-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
94 lines (77 loc) · 4.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from tqdm import trange
import torch
from torch.utils.data import DataLoader
from logger import Logger
from modules.model import GeneratorFullModel
from torch.optim.lr_scheduler import MultiStepLR
from torch.nn.utils import clip_grad_norm_
from frames_dataset import DatasetRepeater
import math
def train(config, inpainting_network, kp_detector, bg_predictor, dense_motion_network, checkpoint, log_dir, dataset):
train_params = config['train_params']
optimizer = torch.optim.Adam(
[{'params': list(inpainting_network.parameters()) +
list(dense_motion_network.parameters()) +
list(kp_detector.parameters()), 'initial_lr': train_params['lr_generator']}],lr=train_params['lr_generator'], betas=(0.5, 0.999), weight_decay = 1e-4)
optimizer_bg_predictor = None
if bg_predictor:
optimizer_bg_predictor = torch.optim.Adam(
[{'params':bg_predictor.parameters(),'initial_lr': train_params['lr_generator']}],
lr=train_params['lr_generator'], betas=(0.5, 0.999), weight_decay = 1e-4)
if checkpoint is not None:
start_epoch = Logger.load_cpk(
checkpoint, inpainting_network = inpainting_network, dense_motion_network = dense_motion_network,
kp_detector = kp_detector, bg_predictor = bg_predictor,
optimizer = optimizer, optimizer_bg_predictor = optimizer_bg_predictor)
print('load success:', start_epoch)
start_epoch += 1
else:
start_epoch = 0
scheduler_optimizer = MultiStepLR(optimizer, train_params['epoch_milestones'], gamma=0.1,
last_epoch=start_epoch - 1)
if bg_predictor:
scheduler_bg_predictor = MultiStepLR(optimizer_bg_predictor, train_params['epoch_milestones'],
gamma=0.1, last_epoch=start_epoch - 1)
if 'num_repeats' in train_params or train_params['num_repeats'] != 1:
dataset = DatasetRepeater(dataset, train_params['num_repeats'])
dataloader = DataLoader(dataset, batch_size=train_params['batch_size'], shuffle=True,
num_workers=train_params['dataloader_workers'], drop_last=True)
generator_full = GeneratorFullModel(kp_detector, bg_predictor, dense_motion_network, inpainting_network, train_params)
if torch.cuda.is_available():
generator_full = torch.nn.DataParallel(generator_full).cuda()
bg_start = train_params['bg_start']
with Logger(log_dir=log_dir, visualizer_params=config['visualizer_params'],
checkpoint_freq=train_params['checkpoint_freq']) as logger:
for epoch in trange(start_epoch, train_params['num_epochs']):
for x in dataloader:
if(torch.cuda.is_available()):
x['driving'] = x['driving'].cuda()
x['source'] = x['source'].cuda()
losses_generator, generated = generator_full(x, epoch)
loss_values = [val.mean() for val in losses_generator.values()]
loss = sum(loss_values)
loss.backward()
clip_grad_norm_(kp_detector.parameters(), max_norm=10, norm_type = math.inf)
clip_grad_norm_(dense_motion_network.parameters(), max_norm=10, norm_type = math.inf)
if bg_predictor and epoch>=bg_start:
clip_grad_norm_(bg_predictor.parameters(), max_norm=10, norm_type = math.inf)
optimizer.step()
optimizer.zero_grad()
if bg_predictor and epoch>=bg_start:
optimizer_bg_predictor.step()
optimizer_bg_predictor.zero_grad()
losses = {key: value.mean().detach().data.cpu().numpy() for key, value in losses_generator.items()}
logger.log_iter(losses=losses)
scheduler_optimizer.step()
if bg_predictor:
scheduler_bg_predictor.step()
model_save = {
'inpainting_network': inpainting_network,
'dense_motion_network': dense_motion_network,
'kp_detector': kp_detector,
'optimizer': optimizer,
}
if bg_predictor and epoch>=bg_start:
model_save['bg_predictor'] = bg_predictor
model_save['optimizer_bg_predictor'] = optimizer_bg_predictor
logger.log_epoch(epoch, model_save, inp=x, out=generated)