-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworking.txt
88 lines (65 loc) · 2.22 KB
/
working.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import cv2
import numpy as np
import time
labelsPath = 'obj.names'
LABELS = open(labelsPath).read().strip().split("\n")
weightsPath = 'crop_weed_detection.weights'
configPath = 'crop_weed.cfg'
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8")
print("Loading YOLO model...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
cap = cv2.VideoCapture(0)
detections = []
while True:
ret, frame = cap.read()
if not ret:
print("Error reading from camera.")
break
(H, W) = frame.shape[:2]
confi = 0.5
thresh = 0.5
ln = net.getLayerNames()
ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()]
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (512, 512), swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
print("YOLO took {:.6f} seconds".format(end - start))
boxes = []
confidences = []
classIDs = []
for output in layerOutputs:
for detection in output:
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
if confidence > confi:
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
idxs = cv2.dnn.NMSBoxes(boxes, confidences, confi, thresh)
print("Detections done\n")
if len(idxs) > 0:
for i in idxs.flatten():
x, y, w, h = boxes[i]
detection_info = {
"x": x,
"y": y,
"width": w,
"height": h,
"label": LABELS[classIDs[i]]
}
detections.append(detection_info)
print("[OUTPUT] : detected label -> ", LABELS[classIDs[i]])
print("Detection Results:", detections)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
print("[STATUS] : Completed")
print("[END]")