-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreconstruction.py
69 lines (56 loc) · 2.86 KB
/
reconstruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from logger import Logger, Visualizer
import numpy as np
import imageio
def reconstruction(config, inpainting_network, kp_detector, bg_predictor, dense_motion_network, checkpoint, log_dir, dataset):
png_dir = os.path.join(log_dir, 'reconstruction/png')
log_dir = os.path.join(log_dir, 'reconstruction')
if checkpoint is not None:
Logger.load_cpk(checkpoint, inpainting_network=inpainting_network, kp_detector=kp_detector,
bg_predictor=bg_predictor, dense_motion_network=dense_motion_network)
else:
raise AttributeError("Checkpoint should be specified for mode='reconstruction'.")
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=1)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if not os.path.exists(png_dir):
os.makedirs(png_dir)
loss_list = []
inpainting_network.eval()
kp_detector.eval()
dense_motion_network.eval()
if bg_predictor:
bg_predictor.eval()
for it, x in tqdm(enumerate(dataloader)):
with torch.no_grad():
predictions = []
visualizations = []
if torch.cuda.is_available():
x['video'] = x['video'].cuda()
kp_source = kp_detector(x['video'][:, :, 0])
for frame_idx in range(x['video'].shape[2]):
source = x['video'][:, :, 0]
driving = x['video'][:, :, frame_idx]
kp_driving = kp_detector(driving)
bg_params = None
if bg_predictor:
bg_params = bg_predictor(source, driving)
dense_motion = dense_motion_network(source_image=source, kp_driving=kp_driving,
kp_source=kp_source, bg_param = bg_params,
dropout_flag = False)
out = inpainting_network(source, dense_motion)
out['kp_source'] = kp_source
out['kp_driving'] = kp_driving
predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
visualization = Visualizer(**config['visualizer_params']).visualize(source=source,
driving=driving, out=out)
visualizations.append(visualization)
loss = torch.abs(out['prediction'] - driving).mean().cpu().numpy()
loss_list.append(loss)
# print(np.mean(loss_list))
predictions = np.concatenate(predictions, axis=1)
imageio.imsave(os.path.join(png_dir, x['name'][0] + '.png'), (255 * predictions).astype(np.uint8))
print("Reconstruction loss: %s" % np.mean(loss_list))