-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimage_mask_homography_data_module.py
138 lines (118 loc) · 4.27 KB
/
image_mask_homography_data_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from typing import List
import numpy as np
import pandas as pd
import pytorch_lightning as pl
from pytorch_lightning.utilities.types import EVAL_DATALOADERS, TRAIN_DATALOADERS
from sklearn.model_selection import train_test_split
from torch.utils.data.dataloader import DataLoader
from datasets import ImageHomographyMaskDataset
from utils import dict_list_to_augment
class ImageHomographyMaskDataModule(pl.LightningDataModule):
def __init__(
self,
dataframe: str,
prefix: str,
rho: int,
train_split: float,
batch_size: int,
num_workers: int = 2,
random_state: int = 42,
tolerance: float = 0.05,
train_transforms: List[dict] = None,
val_transforms: List[dict] = None,
test_transforms: List[dict] = None,
) -> None:
super().__init__()
df = pd.read_pickle(f"{prefix}/{dataframe}")
# train/test
self._train_df = df[df.train == True]
self._test_df = df[df.train == False]
# further split train into train and validation set
unique_vid = self._train_df.vid.unique()
train_vid, val_vid = train_test_split(
unique_vid, train_size=train_split, random_state=random_state
)
self._val_df = self._train_df[
self._train_df.vid.apply(lambda x: x in val_vid)
].reset_index()
self._train_df = self._train_df[
self._train_df.vid.apply(lambda x: x in train_vid)
].reset_index()
# assert if fraction off
fraction = len(self._val_df) / (len(self._train_df) + len(self._val_df))
assert np.isclose(
fraction, 1 - train_split, atol=tolerance
), "Train set fraction {:.3f} not close enough to (1 - train_split) {} at tolerance {}".format(
fraction, 1 - train_split, tolerance
)
self._train_tranforms = dict_list_to_augment(train_transforms)
self._val_tranforms = dict_list_to_augment(val_transforms)
self._test_tranforms = dict_list_to_augment(test_transforms)
self._prefix = prefix
self._rho = rho
self._batch_size = batch_size
self._num_workers = num_workers
def setup(self, stage: str = None) -> None:
if stage == "fit" or stage is None:
self._train_ds = ImageHomographyMaskDataset(
self._train_df,
self._prefix,
self._rho,
self._train_tranforms,
seeds=False,
)
self._val_ds = ImageHomographyMaskDataset(
self._val_df, self._prefix, self._rho, self._val_tranforms, seeds=True
)
if stage == "test":
self._test_ds = ImageHomographyMaskDataset(
self._test_df, self._prefix, self._rho, self._test_tranforms, seeds=True
)
def train_dataloader(self) -> TRAIN_DATALOADERS:
return DataLoader(
self._train_ds,
batch_size=self._batch_size,
shuffle=True,
num_workers=self._num_workers,
drop_last=False,
pin_memory=True,
)
def val_dataloader(self) -> EVAL_DATALOADERS:
return DataLoader(
self._val_ds,
batch_size=self._batch_size,
shuffle=False,
num_workers=self._num_workers,
drop_last=False,
pin_memory=True,
)
def test_dataloader(self) -> EVAL_DATALOADERS:
return DataLoader(
self._test_ds,
batch_size=self._batch_size,
shuffle=False,
num_workers=self._num_workers,
drop_last=False,
pin_memory=True,
)
if __name__ == "__main__":
import matplotlib.pyplot as plt
from kornia import tensor_to_image
dm = ImageHomographyMaskDataModule(
dataframe="22_11_09_deep_log_pre_processed_test_train_no_nan.pkl",
prefix="/media/martin/Samsung_T5/data/endoscopic_data/cholec80_frames",
train_split=0.8,
batch_size=1,
num_workers=0,
tolerance=0.2,
)
dm.setup()
train_dl = dm.train_dataloader()
for imgs in train_dl:
img = imgs[0]
img = tensor_to_image(img)
print(img.shape)
print(img.shape)
plt.imshow(img)
plt.show()
break