-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
367 lines (305 loc) · 15.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import os
import argparse
import torch
import time
from torch.utils.tensorboard import SummaryWriter
import torch.distributed as dist
from tqdm import tqdm
from utils.metric import metric
from torch.optim.lr_scheduler import ReduceLROnPlateau, StepLR, CosineAnnealingLR
from process_input import process_x, process_gt
# from logger import create_logger
from timm.utils import AverageMeter
from accelerate import Accelerator
import torch.nn as nn
# from utils import yaml_read
# from utils.conf_base import Default_Conf
from rich.progress import (
BarColumn,
Progress,
TextColumn,
MofNCompleteColumn,
TimeRemainingColumn,
)
import logging
from rich.logging import RichHandler
import hydra
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0" # ! solve warning
def weights_init_normal(init_type):
def init_func(m):
classname = m.__class__.__name__
gain = 0.02
if classname.find("BatchNorm2d") != -1:
if hasattr(m, "weight") and m.weight is not None:
torch.nn.init.normal_(m.weight.data, 1.0, gain)
if hasattr(m, "bias") and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
elif hasattr(m, "weight") and (classname.find("Conv") != -1 or classname.find("Linear") != -1):
if init_type == "normal":
torch.nn.init.normal_(m.weight.data, 0.0, gain)
elif init_type == "xavier":
torch.nn.init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == "xavier_uniform":
torch.nn.init.xavier_uniform_(m.weight.data, gain=1.0)
elif init_type == "kaiming":
torch.nn.init.kaiming_normal_(m.weight.data, a=0, mode="fan_in")
elif init_type == "orthogonal":
torch.nn.init.orthogonal_(m.weight.data, gain=gain)
elif init_type == "none": # uses pytorch's default init method
m.reset_parameters()
else:
raise NotImplementedError("initialization method [%s] is not implemented" % init_type)
if hasattr(m, "bias") and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
return init_func
def get_logger(config):
file_handler = logging.FileHandler(os.path.join(config.hydra_path, f"{config.job_name}.log"))
rich_handler = RichHandler()
log = logging.getLogger(__name__)
log.setLevel(logging.DEBUG)
log.addHandler(rich_handler)
log.addHandler(file_handler)
log.propagate = False
log.info("Successfully create rich logger")
return log
def train(config, model, logger):
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = config.cudnn_enabled
torch.backends.cudnn.benchmark = config.cudnn_benchmark
# * init averageMeter
loss_meter = AverageMeter()
dice_meter = AverageMeter()
# init rich progress
progress = Progress(
TextColumn("[bold blue]{task.description}", justify="right"),
MofNCompleteColumn(),
BarColumn(bar_width=40),
"[progress.percentage]{task.percentage:>3.1f}%",
TimeRemainingColumn(),
)
# * set optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=config.init_lr)
# * set loss function
from loss_function import Binary_Loss, DiceLoss, cross_entropy_3D
criterion = Binary_Loss()
dice_criterion = DiceLoss().cuda()
criterion_ce= nn.CrossEntropyLoss().cuda()
# * set scheduler strategy
if config.use_scheduler:
scheduler = StepLR(optimizer, step_size=config.scheduler_step_size, gamma=config.scheduler_gamma)
# * load model
if config.load_mode == 1: # * load weights from checkpoint
logger.info(f"load model from: {os.path.join(config.ckpt, config.latest_checkpoint_file)}")
ckpt = torch.load(
os.path.join(config.ckpt, config.latest_checkpoint_file), map_location=lambda storage, loc: storage
)
model.load_state_dict(ckpt["model"])
optimizer.load_state_dict(ckpt["optim"])
for state in optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = v.cuda()
if config.use_scheduler:
scheduler.load_state_dict(ckpt["scheduler"])
elapsed_epochs = ckpt["epoch"]
# elapsed_epochs = 0
else:
elapsed_epochs = 0
model.train()
# * tensorboard writer
writer = SummaryWriter(config.hydra_path)
# * load datasetBs
from dataloader import Dataset
train_dataset = Dataset(config)
#! in distributed training, the 'shuffle' must be false!
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset.queue_dataset,
batch_size=config.batch_size,
shuffle=False,
num_workers=0,
pin_memory=True,
drop_last=True,
)
epochs = config.epochs - elapsed_epochs
iteration = elapsed_epochs * len(train_loader)
epoch_tqdm = progress.add_task(description="[red]epoch progress", total=epochs)
batch_tqdm = progress.add_task(description="[blue]batch progress", total=len(train_loader))
accelerator = Accelerator()
# * accelerate prepare
train_loader, model, optimizer, scheduler = accelerator.prepare(train_loader, model, optimizer, scheduler)
progress.start()
for epoch in range(1, epochs + 1):
progress.update(epoch_tqdm, completed=epoch)
epoch += elapsed_epochs
num_iters = 0
load_meter = AverageMeter()
train_time = AverageMeter()
load_start = time.time() # * initialize
for i, batch in enumerate(train_loader):
with torch.autograd.set_detect_anomaly(True):
progress.update(batch_tqdm, completed=i + 1)
train_start = time.time()
load_time = time.time() - load_start
optimizer.zero_grad()
x = process_x(config, batch) # * from batch extract x:[bs,4 or 1,h,w,d]
gt = process_gt(config, batch) # * from batch extract gt:[bs,4 or 1,h,w,d]
gt_back = torch.zeros_like(gt)
gt_back[gt == 0] = 1
gt = torch.cat([gt_back, gt], dim=1) # * [bs,2,h,w,d]
x = x.type(torch.FloatTensor).to(accelerator.device)
gt = gt.type(torch.FloatTensor).to(accelerator.device)
if config.network == "IS":
pred_1,pred = model(x)
loss = criterion_ce(pred_1,gt)+criterion_ce(pred,gt)
mask = pred.argmax(dim=1,keepdim=True)
else:
pred = model(x)
mask = pred.argmax(dim=1, keepdim=True) # * [bs,1,h,w,d]
# * pred -> mask (0 or 1)
# mask = torch.sigmoid(pred.clone()) # TODO should use softmax, because it returns two probability (sum = 1)
# mask[mask > 0.5] = 1
# mask[mask <= 0.5] = 0
loss = criterion(pred, gt) + dice_criterion(pred, gt)
# loss.backward()
accelerator.backward(loss)
progress.refresh()
optimizer.step()
num_iters += 1
iteration += 1
# * calculate metrics
# TODO use reduce to sum up all rank's calculation results
_, _,_,dice,_ = metric(gt.cpu().argmax(dim=1, keepdim=True), mask.cpu())
# dice = dist.all_reduce(dice, op=dist.ReduceOp.SUM) / dist.get_world_size()
# recall = dist.all_reduce(recall, op=dist.ReduceOp.SUM) / dist.get_world_size()
# specificity = dist.all_reduce(specificity, op=dist.ReduceOp.SUM) / dist.get_world_size()
writer.add_scalar("Training/Loss", loss.item(), iteration)
# writer.add_scalar('Training/recall', recall, iteration)
# writer.add_scalar('Training/specificity', specificity, iteration)
writer.add_scalar("Training/dice", dice, iteration)
temp_file_base = os.path.join(config.hydra_path, "train_temp")
os.makedirs(temp_file_base, exist_ok=True)
# if (i % 20 == 0):
# with torch.no_grad():
# #! if dataset is brats ,it will automatically save flair modality as nii.gz
# if (conf.dataset == 'brats'):
# affine = batch['flair']['affine'][0].numpy()
# flair_source = tio.ScalarImage(tensor=x[:, 0, :, :, :].cpu().detach().numpy(), affine=affine)
# flair_source.save(os.path.join(temp_file_base, f"epoch-{epoch:04d}-batch-{i:02d}-source" + conf.save_arch))
# flair_gt = tio.ScalarImage(tensor=gt[:, 0, :, :, :].cpu().detach().numpy(), affine=affine)
# flair_gt.save(os.path.join(temp_file_base, f"epoch-{epoch:04d}-batch-{i:02d}-gt" + conf.save_arch))
# flair_pred = tio.ScalarImage(tensor=pred[:, 0, :, :, :].cpu().detach().numpy(), affine=affine)
# flair_pred.save(os.path.join(temp_file_base, f"epoch-{epoch:04d}-batch-{i:02d}-pred" + conf.save_arch))
# else:
# affine = batch['source']['affine'][0].numpy()
# source = tio.ScalarImage(tensor=x[0, :, :, :, :].cpu().detach().numpy(), affine=affine)
# source.save(os.path.join(temp_file_base, f"epoch-{epoch:04d}-batch-{i:02d}-source" + conf.save_arch))
# gt_data = tio.ScalarImage(tensor=gt[0, :, :, :, :].cpu().detach().numpy(), affine=affine)
# gt_data.save(os.path.join(temp_file_base, f"epoch-{epoch:04d}-batch-{i:02d}-gt" + conf.save_arch))
# pred_data = tio.ScalarImage(tensor=pred[0, :, :, :, :].cpu().detach().numpy(), affine=affine)
# pred_data.save(os.path.join(temp_file_base, f"epoch-{epoch:04d}-batch-{i:02d}-pred" + conf.save_arch))
# * record metris
loss_meter.update(loss.item(), x.size(0))
dice_meter.update(dice, x.size(0))
# recall_meter.update(recall, x.size(0))
# spe_meter.update(specificity, x.size(0))
train_time.update(time.time() - train_start)
load_meter.update(load_time)
# logger.info('batch used time: {:.3f} s\n'.format(batch_time.val))
logger.info(
f"\nEpoch: {epoch} Batch: {i}, data load time: {load_meter.val:.3f}s , train time: {train_time.val:.3f}s\n"
f"Loss: {loss_meter.val}\n"
f"Dice: {dice_meter.val}\n"
)
# f'Recall: {recall_meter.val}\n'
# f'Specificity: {spe_meter.val}\n')
load_start = time.time()
# reset batchtqdm
if config.use_scheduler:
scheduler.step()
logger.info(f"Learning rate: {scheduler.get_last_lr()[0]}")
# * one epoch logger
logger.info(
f"\nEpoch {epoch} used time: {load_meter.sum+train_time.sum:.3f} s\n"
f"Loss Avg: {loss_meter.avg}\n"
f"Dice Avg: {dice_meter.avg}\n"
)
# f'Recall Avg: {recall_meter.avg}\n'
# f'Specificity Avg: {spe_meter.avg}\n')
# Store latest checkpoint in each epoch
scheduler_dict = scheduler.state_dict() if config.use_scheduler else None
torch.save(
{
"model": model.state_dict(),
"optim": optimizer.state_dict(),
"scheduler": scheduler_dict,
"epoch": epoch,
},
os.path.join(config.hydra_path, config.latest_checkpoint_file),
)
# Save checkpoint
if epoch % config.epochs_per_checkpoint == 0:
torch.save(
{
"model": model.state_dict(),
"optim": optimizer.state_dict(),
"scheduler": scheduler_dict,
"epoch": epoch,
},
os.path.join(config.hydra_path, f"checkpoint_{epoch:04d}.pt"),
)
writer.close()
@hydra.main(config_path="conf", config_name="config", version_base="1.3")
def main(config):
config = config["config"]
if isinstance(config.patch_size, str):
assert (
len(config.patch_size.split(",")) <= 3
), f'patch size can only be one str or three str but got {len(config.patch_size.split(","))}'
if len(config.patch_size.split(",")) == 3:
config.patch_size = tuple(map(int, config.patch_size.split(",")))
else:
config.patch_size = int(config.patch_size)
# * model selection
if config.network == "res_unet":
from models.three_d.residual_unet3d import UNet
model = UNet(in_channels=config.in_classes, n_classes=config.out_classes, base_n_filter=32)
elif config.network == "unet":
from models.three_d.unet3d import UNet3D # * 3d unet
model = UNet3D(in_channels=config.in_classes,out_channels=config.out_classes,init_features=32)
elif config.network == 'vnet':
from models.three_d.vnet3d import VNet
model = VNet(in_channels=config.in_classes,classes= config.out_classes)
elif config.network == 'unetr':
from models.three_d.unetr import UNETR
model = UNETR(img_shape=config.img_shape, input_dim=config.in_classes, output_dim=config.out_classes,
embed_dim=config.embed_dim, patch_size=config.unetr_patch_size, num_heads=config.num_heads, dropout=config.dropout)
elif config.network == "er_net":
from models.three_d.ER_net import ER_Net
model = ER_Net(classes=config.out_classes, channels=config.in_classes)
elif config.network == "re_net":
from models.three_d.RE_net import RE_Net
model = RE_Net(classes=config.out_classes, channels=config.in_classes)
elif config.network == "csrnet":
from models.three_d.csrnet import UNet3D
model = UNet3D(in_channels=config.in_classes,out_channels=config.out_classes,init_features=32)
elif config.network =="IS":
from models.three_d.IS import UNet3D
model = UNet3D(in_channels=config.in_classes,out_channels=config.out_classes,init_features=32)
model.apply(weights_init_normal(config.init_type))
# * create logger
logger = get_logger(config)
info = "\nParameter Settings:\n"
for k, v in config.items():
info += f"{k}: {v}\n"
logger.info(info)
# print(n)
# print(m)
# logger.info(f"load model from: {os.path.join(config.ckpt, config.latest_checkpoint_file)}")
# ckpt = torch.load(
# os.path.join(config.ckpt, config.latest_checkpoint_file), map_location=lambda storage, loc: storage
# )
# model.load_state_dict(ckpt["model"])
train(config, model, logger)
logger.info(f"tensorboard file saved in:{config.hydra_path}")
if __name__ == "__main__":
main()