-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSPY_QQQ_pairtrading_quantopian
52 lines (37 loc) · 1.49 KB
/
SPY_QQQ_pairtrading_quantopian
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
#initialise -schedule function
def initialize(context):
schedule_function(check_pairs,date_rules.every_day(),time_rules.market_close(minutes=60))
context.spy = sid(8554)
context.qqq = sid(19920)
context.long_on_spread = False
context.shorting_spread = False
# check pairs
def check_pairs(context, data):
spy = context.spy
qqq = context.qqq
prices = data.history([spy,qqq], 'price', 30, '1d')
short_prices = prices.iloc[-1:]
# spread = spy - qqq
ma21 = np.mean(prices[spy] - prices[qqq])
std21 = np.std(prices[spy] - prices[qqq])
ma1 = np.mean(short_prices[spy] - short_prices[qqq])
if std21 > 0:
zscore = (ma1 - ma21)/std21
if zscore > 1.0 and not context.shorting_spread:
# spread = spy - qqq
order_target_percent(spy,-0.5)
order_target_percent(qqq,0.5)
context.sorting_spread = True
context.long_on_spread = False
elif zscore < 1.0 and not context.long_on_spread:
order_target_percent(spy, 0.5)
order_target_percent(qqq, -0.5)
context.sorting_spread = False
context.long_on_spread = True
elif abs(zscore) < 0.1:
order_target_percent(spy, 0)
order_target_percent(qqq, 0)
context.sorting_spread = False
context.long_on_spread = False
record(Z_score = zscore)