forked from lhillber/qca
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqeb_lifetime.py
244 lines (214 loc) · 8.02 KB
/
qeb_lifetime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import numpy as np
import matplotlib.pyplot as plt
from matrix import ops
import matplotlib.gridspec as gridspec
import os
from scipy.optimize import curve_fit
from matplotlib import rc
import matplotlib as mpl
from mpl_toolkits.axes_grid1 import make_axes_locatable
from figures import letters
fontstyle = {'pdf.fonttype': 42,
'text.usetex': True,
'text.latex.preamble': '\\usepackage{amsfonts}',
'font.family': 'serif',
'axes.labelsize': 9,
'font.size': 9,
'legend.fontsize': 9,
'xtick.labelsize': 9,
'ytick.labelsize': 9}
plt.rcParams.update(fontstyle)
rc("mathtext", default='regular')
# where is the raw data wrt this file?
# also where processed data will be stored
DATA_DER = "data/qeb_decay"
def main():
# system paremters, correlated with file name
# error values (percent)
errs = [0.4, 0.54, 0.728, 0.983, 1.33, 1.79, 2.41, 3.26, 4.39, 5.93, 8.0]
L = 17 # true system size
dt = 0.1 # time step
load = True # load processed data? (generates/saves if not found)
show = False # show fits while processing?
# processed data save location
proc_fname = f"{L+4}-site_admix-processed.npy"
proc_fname = os.path.join(DATA_DER, proc_fname)
# plot save location
plot_fname = f"{L+4}-site_admix_lifetime_V5.pdf"
# generate or load processed data
popts, perrs, errs, ts, ys_list = run(
load, errs, L, dt, proc_fname, show)
# make a plot
plot(popts, perrs, errs, ts, L, ys_list, plot_fname)
# isolate all the ugly plotting code
def plot(popts, perrs, errs, ts, L, ys_list, plot_fname):
# which curves to plot?
plot_errs = [4.39, 5.93, 8.0]
# shift each curve by
shift = 0.1
# calculate time step from time axis
dt = ts[1] - ts[0]
# set up the figure, one section for the curves/fits
fig = plt.figure(figsize=(3.375, 5.5))
gs1 = gridspec.GridSpec(1, 1)
gs1.update(left=0.2, right=0.9, bottom=0.65, top=0.95)
tax = fig.add_subplot(gs1[0, 0])
# one section for the spacetime grids
gs2 = gridspec.GridSpec(1, 3)
gs2.update(left=0.15, right=0.85, bottom=0.1, top=0.53, wspace=0.1)
gaxs = [fig.add_subplot(gs2[0, i]) for i in range(3)]
# for each data set (in descending order)
for i, err in enumerate(plot_errs[::-1]):
# select the grid axis
gax = gaxs[i]
# select the data
idx = errs.index(err)
ys = ys_list[idx]
popt = popts[idx]
tau = popt[1]
print(f"error {err} has lifetime {tau}")
# line plots for panel A
zorder = 100 - 5*i
timax = int(400/dt)
tax.plot(ts[10:timax], ys[10:timax]+i*shift, zorder=zorder,
label=(r"$\varepsilon=%03.2f$" % round(err, 2))+r"$\%$")
tax.plot(ts[:timax], lifetime_func(ts[:timax], *popt)+i*shift, c="k", zorder=zorder+1)
handles, labels = tax.get_legend_handles_labels()
tax.legend(handles[::-1], labels[::-1], loc="lower left",
frameon=False, handlelength=0.5, handletextpad=0.25,
bbox_to_anchor=(0.55, 0.5))
tax.text(0.1, 0.9, letters[0], transform=tax.transAxes)
#tax.set_yscale("log")
taxyticks = [0.4, 0.6, 0.8, 1.0]
tax.set_yticks(taxyticks)
tax.set_yticklabels(taxyticks)
tax.set_xlabel(r"Time, $t$")
tax.set_xticks([0, 100, 200, 300, 400])
tax.set_ylabel(r"$\big \langle \hat P^{(1)}_{\lfloor L/2 \rfloor-1} \big \rangle$")
# grid plots for panels B, C, D
grid = make_grid(L, err)
grid = (1 - grid) / 2
im = gax.imshow(grid[::int(1/dt)][:L*4+1],
origin="lower",
interpolation="none",
cmap="inferno",
vmin=0,
vmax=1)
gax.axhline(tau, c=f"C{i}", lw=4)
gax.axhline(tau, c="k", lw=2)
gax.set_xticks([0, (L-1)//2, (L-1)])
gax.set_xticklabels([])
gax.set_yticks([i*(L-1) for i in range(5)])
gax.set_yticklabels([])
gax.text(0.1, 0.93, letters[i+1],
transform=gax.transAxes, color="w")
if i == 0:
gax.set_xticklabels([0, (L-1)//2, (L-1)])
gax.set_yticklabels(i*(L-1) for i in range(5))
gax.set_xlabel(r"Site, $j$")
gax.set_ylabel("Time, $t$")
if i == 1:
box = gax.get_position()
box.x0 = box.x0 - 0.01
box.x1 = box.x1 - 0.01
gax.set_position(box)
if i == 2:
divider = make_axes_locatable(gax)
cax = divider.append_axes("right", size="15%", pad=0.075)
fig.colorbar(im, cax=cax, ticks=[0, 1])
cax.text(1.2, 0.5, r"$\big \langle \hat P^{(1)}_j \big \rangle$",
transform=cax.transAxes)
plt.savefig(plot_fname)
print("figure saved to")
print(plot_fname)
# raw data file name
def make_data_fname(L, err):
fname = f"{L+4}-site_rho_{err}-err.npy"
return os.path.join(DATA_DER, fname)
# fitting function
def lifetime_func(x, A, tau, B):
return A*np.exp(-x / tau) + B
def make_grid(L, err):
fname = make_data_fname(L, err)
# load single site density matrix data: size = (T, L, 2, 2)
rhojs = np.load(fname)
# calculate <Z> grid
grid = np.array([get_expectation(rhoj, ops["Z"]) for rhoj in rhojs])
# clip boundary sites
grid = grid[:, 2:-2]
return grid
def process(errs, L, dt, proc_fname, show):
popts = []
perrs = []
ys_list = []
for err in errs:
grid = make_grid(L, err)
# extract one-from center time series
# and rescale: <n> = (1 - <Z>)/2
ys = (1 - grid[:, L//2 + 1]) / 2
# construct time axis
ts = dt * np.arange(len(ys))
# fit life time with a good guess,
# comes from iterating analysis sequence
# popt = [A, tau, B] = [scale, lifetime, offset]
tau0 = 2.55 * err**(-1.25)
popt, pcov = curve_fit(lifetime_func, ts, ys,
p0=[0.5, tau0, 0.5],
bounds=((0, 0, 0), (np.inf, np.inf, np.inf)))
# estimate parameter errorbars
perr = np.sqrt(np.diag(pcov))
# collect parameters and their errors
popts.append(popt)
perrs.append(perr)
# collect processed data
ys_list.append(ys)
# optionally inspect on the fly
if show:
plt.plot(ts, ys)
plt.plot(ts, lifetime_func(ts, *popt))
plt.show()
# multi dim. lists to numpy arrays
popts = np.array(popts) # size = (len(errs), 3)
perrs = np.array(perrs) # size = (len(errs), 3)
ys_list = np.array(ys_list) # size = (len(errs), T)
# put all the good stuff in a dict
summary = {"popts": popts,
"perrs": perrs,
"errs": errs,
"ts": ts,
"ys_list": ys_list}
# save out and return the good stuff
np.save(proc_fname, summary)
print("Processed data saved to")
print(proc_fname)
return summary
def run(load, errs, L, dt, proc_fname, show):
if load:
try:
summary = np.load(proc_fname, allow_pickle=True).item()
print("Processed data loaded from")
print(proc_fname)
except FileNotFoundError:
print("Processed data not found, generating now...")
summary = process(errs, L, dt, proc_fname, show)
else:
print("Processing data now...")
summary = process(errs, L, dt, proc_fname, show)
keys = ["popts", "perrs", "errs", "ts", "ys_list"]
popts, perrs, errs, ts, ys_list = [summary[k] for k in keys]
return popts, perrs, errs, ts, ys_list
# methods taken from my measures.py scipt
# pasted here for imporved portability
def expectation(state, A):
if len(state.shape) == 2:
exp_val = np.real(np.trace(state.dot(A)))
else:
if len(state.shape) == 1:
exp_val = np.real(np.conjugate(state).dot(A.dot(state)))
else:
raise ValueError("Input state not understood")
return exp_val
def get_expectation(rhos, A):
return np.asarray([expectation(rho, A) for rho in rhos])
if __name__ == "__main__":
main()