-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweight_init.py
29 lines (26 loc) · 1019 Bytes
/
weight_init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import numpy as np
import math
np.random.seed(0)
def random_init(prev_neurons, num_neurons):
'''
Random initialization of weights and bias.
'''
weights = np.random.randn(prev_neurons, num_neurons)
bias = np.random.randn(1, num_neurons)
return weights, bias
def xavier_init(prev_neurons, num_neurons):
'''
Based on the paper by Dr. Xavier Glorot & Dr. Yoshua Bengio
'''
lower_limit, upper_limit = -math.sqrt(6.0/(num_neurons + prev_neurons)), math.sqrt(6.0/(num_neurons + prev_neurons))
weights = np.random.uniform(lower_limit, upper_limit, size=(prev_neurons, num_neurons))
bias = np.random.uniform(lower_limit, upper_limit, size=(1, num_neurons))
return weights, bias
def kaiming_init(prev_neurons, num_neurons):
'''
Based on the paper by Dr. Kaiming He.
'''
sd = math.sqrt(2.0 / prev_neurons)
weights = np.random.randn(prev_neurons, num_neurons)*math.sqrt(2/prev_neurons)
bias = np.random.randn(1, num_neurons)
return weights, bias