-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimage_pair_homography_data_module.py
203 lines (178 loc) · 6.55 KB
/
image_pair_homography_data_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from typing import List
import numpy as np
import pandas as pd
import pytorch_lightning as pl
from pytorch_lightning.utilities.types import EVAL_DATALOADERS, TRAIN_DATALOADERS
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Subset, random_split
from datasets import ImagePairHomographyDataset
from utils.transforms import dict_list_to_augment
class ImagePairHomographyDataModule(pl.LightningDataModule):
def __init__(
self,
df: pd.DataFrame,
prefix: str,
train_split: float,
batch_size: int,
num_workers: int = 2,
rho: int = 32,
crp_shape: List[int] = [480, 640],
p0: float = 0.0,
seq_len: int = 2,
unsupervised: bool = False,
random_state: int = 42,
train_transforms: List[dict] = None,
val_transforms: List[dict] = None,
test_transforms: List[dict] = None,
tolerance: float = 0.05,
):
super().__init__()
# split into train and test set
self._train_df = df[df["test"] == False]
self._test_df = df[df["test"] == True].reset_index()
# further split train into train and validation set
unique_vid = self._train_df.vid.unique()
train_vid, val_vid = train_test_split(
unique_vid, train_size=train_split, random_state=random_state
)
self._val_df = self._train_df[
self._train_df.vid.apply(lambda x: x in val_vid)
].reset_index()
self._train_df = self._train_df[
self._train_df.vid.apply(lambda x: x in train_vid)
].reset_index()
# assert if fraction off
fraction = len(self._val_df) / (len(self._train_df) + len(self._val_df))
assert np.isclose(
fraction, 1 - train_split, atol=tolerance
), "Train set fraction {:.3f} not close enough to (1 - train_split) {} at tolerance {}".format(
fraction, 1 - train_split, tolerance
)
self._prefix = prefix
self._batch_size = batch_size
self._num_workers = num_workers
self._rho = rho
self._crp_shape = crp_shape
self._p0 = p0
self._seq_len = seq_len
self._unsupervised = unsupervised
self._train_transforms = dict_list_to_augment(train_transforms)
self._val_transforms = dict_list_to_augment(val_transforms)
self._test_transforms = dict_list_to_augment(test_transforms)
@property
def rho(self):
return self._rho
@rho.setter
def rho(self, rho: int):
self._rho = rho
self._train_set.rho = rho
self._val_set.rho = rho
self._test_set.rho = rho
def setup(self, stage=None):
if stage == "fit" or stage is None:
self._train_set = ImagePairHomographyDataset(
self._train_df,
self._prefix,
self._rho,
self._crp_shape,
self._p0,
self._seq_len,
transforms=self._train_transforms,
return_img_pair=self._unsupervised,
)
seeds = np.arange(
0, len(self._val_df)
).tolist() # assure validation set is seeded the same for all epochs
self._val_set = ImagePairHomographyDataset(
self._val_df,
self._prefix,
self._rho,
self._crp_shape,
self._p0,
self._seq_len,
transforms=self._val_transforms,
seeds=seeds,
return_img_pair=True,
)
if stage == "test" or stage is None:
seeds = np.arange(
0, len(self._test_df)
).tolist() # assure test set is seeded the same for all runs
self._test_set = ImagePairHomographyDataset(
self._test_df,
self._prefix,
self._rho,
self._crp_shape,
self._p0,
self._seq_len,
transforms=self._test_transforms,
seeds=seeds,
return_img_pair=self._unsupervised,
) # for final evaluation
def transfer_batch_to_device(self, batch, device, dataloader_idx):
batch["img_crp"] = batch["img_crp"].to(device)
batch["wrp_crp"] = batch["wrp_crp"].to(device)
batch["duv"] = batch["duv"].to(device)
if self._unsupervised:
batch["img_pair"][0] = batch["img_pair"][0].to(device)
batch["img_pair"][1] = batch["img_pair"][1].to(device)
batch["uv"] = batch["uv"].to(device)
return batch
def train_dataloader(self) -> TRAIN_DATALOADERS:
return DataLoader(
self._train_set,
batch_size=self._batch_size,
num_workers=self._num_workers,
pin_memory=True,
)
def val_dataloader(self) -> EVAL_DATALOADERS:
return DataLoader(
self._val_set,
batch_size=self._batch_size,
num_workers=self._num_workers,
pin_memory=True,
)
def test_dataloader(self) -> EVAL_DATALOADERS:
return DataLoader(
self._test_set,
batch_size=self._batch_size,
num_workers=self._num_workers,
pin_memory=True,
)
if __name__ == "__main__":
import os
import time
from dotmap import DotMap
from utils.io import load_yaml
server = "local"
server = DotMap(load_yaml("config/servers.yml")[server])
prefix = os.path.join(
server.database.location, "camera_motion_separated_npy/without_camera_motion"
)
pkl_name = "light_log_without_camera_motion.pkl"
# pkl_name = 'light_log_without_camera_motion.pkl'
df = pd.read_pickle(os.path.join(prefix, pkl_name))
cdm = ImagePairHomographyDataModule(
df,
prefix,
train_split=0.8,
batch_size=64,
num_workers=0,
rho=32,
crp_shape=[320, 240],
)
# cdm = ImagePairHomographyDataModuleSequenceDf(df, prefix, train_split=0.8, batch_size=64, num_workers=0, rho=32, crp_shape=[320, 240])
cdm.setup()
train_dl = cdm.train_dataloader()
start = time.time_ns()
for idx, batch in enumerate(train_dl):
print(
"\ridx: {}, crp shape: {}, wrp shape: {}, len: {}".format(
idx, batch["img_crp"].shape, batch["wrp_crp"].shape, len(batch)
),
end="",
)
if idx == 9:
break
print("\nTime taken: {}".format((time.time_ns() - start) / 1.0e9))