-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
1891 lines (1832 loc) · 78.7 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="description" content="RPMArt" />
<meta
name="keywords"
content="RPMArt, Robotics, Robot Learning, Articulation, Robustness, Sim2Real"
/>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<!-- <title>RPMArt: Towards Robust Perception and Manipulation for Articulated Objects</title> -->
<title>RPMArt</title>
<!-- Google tag (gtag.js) -->
<script
async
src="https://www.googletagmanager.com/gtag/js?id=G-04FWTV95EF"
></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag("js", new Date());
gtag("config", "G-04FWTV95EF");
</script>
<link
href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet"
/>
<link rel="stylesheet" href="./static/css/bulma.min.css" />
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css" />
<link rel="stylesheet" href="./static/css/bulma-slider.min.css" />
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css" />
<link
rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css"
/>
<link rel="stylesheet" href="./static/css/index.css" />
<link rel="icon" href="./static/images/favicon.png" />
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> -->
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<nav class="navbar" role="navigation" aria-label="main navigation">
<div class="navbar-brand">
<a
role="button"
class="navbar-burger"
aria-label="menu"
aria-expanded="false"
>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
</a>
</div>
<div class="navbar-menu">
<div class="navbar-start" style="flex-grow: 1; justify-content: center">
<a class="navbar-item" href="https://r-pmart.github.io/">
<span class="icon">
<i class="fas fa-home"></i>
</span>
</a>
<div class="navbar-item has-dropdown is-hoverable">
<a class="navbar-link"> Related Work </a>
<div class="navbar-dropdown">
<a class="navbar-item" href="https://github.com/dadadadawjb/A-PIE"> A-PIE </a>
<a class="navbar-item" href="https://sites.google.com/view/gamma-articulation"> GAMMA </a>
</div>
</div>
</div>
</div>
</nav>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">
<span class="highlight">RPMArt</span
><span class="lowlight">: Towards </span>
<span class="highlight">R</span
><span class="lowlight">obust </span>
<span class="highlight">P</span
><span class="lowlight">erception and </span>
<span class="highlight">M</span
><span class="lowlight">anipulation for </span>
<span class="highlight">Art</span
><span class="lowlight">iculated Objects</span>
</h1>
<h4 class="title is-4 conference"><a href="https://iros2024-abudhabi.org/" class="conference">IEEE/RSJ International Conference on Intelligent Robots and Systems (<span class="grad_text">IROS</span>) 2024</a></h4>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://dadadadawjb.github.io/">Junbo Wang</a
><sup>1</sup>,
</span>
<span class="author-block">
<a href="mailto:[email protected]">Wenhai Liu</a
><sup>1</sup>,
</span>
<span class="author-block">
<a href="mailto:[email protected]">Qiaojun Yu</a
><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://qq456cvb.github.io/">Yang You</a
><sup>2</sup>,
</span>
<span class="author-block">
<a href="https://liuliu66.github.io/">Liu Liu</a><sup>3</sup>,
</span>
<span class="author-block">
<a href="mailto:[email protected]">Weiming Wang</a
><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://www.mvig.org/">Cewu Lu</a><sup>1</sup>
</span>
</div>
<div class="is-size-5 publication-authors">
<sup>1</sup
><span class="author-block">Shanghai Jiao Tong University</span
>, <sup>2</sup
><span class="author-block">Stanford University</span>,
<sup>3</sup
><span class="author-block"
>Hefei University of Technology</span
>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<span class="link-block">
<a
href="https://arxiv.org/abs/2403.16023"
class="external-link button is-normal is-rounded is-dark"
>
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a
href="https://rasevents.org/presentation?id=144610"
class="external-link button is-normal is-rounded is-dark"
>
<span class="icon">
<i class="fas fa-file-image"></i>
</span>
<span>Poster</span>
</a>
</span>
<span class="link-block">
<a
href="https://youtu.be/7yc26ZQcpc0"
class="external-link button is-normal is-rounded is-dark"
>
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span>
<span class="link-block">
<a
href="https://github.com/R-PMArt/rpmart"
class="external-link button is-normal is-rounded is-dark"
>
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<span class="link-block">
<a
href="https://huggingface.co/dadadadawjb/RoArtNet"
class="external-link button is-normal is-rounded is-dark"
>
<span class="icon">
<i class="fa fa-sitemap"></i>
</span>
<span>Model</span>
</a>
</span>
<span class="link-block">
<a
href="https://huggingface.co/datasets/dadadadawjb/RealArt-6"
class="external-link button is-normal is-rounded is-dark"
>
<span class="icon">
<i class="fa fa-database"></i>
</span>
<span>Data</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Articulated objects are commonly found in daily life. It is
essential that robots can exhibit robust perception and
manipulation skills for articulated objects in real-world
robotic applications. However, existing methods for articulated
objects insufficiently address noise in point clouds and
struggle to bridge the gap between simulation and reality, thus
limiting the practical deployment in real-world scenarios. To
tackle these challenges, we propose a framework towards
<b>R</b>obust <b>P</b>erception and <b>M</b>anipulation for
<b>Art</b>iculated Objects (<b>RPMArt</b>), which learns to
estimate the articulation parameters and manipulate the
articulation part from the noisy point cloud. Our primary
contribution is a <b>Ro</b>bust <b>Art</b>iculation
<b>Net</b>work (<b>RoArtNet</b>) that is able to predict both
joint parameters and affordable points robustly by local feature
learning and point tuple voting. Moreover, we introduce an
articulation-aware classification scheme to enhance its ability
for sim-to-real transfer. Finally, with the estimated affordable
point and articulation joint constraint, the robot can generate
robust actions to manipulate articulated objects. After learning
only from synthetic data, RPMArt is able to transfer zero-shot
to real-world articulated objects. Experimental results confirm
our approach's effectiveness, with our framework achieving
state-of-the-art performance in both noise-added simulation and
real-world environments.
</p>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Video</h2>
<div class="publication-video">
<iframe
src="https://www.youtube.com/embed/7yc26ZQcpc0?si=yVclyJ8Drl-8G7YP?rel=0&showinfo=0"
title="YouTube video player"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen
></iframe>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Framework</h2>
</div>
</div>
</div>
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<div class="column content has-text-justified">
<ul>
<li><b>Robust articulation network</b></li>
<ul>
<li>Input: single-view point cloud</li>
<li>Output: joint parameters and affordable point</li>
</ul>
<li><b>Affordance-based physics-guided manipulation</b></li>
<ul>
<li>Affordable grasp pose selection</li>
<li>Articulation joint constraint</li>
</ul>
</ul>
<br />
<p>
During training, several voting targets are generated by part
segmentation, joint parameters and affordable points from the
simulator to supervise RoArtNet. When given the real-world noisy
point cloud observation, RoArtNet can still generate robust
joint parameters and affordable points estimation by point tuple
voting. Then, affordable initial grasp poses can be selected
from AnyGrasp-generated grasp poses based on the estimated
affordable points, and subsequent actions can be constrained by
the estimated joint parameters.
</p>
</div>
</div>
<div class="column has-text-centered">
<div class="content">
<img
src="./static/images/framework.png"
alt="Framework"
style="width: 100%"
/>
</div>
</div>
</div>
</div>
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered has-text-justified">
<div class="column content">
<img
src="./static/images/roartnet.png"
alt="RoArtNet"
style="width: 100%"
/>
<p>
Our primary contribution is the robust articulation network,
which is carefully designed to be <b>robust</b> and <b>sim-to-real</b>,
by <b>local feature learning</b>, <b>point tuple voting</b>, and an <b>articulation awareness</b> scheme.
First, a collection of point tuples are uniformly sampled from the point cloud.
For each point tuple, we predict several voting targets with a neural network from the local context features of the point tuple.
Further, an articulation score is applied to supervise the neural network so that the network is aware of the articulation structure.
Then, we can generate multiple candidates using the predicted voting targets, given the one degree-of-freedom ambiguity constraint.
The candidate joint origin, joint direction and affordable point with the most votes,
from only point tuples with high articulation score, are selected as the final estimation.
</p>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Experimental Results</h2>
</div>
</div>
</div>
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered has-text-justified">
<div class="column content">
<p>
We evaluate RPMArt in both noise-added simulation and real-world environments.
In the simulation environment, we add different levels of noise to the point clouds to test the robustness of models.
And we also test the sim-to-real transfer ability of RPMArt by directly applying the model trained on synthetic data to real-world scenarios.
</p>
</div>
</div>
</div>
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h3 class="title is-4">Simulation Perception</h3>
</div>
</div>
</div>
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered has-text-justified">
<div class="column content">
<img
src="./static/images/sim_perception_origin_all.png"
alt="sim_perception_origin_all"
style="width: 100%"
/>
<br />
<p align="center">Joint origin estimation results</p>
</div>
<div class="column content">
<img
src="./static/images/sim_perception_direction_all.png"
alt="sim_perception_direction_all"
style="width: 100%"
/>
<br />
<p align="center">Joint direction estimation results</p>
</div>
<div class="column content">
<img
src="./static/images/sim_perception_affordance_all.png"
alt="sim_perception_affordance_all"
style="width: 100%"
/>
<br />
<p align="center">Affordable point estimation results</p>
</div>
</div>
<p>
We gradually add higher level of noise to the input point clouds,
and test the joint parameters and affordable points estimation performance.
Lower is better.
Error bars represent the standard deviation.
Results are averaged across six object categories.
This shows that RoArtNet is robust to noise in the input point clouds.
</p>
<br />
<p>
<details>
<summary><b>Results for each object category.</b></summary>
<br />
<table class="table is-striped is-fullwidth">
<thead>
<tr>
<th>Category</th>
<th>Joint origin</th>
<th>Joint direction</th>
<th>Affordable point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave</td>
<td>
<img
src="./static/images/sim_perception_origin_microwave.png"
alt="sim_perception_origin_microwave"
style="width: 100%"
/>
</td>
<td>
<img
src="./static/images/sim_perception_direction_microwave.png"
alt="sim_perception_direction_microwave"
style="width: 100%"
/>
</td>
<td>
<img
src="./static/images/sim_perception_affordance_microwave.png"
alt="sim_perception_affordance_microwave"
style="width: 100%"
/>
</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>
<img
src="./static/images/sim_perception_origin_refrigerator.png"
alt="sim_perception_origin_refrigerator"
style="width: 100%"
/>
</td>
<td>
<img
src="./static/images/sim_perception_direction_refrigerator.png"
alt="sim_perception_direction_refrigerator"
style="width: 100%"
/>
</td>
<td>
<img
src="./static/images/sim_perception_affordance_refrigerator.png"
alt="sim_perception_affordance_refrigerator"
style="width: 100%"
/>
</td>
</tr>
<tr>
<td>Safe</td>
<td>
<img
src="./static/images/sim_perception_origin_safe.png"
alt="sim_perception_origin_safe"
style="width: 100%"
/>
</td>
<td>
<img
src="./static/images/sim_perception_direction_safe.png"
alt="sim_perception_direction_safe"
style="width: 100%"
/>
</td>
<td>
<img
src="./static/images/sim_perception_affordance_safe.png"
alt="sim_perception_affordance_safe"
style="width: 100%"
/>
</td>
</tr>
<tr>
<td>Storage Furniture</td>
<td>
<img
src="./static/images/sim_perception_origin_storagefurniture.png"
alt="sim_perception_origin_storagefurniture"
style="width: 100%"
/>
</td>
<td>
<img
src="./static/images/sim_perception_direction_storagefurniture.png"
alt="sim_perception_direction_storagefurniture"
style="width: 100%"
/>
</td>
<td>
<img
src="./static/images/sim_perception_affordance_storagefurniture.png"
alt="sim_perception_affordance_storagefurniture"
style="width: 100%"
/>
</td>
</tr>
<tr>
<td>Drawer</td>
<td>
<img
src="./static/images/sim_perception_origin_drawer.png"
alt="sim_perception_origin_drawer"
style="width: 100%"
/>
</td>
<td>
<img
src="./static/images/sim_perception_direction_drawer.png"
alt="sim_perception_direction_drawer"
style="width: 100%"
/>
</td>
<td>
<img
src="./static/images/sim_perception_affordance_drawer.png"
alt="sim_perception_affordance_drawer"
style="width: 100%"
/>
</td>
</tr>
<tr>
<td>Washing Machine</td>
<td>
<img
src="./static/images/sim_perception_origin_washingmachine.png"
alt="sim_perception_origin_washingmachine"
style="width: 100%"
/>
</td>
<td>
<img
src="./static/images/sim_perception_direction_washingmachine.png"
alt="sim_perception_direction_washingmachine"
style="width: 100%"
/>
</td>
<td>
<img
src="./static/images/sim_perception_affordance_washingmachine.png"
alt="sim_perception_affordance_washingmachine"
style="width: 100%"
/>
</td>
</tr>
</tbody>
</table>
<p>
Results show that all baselines and RoArtNet achieve high estimation precision without noise added across all object categories.
Nevertheless, with the increasing level of noise,
all three baselines exhibit a pronounced increase in estimation errors,
while the mean estimation error of RoArtNet increases very slowly.
And the baselines also have much higher standard deviation compared to RoArtNet when high level of noise is added.
There also exist some interesting phenomena in the results.
The StorageFurniture and Drawer categories have much higher estimation errors for ANCSH and GAMMA compared to other categories.
This is possibly because the StorageFurniture and Drawer categories comprise relatively small articulation parts,
while the ANCSH and GAMMA models somehow rely on the part segmentation to finish the estimation.
In addition, the two methods both contain an optimization-based procedure,
i.e. RANSAC transformation estimation for ANCSH and DBSCAN part clustering for GAMMA,
which may be unsolvable when the part segmentation is not accurate.
It is also interesting that the WashingMachine category demonstrates partly a decreasing trend when the noise level is high.
</p>
</details>
</p>
<br />
</div>
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h3 class="title is-4">Simulation Manipulation</h3>
</div>
</div>
</div>
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered has-text-justified">
<div class="column content">
<p>
We also add different levels of noise to the input point clouds,
and report the manipulation success rates.
We run around 100 trials per object instance for each task.
Higher is better.
Results are averaged across six tasks.
We also run manipulation experiments using the ground truth joint parameters and affordable points,
and the average success rates are 96.694% and 99.627% for pulling and pushing respectively.
It demonstrates that RPMArt can still stably manipulate articulated objects with inaccurate perception results.
We also show the twelve task examples finished by RPMArt under noise level 2.
We can observe that the perception results are still robust to noise but actually not perfect,
but RPMArt can still successfully manipulate the articulated objects.
</p>
</div>
<div class="column content">
<img
src="./static/images/sim_manipulation_all.png"
alt="sim_manipulation_all"
style="width: 100%"
/>
<br />
<p align="center">Manipulation results</p>
</div>
</div>
<div class="columns is-centered has-text-centered has-text-justified">
<div class="column content">
<video controls autoplay muted loop style="width: 100%">
<source
src="./static/videos/sim_microwave_pull.mp4"
type="video/mp4"
/>
Your browser does not support the video tag.
</video>
<br />
<p align="center">Pull Microwave</p>
<video controls autoplay muted loop style="width: 100%">
<source
src="./static/videos/sim_refrigerator_pull.mp4"
type="video/mp4"
/>
Your browser does not support the video tag.
</video>
<br />
<p align="center">Pull Refrigerator</p>
<video controls autoplay muted loop style="width: 100%">
<source
src="./static/videos/sim_storagefurniture_prismatic_pull.mp4"
type="video/mp4"
/>
Your browser does not support the video tag.
</video>
<br />
<p align="center">Pull StorageFurniture (Prismatic)</p>
</div>
<div class="column content">
<video controls autoplay muted loop style="width: 100%">
<source
src="./static/videos/sim_safe_pull.mp4"
type="video/mp4"
/>
Your browser does not support the video tag.
</video>
<br />
<p align="center">Pull Safe</p>
<video controls autoplay muted loop style="width: 100%">
<source
src="./static/videos/sim_storagefurniture_revolute_pull.mp4"
type="video/mp4"
/>
Your browser does not support the video tag.
</video>
<br />
<p align="center">Pull StorageFurniture (Revolute)</p>
<video controls autoplay muted loop style="width: 100%">
<source
src="./static/videos/sim_storagev2furniture_pull.mp4"
type="video/mp4"
/>
Your browser does not support the video tag.
</video>
<br />
<p align="center">Pull Drawer</p>
</div>
<div class="column content">
<video controls autoplay muted loop style="width: 100%">
<source
src="./static/videos/sim_microwave_push.mp4"
type="video/mp4"
/>
Your browser does not support the video tag.
</video>
<br />
<p align="center">Push Microwave</p>
<video controls autoplay muted loop style="width: 100%">
<source
src="./static/videos/sim_refrigerator_push.mp4"
type="video/mp4"
/>
Your browser does not support the video tag.
</video>
<br />
<p align="center">Push Refrigerator</p>
<video controls autoplay muted loop style="width: 100%">
<source
src="./static/videos/sim_storagefurniture_prismatic_push.mp4"
type="video/mp4"
/>
Your browser does not support the video tag.
</video>
<br />
<p align="center">Push StorageFurniture (Prismatic)</p>
</div>
<div class="column content">
<video controls autoplay muted loop style="width: 100%">
<source
src="./static/videos/sim_safe_push.mp4"
type="video/mp4"
/>
Your browser does not support the video tag.
</video>
<br />
<p align="center">Push Safe</p>
<video controls autoplay muted loop style="width: 100%">
<source
src="./static/videos/sim_storagefurniture_revolute_push.mp4"
type="video/mp4"
/>
Your browser does not support the video tag.
</video>
<br />
<p align="center">Push StorageFurniture (Revolute)</p>
<video controls autoplay muted loop style="width: 100%">
<source
src="./static/videos/sim_storagev2furniture_push.mp4"
type="video/mp4"
/>
Your browser does not support the video tag.
</video>
<br />
<p align="center">Push Drawer</p>
</div>
</div>
<!-- <br /> -->
<p>
<details>
<summary><b>Results for each task.</b></summary>
<br />
<table class="table is-striped is-fullwidth">
<thead>
<tr>
<th>Tasks</th>
<th>Results</th>
<th>Tasks</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull/Push Microwave</td>
<td>
<img
src="./static/images/sim_manipulation_microwave.png"
alt="sim_manipulation_microwave"
style="width: 100%"
/>
</td>
<td>Pull/Push Refrigerator</td>
<td>
<img
src="./static/images/sim_manipulation_refrigerator.png"
alt="sim_manipulation_refrigerator"
style="width: 100%"
/>
</td>
</tr>
<tr>
<td>Pull/Push Safe</td>
<td>
<img
src="./static/images/sim_manipulation_safe.png"
alt="sim_manipulation_safe"
style="width: 100%"
/>
</td>
<td>Pull/Push StorageFurniture (Revolute)</td>
<td>
<img
src="./static/images/sim_manipulation_storagefurniture_revolute.png"
alt="sim_manipulation_storagefurniture_revolute"
style="width: 100%"
/>
</td>
</tr>
<tr>
<td>Pull/Push StorageFurniture (Prismatic)</td>
<td>
<img
src="./static/images/sim_manipulation_storagefurniture_prismatic.png"
alt="sim_manipulation_storagefurniture_prismatic"
style="width: 100%"
/>
</td>
<td>Pull/Push Drawer</td>
<td>
<img
src="./static/images/sim_manipulation_drawer.png"
alt="sim_manipulation_drawer"
style="width: 100%"
/>
</td>
</tr>
</tbody>
</table>
<p>
Results show that RPMArt achieves the highest success rate under noise level 4 across almost all tasks except Push Refrigerator.
And we can observe the least degradation in performance of RPMArt with the increase of noise.
Actually, when no noise is added, RPMArt only achieves comparable or even slightly worse performance than the baselines,
especially GAMMA.
There also exist some interesting phenomena in the results.
Under noise level 4, PointNet++-based method always achieves better performance than ANCSH and GAMMA in pushing tasks,
while ANCSH and GAMMA often have better results in pulling tasks.
Note that pulling tasks are often considered more difficult than pushing tasks,
since pulling tasks often require first grasping the target part while it is unnecessary for pushing tasks.
However, ANCSH and GAMMA often obtain higher success rates than PointNet++-based method without noise added.
In addition, for Pull/Push StorageFurniture (Prismatic) and Pull/Push Drawer under noise level 4,
ANCSH and GAMMA achieve much lower success rates,
which may also be attributed to the fact that these parts are relatively small,
as discussed in simulation perception.
</p>
</details>
</p>
<br />
</div>
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h3 class="title is-4">Real-world Perception</h3>
</div>
</div>
</div>
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered has-text-justified">
<div class="column content is-four-fifths">
<table class="table is-striped is-fullwidth">
<thead>
<tr>
<th rowspan="2">Category</th>
<th rowspan="2">Method</th>
<th colspan="3">Error</th>
</tr>
<tr>
<td>Orig. (cm)</td>
<td>Dir. (<sup>o</sup>)</td>
<td>Afford. (cm)</td>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="4">Microwave</td>
<td>PointNet++</td>
<td>4.495<font size="1">±3.573</font></td>
<td>9.273<font size="1">±5.828</font></td>
<td>15.443<font size="1">±4.730</font></td>
</tr>
<tr>
<td>ANCSH</td>
<td>5.103<font size="1">±5.522</font></td>
<td>9.166<font size="1">±9.557</font></td>
<td>12.711<font size="1">±7.927</font></td>
</tr>
<tr>
<td>GAMMA</td>
<td><b>2.531</b><font size="1">±2.901</font></td>
<td>9.911<font size="1">±10.671</font></td>
<td>7.242<font size="1">±10.191</font></td>
</tr>
<tr>
<td>RoArtNet (ours)</td>
<td>3.830<font size="1">±<b>2.372</b></font></td>
<td><b>5.189</b><font size="1">±<b>3.619</b></font></td>
<td><b>6.754</b><font size="1">±<b>3.275</b></font></td>
</tr>
<tr>
<td rowspan="4">Refrigerator</td>
<td>PointNet++</td>
<td>5.210<font size="1">±4.274</font></td>
<td>9.605<font size="1">±5.340</font></td>
<td>12.475<font size="1">±9.505</font></td>
</tr>
<tr>
<td>ANCSH</td>
<td>5.938<font size="1">±5.798</font></td>
<td><b>7.998</b><font size="1">±5.910</font></td>
<td>12.814<font size="1">±13.604</font></td>
</tr>
<tr>
<td>GAMMA</td>
<td>4.019<font size="1">±4.580</font></td>
<td>8.684<font size="1">±6.455</font></td>
<td>12.331<font size="1">±9.974</font></td>
</tr>
<tr>
<td>RoArtNet (ours)</td>
<td><b>2.111</b><font size="1">±<b>1.701</b></font></td>
<td>8.491<font size="1">±<b>4.270</b></font></td>
<td><b>5.849</b><font size="1">±<b>2.797</b></font></td>
</tr>
<tr>
<td rowspan="4">Safe</td>
<td>PointNet++</td>
<td>5.985<font size="1">±4.162</font></td>
<td>5.936<font size="1">±2.861</font></td>
<td>9.235<font size="1">±5.630</font></td>
</tr>
<tr>
<td>ANCSH</td>
<td>5.167<font size="1">±6.758</font></td>
<td>7.706<font size="1">±14.275</font></td>
<td>8.505<font size="1">±9.768</font></td>
</tr>
<tr>
<td>GAMMA</td>
<td><b>3.179</b><font size="1">±3.857</font></td>
<td>8.156<font size="1">±13.737</font></td>
<td>9.062<font size="1">±9.667</font></td>
</tr>
<tr>
<td>RoArtNet (ours)</td>
<td>4.116<font size="1">±<b>2.428</b></font></td>
<td><b>5.878</b><font size="1">±<b>2.769</b></font></td>
<td><b>8.349</b><font size="1">±<b>4.391</b></font></td>
</tr>
<tr>
<td rowspan="4">StorageFurniture</td>
<td>PointNet++</td>
<td>7.542<font size="1">±4.517</font></td>
<td><b>8.776</b><font size="1">±<b>4.991</b></font></td>
<td>10.634<font size="1">±4.025</font></td>
</tr>
<tr>
<td>ANCSH</td>
<td>6.408<font size="1">±4.222</font></td>
<td>9.612<font size="1">±6.404</font></td>
<td>5.176<font size="1">±6.023</font></td>
</tr>
<tr>
<td>GAMMA</td>
<td><b>3.481</b><font size="1">±2.275</font></td>
<td>12.672<font size="1">±10.186</font></td>
<td><b>4.742</b><font size="1">±6.664</font></td>
</tr>
<tr>
<td>RoArtNet (ours)</td>
<td>4.604<font size="1">±<b>2.050</b></font></td>
<td>9.682<font size="1">±5.449</font></td>
<td>7.946<font size="1">±<b>3.402</b></font></td>
</tr>
<tr>
<td rowspan="4">Drawer</td>
<td>PointNet++</td>
<td>8.331<font size="1">±3.377</font></td>
<td><b>7.862</b><font size="1">±<b>5.295</b></font></td>
<td>10.227<font size="1">±4.465</font></td>
</tr>
<tr>
<td>ANCSH</td>
<td>13.849<font size="1">±3.764</font></td>
<td>12.143<font size="1">±8.030</font></td>