-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_homography_imitation_vid.py
185 lines (159 loc) · 5.59 KB
/
main_homography_imitation_vid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import argparse
import os
import pandas as pd
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
import lightning_data_modules
import lightning_modules
from utils.io import (
generate_path,
load_pickle,
load_yaml,
natural_keys,
save_pickle,
save_yaml,
scan2df,
)
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument(
"-sf",
"--servers_file",
type=str,
default="config/servers.yml",
help="Servers file.",
)
parser.add_argument(
"-s", "--server", type=str, default="local", help="Specify server."
)
parser.add_argument(
"-c", "--config", type=str, required=True, help="Path to configuration file."
)
parser.add_argument(
"-bp",
"--backbone_path",
type=str,
required=True,
help="Path to log folders, relative to server logging location.",
)
args = parser.parse_args()
servers = load_yaml(args.servers_file)
server = servers[args.server]
config_path = server["config"]["location"]
configs = load_yaml(args.config)
# append configs by backbone
backbone_configs = load_yaml(
os.path.join(server["logging"]["location"], args.backbone_path, "config.yml")
)
df = scan2df(
os.path.join(server["logging"]["location"], args.backbone_path, "checkpoints"),
".ckpt",
)
ckpts = sorted(list(df["file"]), key=natural_keys)
configs["model"]["homography_regression"] = {
"lightning_module": backbone_configs["lightning_module"],
"model": backbone_configs["model"],
"path": args.backbone_path,
"checkpoint": "checkpoints/{}".format(ckpts[-1]),
"experiment": backbone_configs["experiment"],
}
# prepare data
prefix = os.path.join(server["database"]["location"])
meta_df = pd.read_pickle(os.path.join(config_path, configs["data"]["meta_df"]))[
: configs["data"]["subset_length"]
]
# load video meta data if existing, returns None if none existent
train_md = None
val_md = None
test_md = None
if os.path.exists(
os.path.join(server["config"]["location"], configs["data"]["train_metadata"])
):
train_md = load_pickle(
os.path.join(
server["config"]["location"], configs["data"]["train_metadata"]
)
)
if os.path.exists(
os.path.join(server["config"]["location"], configs["data"]["val_metadata"])
):
val_md = load_pickle(
os.path.join(server["config"]["location"], configs["data"]["val_metadata"])
)
if os.path.exists(
os.path.join(server["config"]["location"], configs["data"]["test_metadata"])
):
test_md = load_pickle(
os.path.join(server["config"]["location"], configs["data"]["test_metadata"])
)
# load specific data module
kwargs = {
"meta_df": meta_df,
"prefix": prefix,
"clip_length_in_frames": configs["data"]["clip_length_in_frames"],
"frames_between_clips": configs["data"]["frames_between_clips"],
"frame_rate": configs["data"]["frame_rate"],
"train_split": configs["data"]["train_split"],
"batch_size": configs["data"]["batch_size"],
"num_workers": configs["data"]["num_workers"],
"random_state": configs["data"]["random_state"],
"train_metadata": train_md,
"val_metadata": val_md,
"test_metadata": test_md,
}
dm = getattr(lightning_data_modules, configs["lightning_data_module"])(**kwargs)
dm.prepare_data()
dm.setup()
train_md, val_md, test_md = dm.metadata
save_pickle(
os.path.join(server["config"]["location"], configs["data"]["train_metadata"]),
train_md,
)
save_pickle(
os.path.join(server["config"]["location"], configs["data"]["val_metadata"]),
val_md,
)
save_pickle(
os.path.join(server["config"]["location"], configs["data"]["test_metadata"]),
test_md,
)
# load specific module
kwargs = {
k: v for k, v in configs["model"].items() if k not in "homography_regression"
} # exclude homography regression from kwargs
module = getattr(lightning_modules, configs["lightning_module"])(**kwargs)
# inject homography regression into module
configs["model"]["homography_regression"]["model"][
"pretrained"
] = False # set to false, as loaded anyways
module.inject_homography_regression(
homography_regression=configs["model"]["homography_regression"],
homography_regression_prefix=server["logging"]["location"],
)
logger = TensorBoardLogger(
save_dir=server["logging"]["location"], name=configs["experiment"]
)
# save configs
generate_path(logger.log_dir)
save_yaml(os.path.join(logger.log_dir, "config.yml"), configs)
meta_df.to_pickle(os.path.join(logger.log_dir, configs["data"]["meta_df"]))
# save backup
save_pickle(
os.path.join(logger.log_dir, configs["data"]["train_metadata"]), train_md
)
save_pickle(os.path.join(logger.log_dir, configs["data"]["val_metadata"]), val_md)
save_pickle(os.path.join(logger.log_dir, configs["data"]["test_metadata"]), test_md)
# callbacks
callbacks = [ModelCheckpoint(**configs["model_checkpoint"])]
trainer = pl.Trainer(
**configs["trainer"],
logger=logger,
callbacks=callbacks,
)
# fit and validation
trainer.fit(module, dm)
# # test
# trainer.test(datamodule=dm)
if __name__ == "__main__":
main()