-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdetect.py
150 lines (124 loc) · 5.06 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import cv2
import numpy as np
import time
import sys
import os
# Check if the image path is provided as a command-line argument
if len(sys.argv) != 2:
print("Usage: python detect.py <image_path>")
sys.exit(1)
image_path = sys.argv[1]
# loading class labels YOLO model was trained on
labelsPath = 'obj.names'
LABELS = open(labelsPath).read().strip().split("\n")
# load weights and cfg
weightsPath = 'crop_weed_detection.weights'
configPath = 'crop_weed.cfg'
# color selection for drawing bbox
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8")
print("Loading Images from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
# load our input image and grab its spatial dimensions
image = cv2.imread('static/uploads/user_image.jpg')
(H, W) = image.shape[:2]
# parameters
confi = 0.5
thresh = 0.5
# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()]
# construct a blob from the input image and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes and
# associated probabilities
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (512, 512), swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
# show timing information on YOLO
print("YOLO took {:.6f} seconds".format(end - start))
# initialize our lists of detected bounding boxes, confidences, and
# class IDs, respectively
boxes = []
confidences = []
classIDs = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability) of
# the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > confi:
# scale the bounding box coordinates back relative to the
# size of the image, keeping in mind that YOLO actually
# returns the center (x, y)-coordinates of the bounding
# box followed by the boxes' width and height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top and
# and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates, confidences,
# and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# apply non-maxima suppression to suppress weak, overlapping bounding
# boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, confi, thresh)
print("Detections done\nDrawing bounding boxes...")
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# draw a bounding box rectangle and label on the image
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
print("[ACCURACY] : accuracy -> ", confidences[i])
print("[OUTPUT] : detected label -> ", LABELS[classIDs[i]])
text = "{} : {:.4f}".format(LABELS[classIDs[i]], confidences[i])
cv2.putText(image, text, (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2)
# Display the image
# cv2.imshow('Output', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# Save the annotated image
output_folder = 'static/output'
# Create the output folder if it doesn't exist
os.makedirs(output_folder, exist_ok=True)
output_image_path = os.path.join(output_folder, 'annotated_image.jpg')
cv2.imwrite(output_image_path, image)
# Print the output image path
print(output_image_path)
# Prepare the detection results as a JSON response
detection_results = {
'accuracy': confidences[i],
'detected_label': LABELS[classIDs[i]]
}
# Save accuracy and detected label to a text file for unique detections
output_text_path = os.path.join(output_folder, 'detection_results.txt')
with open(output_text_path, 'w') as text_file:
seen_labels = set()
for i in range(len(boxes)):
detected_label = LABELS[classIDs[i]]
if detected_label not in seen_labels:
text_file.write("Accuracy -> {:.4f}\n".format(confidences[i]))
text_file.write("Detected Label -> {}\n".format(detected_label))
seen_labels.add(detected_label)
# Print the output paths
print("Output image saved at:", output_image_path)
print("Detection results saved at:", output_text_path)
print("[STATUS] : Completed")
print("[END]")
# Output the detection results as JSON
import json
print(json.dumps(detection_results))