-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathunsupervised_deep_homography_estimation_module_backbone.py
139 lines (118 loc) · 5.09 KB
/
unsupervised_deep_homography_estimation_module_backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from typing import List
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torchvision.models as models
from kornia import tensor_to_image
from kornia.geometry import crop_and_resize, get_perspective_transform, warp_perspective
from pycls.models import model_zoo
from utils.viz import warp_figure
class UnsupervisedDeepHomographyEstimationModuleBackbone(pl.LightningModule):
def __init__(
self,
shape: List[int],
pretrained: bool = False,
lr: float = 1e-4,
betas: List[float] = [0.9, 0.999],
milestones: List[int] = [0],
gamma: float = 1.0,
log_n_steps: int = 1000,
backbone: str = "ResNet-34",
):
super().__init__()
self.save_hyperparameters("lr", "betas", "backbone")
backbone_dict = {"ResNet-18": "resnet18", "ResNet-34": "resnet34"}
if backbone == "ResNet-18" or backbone == "ResNet-34":
backbone = backbone_dict[backbone]
if backbone == "resnet18" or backbone == "resnet34":
self._model = getattr(models, backbone)(**{"pretrained": pretrained})
# modify in and out layers
self._model.conv1 = nn.Conv2d(
in_channels=6,
out_channels=self._model.conv1.out_channels,
kernel_size=self._model.conv1.kernel_size,
stride=self._model.conv1.stride,
padding=self._model.conv1.padding,
)
self._model.fc = nn.Linear(
in_features=self._model.fc.in_features, out_features=8
)
elif backbone == "VGG":
from models import DeepHomographyRegression
self._model = DeepHomographyRegression(shape)
else:
if backbone not in model_zoo.get_model_list():
raise ValueError("Model {} not available.".format(backbone))
self._model = model_zoo.build_model(backbone, pretrained)
self._model.stem.conv = nn.Conv2d(
in_channels=6,
out_channels=self._model.stem.conv.out_channels,
kernel_size=self._model.stem.conv.kernel_size,
stride=self._model.stem.conv.stride,
padding=self._model.stem.conv.padding,
)
self._model.head.fc = nn.Linear(
in_features=self._model.head.fc.in_features, out_features=8
)
self._mse_loss = nn.MSELoss()
self._distance_loss = nn.PairwiseDistance()
self._lr = lr
self._betas = betas
self._milestones = milestones
self._gamma = gamma
self._validation_step_ct = 0
self._log_n_steps = log_n_steps
def forward(self, img, wrp):
cat = torch.cat((img, wrp), dim=1)
return self._model(cat).view(-1, 4, 2)
def configure_optimizers(self):
optimizer = torch.optim.Adam(
self._model.parameters(), lr=self._lr, betas=self._betas
)
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=self._milestones, gamma=self._gamma
)
return [optimizer], [scheduler]
def training_step(self, batch, batch_idx):
duv_pred = self(batch["img_crp"], batch["wrp_crp"])
uv_wrp = batch["uv"] + duv_pred
H_pred = get_perspective_transform(
batch["uv"].to(duv_pred.dtype).flip(-1), uv_wrp.flip(-1)
)
wrp_pred = warp_perspective(
batch["img_pair"][0], torch.inverse(H_pred), batch["img_pair"][0].shape[-2:]
)
wrp_crp_pred = crop_and_resize(
wrp_pred, batch["uv"].flip(-1), batch["wrp_crp"].shape[-2:]
)
mse_loss = self._mse_loss(wrp_crp_pred, batch["wrp_crp"])
distance_loss = self._distance_loss(
duv_pred.view(-1, 2), batch["duv"].to(duv_pred.dtype).view(-1, 2)
).mean()
self.log("train/mse_loss", mse_loss)
self.log("train/distance", distance_loss)
return mse_loss
def validation_step(self, batch, batch_idx):
duv_pred = self(batch["img_crp"], batch["wrp_crp"])
distance_loss = self._distance_loss(
duv_pred.view(-1, 2), batch["duv"].to(duv_pred.dtype).view(-1, 2)
).mean()
self.log("val/distance", distance_loss, on_epoch=True)
if self._validation_step_ct % self._log_n_steps == 0:
figure = warp_figure(
img=tensor_to_image(batch["img_pair"][0][0]),
uv=batch["uv"][0].squeeze().cpu().numpy(),
duv=batch["duv"][0].squeeze().cpu().numpy(),
duv_pred=duv_pred[0].squeeze().cpu().numpy(),
H=batch["H"][0].squeeze().numpy(),
)
self.logger.experiment.add_figure(
"val/wrp", figure, self._validation_step_ct
)
self._validation_step_ct += 1
def test_step(self, batch, batch_idx):
duv_pred = self(batch["img_crp"], batch["wrp_crp"])
distance_loss = self._distance_loss(
duv_pred.view(-1, 2), batch["duv"].to(duv_pred.dtype).view(-1, 2)
).mean()
self.log("test/distance", distance_loss, on_epoch=True)