_scalar('test_F1', cluster_eval_b3['F1'], global_step=0)
loger.add_scalar('test_precision', cluster_eval_b3['precision'],
global_step=0)
loger.add_scalar('test_recall', cluster_eval_b3['recall'],
global_step=0)
best_test_b3 = cluster_eval_b3
return best_test_b3, NMI_score
def process_and_train_FL(model: BasicModel, opt: config.Option):
# preparing saving files.
save_path = os.path.join(opt.save_dir + '/model_file', opt.save_model_name).replace('\\', '/')
print("model file save path: ", save_path)
if not os.path.exists(save_path):
os.makedirs(save_path)
msger = messager(save_path=save_path,
types=['train_data_file', 'val_data_file', 'test_data_file', 'load_model_name', 'save_model_name',
'trainset_loss_type', 'testset_loss_type',
'class_num_ratio'],
json_name='train_information_msg_' + time.strftime('%m{}%d{}_%H:%M'.format('月', '日')) + '.json')
msger.record_message(
[opt.train_data_file, opt.val_data_file, opt.test_data_file, opt.load_model_name, opt.save_model_name,
opt.train_loss_type, opt.testset_loss_type,
opt.class_num_ratio])
msger.save_json()
# train data loading
print('-----Data Loading-----')
if opt.BERT:
dataloader_train = dataloader_BERT(opt.train_data_file, opt.wordvec_file, opt.rel2id_file, opt.similarity_file,
opt.same_level_pair_file,
max_len=opt.max_len, random_init=opt.random_init, seed=opt.seed)
dataloader_val = dataloader_BERT(opt.val_data_file, opt.wordvec_file, opt.rel2id_file, opt.similarity_file,
max_len=opt.max_len)
dataloader_test = dataloader_BERT(opt.test_data_file, opt.wordvec_file, opt.rel2id_file, opt.similarity_file,
max_len=opt.max_len)
else:
dataloader_train = dataloader(opt.train_data_file, opt.wordvec_file, opt.rel2id_file, opt.similarity_file,
opt.same_level_pair_file,
max_len=opt.max_len, random_init=opt.random_init, seed=opt.seed,
data_type=opt.data_type)
dataloader_val = dataloader(opt.val_data_file, opt.wordvec_file, opt.rel2id_file, opt.similarity_file,
max_len=opt.max_len, data_type=opt.data_type)
dataloader_test = dataloader(opt.test_data_file, opt.wordvec_file, opt.rel2id_file, opt.similarity_file,
max_len=opt.max_len, data_type=opt.data_type)
word_emb_dim = dataloader_train._word_emb_dim_()
word_vec_mat = dataloader_train._word_vec_mat_() # numpy.array float32
print('word_emb_dim is {}'.format(word_emb_dim))
# compile model
print('-----Model Initializing-----')
if opt.BERT != True:
model.set_embedding_weight(word_vec_mat)
if opt.load_model_name is not None:
model.load_model(opt.load_model_name)
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu
if torch.cuda.is_available():
torch.cuda.set_device(int(opt.gpu))
model, cuda_flag = tl.cudafy(model)
if not cuda_flag:
print("There is no gpu,use default cpu")
count = tl.count_parameters(model)
print("num of parameters:", count)
# if the datasets are imbalanced such as nyt_su or trex , we load all test/dev data to perform open setting
print('-----Validation Data Preparing-----')
try:
opt.data_type.index('imbalance')
print("try load all imbalance dev data!")
val_data, val_data_label = dataloader_val._data_()
except:
print("load part of data")
if opt.data_type.startswith('fewrel'):
val_data, val_data_label = dataloader_val._part_data_(
100) # 16 relation classes in validation data,each class has 100 sample in fewrel
else:
# other data sets has the problem of label imbalance
val_data, val_data_label = dataloader_val._part_data_(
100) # for nyt_fb :sample 5 instance per relation, will get 490 dev instance
print("-------Test Data Preparing--------")
try:
opt.data_type.index('imbalance')
print("try load all imbalance test data!")
test_data, test_data_label = dataloader_test._data_()
except:
print("load part of data")
if opt.data_type.startswith('fewrel'):
test_data, test_data_label = dataloader_test._data_()
else:
test_data, test_data_label = dataloader_test._data_(100) # sample as the dev setting
print("val_data:", len(val_data))
print("val_data_label:", len(set(val_data_label)))
print("test_data:", len(test_data))
print("test_data_label:", len(set(test_data_label)))
# intializing parameters
batch_num_list = opt.batch_num
msger_cluster = messager(save_path=save_path,
types=['method', 'temp_epoch', 'temp_batch_num', 'temp_batch_size', 'temp_lr', 'NMI', 'F1',
'precision', 'recall', 'msg'],
json_name='Validation_cluster_msg_' + time.strftime(
'%m{}%d{}_%H:%M'.format('月', '日')) + '.json')
if opt.record_test:
msger_test = messager(save_path=save_path,
types=['temp_globle_step', 'temp_batch_size', 'temp_learning_rate', 'NMI', 'F1',
'precision', 'recall', 'msg'],
json_name='Test_cluster_msg_' + time.strftime(
'%m{}%d{}_%H:%M'.format('月', '日')) + '.json')
if opt.whether_visualize:
loger = SummaryWriter(comment=opt.save_model_name)
else:
loger = None
best_batch_step = 0
best_epoch = 0
batch_size_chose = -1
print_flag = opt.print_losses
best_validation_f1 = 0
best_test_f1 = 0
loss_list = []
global_step = 0
for epoch in range(opt.epoch_num):
print('------epoch {}------'.format(epoch))
print('max batch num to train is {}'.format(batch_num_list[epoch]))
loss_reduce = 10000.
early_stop_record = 0
for i in range(1, batch_num_list[epoch] + 1):
global_step += 1
loss_list = model.train_self(opt, dataloader_train, loss_list, loger,
batch_chose=batch_size_chose,
global_step=global_step, temp_epoch=epoch)
# print loss & record loss
if i % 100 == 0:
ave_loss = sum(loss_list) / 100.
print('temp_batch_num: ', i, ' total_batch_num: ', batch_num_list[epoch], " ave_loss: ", ave_loss,
' temp learning rate: ', opt.lr[opt.lr_chose])
# empty the loss list
loss_list = []
# visualize
if opt.whether_visualize:
loger.add_scalar('all_epoch_loss', ave_loss, global_step=global_step)
# early stop
if opt.early_stop is not None:
if ave_loss < loss_reduce:
early_stop_record = 0
loss_reduce = ave_loss
else:
early_stop_record += 1
if early_stop_record == opt.early_stop:
print("~~~~~~~~~ The loss can't be reduced in {} step, early stop! ~~~~~~~~~~~~".format(
opt.early_stop * 100))
cluster_result, cluster_msg, cluster_center, features = K_means_BERT(test_data,
model.pred_vector,
test_data_label,
opt) if opt.BERT else K_means(
test_data, model.pred_vector, len(np.unique(test_data_label)), opt)
cluster_test_b3 = ClusterEvaluation(test_data_label, cluster_result).printEvaluation(
extra_info=True, print_flag=True)
print("learning rate decay num:", opt.lr_decay_num)
print("learning rate decay step:", opt.lr_decay_record)
print("best_epoch:", best_epoch)
print("best_step:", best_batch_step)
print("best_batch_size:", best_batch_size)
print("best_cluster_eval_b3:", best_validation_f1)
print("seed:", opt.seed)
# clustering & validation
if i % 200 == 0:
print(opt.save_model_name, 'epoch:', epoch)
with torch.no_grad():
# fewrel -> K-means ; nyt+su -> Mean-Shift
if opt.dataset.startswith("fewrel"):
print("chose k-means >>>")
F_score = -1.0
best_cluster_result = None
best_cluster_msg = None
best_cluster_center = None
best_features = None
best_cluster_eval_b3 = None
for iterion in range(opt.eval_num):
K_num = opt.K_num if opt.K_num != 0 else len(np.unique(val_data_label))
cluster_result, cluster_msg, cluster_center, features = K_means_BERT(val_data,
model.pred_vector,
val_data_label,
opt) if opt.BERT else K_means(
val_data, model.pred_vector, K_num, opt)
cluster_eval_b3 = ClusterEvaluation(val_data_label, cluster_result).printEvaluation(
print_flag=False)
if F_score < cluster_eval_b3['F1']:
F_score = cluster_eval_b3['F1']
best_cluster_result = cluster_result
best_cluster_msg = cluster_msg
best_cluster_center = cluster_center
best_features = features
best_cluster_eval_b3 = cluster_eval_b3
cluster_result = best_cluster_result
cluster_msg = best_cluster_msg
cluster_center = best_cluster_center
features = best_features
cluster_eval_b3 = best_cluster_eval_b3
else:
print("chose mean-shift >>>")
cluster_result, cluster_msg, cluster_center, features = mean_shift_BERT(val_data,
model.pred_vector,
val_data_label,
opt) if opt.BERT else mean_shift(
val_data, model.pred_vector,opt)
cluster_eval_b3 = ClusterEvaluation(val_data_label, cluster_result).printEvaluation(
print_flag=False, extra_info=True)
NMI_score = normalized_mutual_info_score(val_data_label, cluster_result)
print("NMI:{} ,F1:{} ,precision:{} ,recall:{}".format(NMI_score, cluster_eval_b3['F1'],
cluster_eval_b3['precision'],
cluster_eval_b3['recall'], ))
msger_cluster.record_message(
[opt.select_cluster, epoch, i, opt.batch_size[batch_size_chose], model.lr, NMI_score,
cluster_eval_b3['F1'], cluster_eval_b3['precision'],
cluster_eval_b3['recall'], cluster_msg])
msger_cluster.save_json()
two_f1 = cluster_eval_b3['F1']
if two_f1 > best_validation_f1: # acc
if opt.record_test == False:
model.save_model(model_name=opt.save_model_name, global_step=global_step)
best_batch_step = i
best_epoch = epoch
best_batch_size = opt.batch_size[batch_size_chose]
best_validation_f1 = two_f1
if opt.whether_visualize:
loger.add_embedding(features, metadata=val_data_label, label_img=None,
global_step=global_step, tag='ground_truth',
metadata_header=None)
loger.add_embedding(features, metadata=cluster_result, label_img=None,
global_step=global_step, tag='prediction',
metadata_header=None)
loger.add_scalar('all_epoch_NMI', NMI_score, global_step=global_step)
loger.add_scalar('all_epoch_F1', cluster_eval_b3['F1'], global_step=global_step)
loger.add_scalar('all_epoch_precision', cluster_eval_b3['precision'],
global_step=global_step)
loger.add_scalar('all_epoch_recall', cluster_eval_b3['recall'],
global_step=global_step)
if opt.record_test:
if opt.dataset.startswith("fewrel"):
cluster_result, cluster_msg, cluster_center, features = K_means_BERT(test_data,
model.pred_vector,
test_data_label,
opt) if opt.BERT else K_means(
test_data, model.pred_vector, len(np.unique(test_data_label)), opt)
cluster_test_b3 = ClusterEvaluation(test_data_label, cluster_result).printEvaluation(
print_flag=False)
else:
cluster_result, cluster_msg, cluster_center, features = mean_shift_BERT(test_data,
model.pred_vector,
test_data_label,
opt) if opt.BERT else mean_shift(
test_data, model.pred_vector,opt)
cluster_test_b3 = ClusterEvaluation(test_data_label, cluster_result).printEvaluation(
print_flag=False, extra_info=True)
msger_test.record_message(
[global_step, opt.batch_size[batch_size_chose], opt.lr[opt.lr_chose], NMI_score,
cluster_test_b3['F1'], cluster_test_b3['precision'],
cluster_test_b3['recall'], cluster_msg])
msger_test.save_json()
print('test messages saved.')
if cluster_test_b3['F1'] > best_test_f1:
model.save_model(model_name=opt.save_model_name, global_step=global_step)
best_batch_step = i
best_epoch = epoch
best_batch_size = opt.batch_size[batch_size_chose]
best_test_f1 = cluster_test_b3['F1']
model.lr_decay(opt)
opt.lr_decay_record.append(global_step)
print('End: The model is:', opt.save_model_name, opt.train_loss_type, opt.testset_loss_type)
if opt.dataset.startswith("fewrel"):
print('\n-----K-means Clustering test-----')
best_test_b3, NMI_score = k_means_cluster_evaluation(model, opt, test_data, test_data_label, loger)
else:
print("\n-----------Mean_shift Clustering test:---------------")
model.load_model(opt.save_model_name + "_best.pt")
cluster_result_ms, cluster_msg_ms, _, _ = mean_shift_BERT(test_data, model.pred_vector, test_data_label,
opt) if opt.BERT else mean_shift(test_data,
model.pred_vector,
opt)
cluster_eval_b3_ms = ClusterEvaluation(test_data_label, cluster_result_ms).printEvaluation(
print_flag=opt.print_losses, extra_info=True)
NMI_score_ms = normalized_mutual_info_score(test_data_label, cluster_result_ms)
best_test_b3 = cluster_eval_b3_ms
NMI_score = NMI_score_ms
if opt.whether_visualize:
loger.add_scalar('test_NMI_MeanShift', NMI_score_ms, global_step=0)
loger.add_scalar('test_F1_MeanShift', cluster_eval_b3_ms['F1'], global_step=0)
print("learning rate decay num:", opt.lr_decay_num)
print("learning rate decay step:", opt.lr_decay_record)
print("best_epoch:", best_epoch)
print("best_step:", best_batch_step)
print("best_batch_size:", best_batch_size)
print("best_cluster_eval_b3:", best_validation_f1)
print("best_cluster_test_b3:", best_test_b3)
print("best_NMI_score:", NMI_score)
print("seed:", opt.seed)
if __name__ == '__main__':
warnings.filterwarnings("ignore")
import os
parser = argparse.ArgumentParser()
parser.add_argument("--gpu", type=str, default='0')
parser.add_argument("--dataset", type=str, default='fewrel')
parser.add_argument("--train_loss_type", type=str, default="Rank List Loss")
parser.add_argument("--testset_loss_type", type=str, default='none')
parser.add_argument("--learning_rate", type=float, default=0.0003)
parser.add_argument("--learning_rate_linear", type=float, default=0.0001)
parser.add_argument("--alpha", type=float, default=None)
parser.add_argument("--lr_chose", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=240)
parser.add_argument("--batch_num", type=int, default=2000)
parser.add_argument("--epoch_num", type=int, default=4)
parser.add_argument("--class_ratio", type=float, default=0.1)
parser.add_argument("--squared", type=int, default=0)
parser.add_argument("--seed", type=int, default=14)
parser.add_argument("--early_stop", type=int, default=None)
parser.add_argument("--record_test", type=int, default=1)
parser.add_argument("--embedding_dim", type=int, default=64)
parser.add_argument("--max_len", type=int, default=120)
parser.add_argument("--pos_emb_dim", type=int, default=10)
parser.add_argument("--drop_out", type=float, default=0.2)
# clustering
parser.add_argument("--K_num", type=int, default=0)
parser.add_argument("--band", type=float, default=0.7784975910442384)
# RLL
parser.add_argument("--margin", type=float, default=0.4)
parser.add_argument("--alpha_rank", type=float, default=1.2)
parser.add_argument("--temp_neg", type=int, default=10)
parser.add_argument("--temp_pos", type=int, default=0)
parser.add_argument("--landa", type=float, default=0.5)
# VAT
parser.add_argument("--VAT", type=float, default=0)
parser.add_argument("--power_iterations", type=int, default=1)
parser.add_argument("--p_mult", type=float, default=0.02)
parser.add_argument("--warm_up", type=int, default=1)
parser.add_argument("--lambda_V", type=float, default=1)
# self
parser.add_argument("--inclass_augment", type=int, default=0)
parser.add_argument("--margin_un", type=float, default=0.4)
parser.add_argument("--alpha_rank_un", type=float, default=1.2)
parser.add_argument("--uninfor_landa", type=float, default=0.0)
parser.add_argument("--uninfor_drop", type=float, default=0.0)
# point
parser.add_argument("--save_model_name", type=str, default='RRL_test')
parser.add_argument("--load_model_name", type=str, default=None)
parser.add_argument("--whether_visualize", type=int, default=1)
# BERT
parser.add_argument("--BERT", type=int, default=0)
args = parser.parse_args()
args.whether_visualize = True if args.whether_visualize == 1 else False
args.inclass_augment = True if args.inclass_augment == 1 else False
args.squared = True if args.squared == 1 else False
args.record_test = True if args.record_test == 1 else False
args.BERT = True if args.BERT == 1 else False
opt = config.Bert_option(args.gpu) if args.BERT else config.Option()
opt.dataset = args.dataset
if args.dataset.startswith("fewrel"):
opt.data_type = 'fewrel_ori'
opt.train_data_file = './data/datasets/fewrel_ori/fewrel80_train.json'
opt.val_data_file = './data/datasets/fewrel_ori/fewrel80_test_train.json'
opt.test_data_file = './data/datasets/fewrel_ori/fewrel80_test_test.json'
opt.wordvec_file = "./data/wordvec/word_vec.json"
opt.rel2id_file = './data/support_files/fewrel_rel2id.json'
elif args.dataset.startswith("nyt"):
opt.data_type = 'nyt_su_imbalance'
opt.train_data_file = './data/datasets/nyt_su/nyt_supervision_train.json'
opt.val_data_file = './data/datasets/nyt_su/nyt_supervision_dev.json'
opt.test_data_file = './data/datasets/nyt_su/nyt_supervision_test.json'
opt.wordvec_file = "./data/wordvec/word_vec.json"
opt.rel2id_file = './data/support_files/nyt_su_rel2id.json'
else:
raise NameError("please use fewrel or nyt+su datasets!")
opt.gpu = args.gpu
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu
import torch
if torch.cuda.is_available():
torch.cuda.set_device(int(opt.gpu))
n_gpu = torch.cuda.device_count()
print(torch.cuda.get_device_name(0), " totally {} GPU".format(n_gpu), " use cuda:",
os.environ['CUDA_VISIBLE_DEVICES'])
# initialize option
opt.train_loss_type = args.train_loss_type
opt.testset_loss_type = args.testset_loss_type
opt.load_model_name = args.load_model_name # e.g. 'MORE_best.pt'
opt.save_model_name = args.save_model_name
opt.epoch_num = args.epoch_num
opt.lr = [args.learning_rate] * opt.epoch_num
opt.lr_linear = args.learning_rate_linear
opt.lr_chose = args.lr_chose
opt.batch_size = [args.batch_size] * opt.epoch_num
opt.class_num_ratio = [args.class_ratio] * opt.epoch_num
opt.batch_num = [args.batch_num] * opt.epoch_num
opt.squared = args.squared
opt.alpha = args.alpha
opt.seed = args.seed
opt.early_stop = args.early_stop # None,if no early stop
opt.record_test = args.record_test
opt.whether_visualize = args.whether_visualize
opt.embedding_dim = args.embedding_dim
opt.max_len = args.max_len
opt.pos_emb_dim = args.pos_emb_dim
opt.drop_out = args.drop_out
opt.K_num = args.K_num
opt.band = args.band
opt.select_cluster = "K-means" if opt.dataset.startswith("fewrel") else 'mean_shift'
opt.margin = args.margin
opt.margin_un = args.margin_un
opt.alpha_rank = args.alpha_rank
opt.alpha_rank_un = args.alpha_rank_un
opt.temp_neg = args.temp_neg
opt.temp_pos = args.temp_pos
opt.landa = args.landa
opt.inclass_augment = args.inclass_augment
opt.VAT = args.VAT
opt.p_mult = args.p_mult
opt.power_iterations = args.power_iterations
opt.warm_up = args.warm_up
opt.lambda_V = args.lambda_V
opt.uninfor_landa = args.uninfor_landa
opt.uninfor_drop = args.uninfor_drop
random_init = np.random.randn(114042, 50)
model = more.MORE_BERT(opt) if args.BERT else more.MORE(random_init, opt)
print("-----The main hyparameters:----------\n")
print("dataset: ", opt.data_type)
print("epoch_num: ", opt.epoch_num, "\nlearning rate: ", opt.lr, "\nbatch_size: ", opt.batch_size,
"\nclass_ratio: ", opt.class_num_ratio, "\nbatch_num: ", opt.batch_num)
print("squared: ", opt.squared)
print("margin: ", opt.margin, "\nalpha: ", opt.alpha_rank)
VAT_FLAG = "Yes" if opt.VAT != 0 else "No"
print("Whether add virtual adversarial training? ", VAT_FLAG)
print("\n--------------------------------------\n")
start_time = time.time()
process_and_train_FL(model, opt)
end_time = time.time()
print("Running time:", (end_time - start_time) / 60, " mins")