-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
461 lines (310 loc) · 19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import os
import sys
import argparse
import faiss
from data import *
from utilities import *
from networks import *
import matplotlib.pyplot as plt
import numpy as np
from domain_bus import DomainBus
from tqdm import tqdm
from centroid import *
from sklearn.mixture import GaussianMixture, BayesianGaussianMixture
from scipy.optimize import linear_sum_assignment
def get_args():
parser = argparse.ArgumentParser(description="Script to launch training",formatter_class=argparse.ArgumentDefaultsHelpFormatter)
#domains
parser.add_argument("--source", help="Source" ,default='/home/tongyujun/class_relation_osda/data/amazon_0-9_train_all.txt')
parser.add_argument("--target", help="Target", default='/home/tongyujun/class_relation_osda/data/webcam_0-9_20-30_test.txt')
parser.add_argument("--batch_size", type=int, default=64, help="Batch size")
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate")
#number of classes: known, unknown and the classes of self-sup task
parser.add_argument("--shared_classes", type=int, default=10, help="Number of classes of source domain -- known classes")
parser.add_argument("--all_classes", type=int, default=12,help=" Known+unknown classes")
#path of the folders used
parser.add_argument("--folder_log", default="of31", help="Path of the log folder")
#to select gpu/num of workers
parser.add_argument("--gpu", type=int, default=0, help="gpu chosen for the training")
parser.add_argument("--use_VGG", action='store_true', default=False, help="If use VGG")
parser.add_argument("--name", type=str, default='1')
return parser.parse_args()
args = get_args()
orig_stdout = sys.stdout
max_iter = 10000
warmiter = 3
args.folder_log = '/home/tongyujun/class_relation_osda/log/'+ args.folder_log +'/' + args.source.split('/')[-1][0]+'2'+args.target.split('/')[-1][0]+'_'+args.name
if not os.path.exists(args.folder_log):
os.makedirs(args.folder_log)
print('\n')
print('TRAIN START!')
print('\n')
print('THE OUTPUT IS SAVED IN A TXT FILE HERE -------------------------------------------> ', args.folder_log)
print('\n')
f = open(args.folder_log + '/out.txt', 'w')
# sys.stdout = f
def transform(data, label, is_train):
label = one_hot(args.all_classes, label)
transform_train = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
data = transform_train(data)
return data, label
images,labels = get_split_dataset_info(args.source,'/home/tongyujun/Office/')
ds = CustomDataset(images,labels,img_transformer=transform,is_train=True)
source_train = torch.utils.data.DataLoader(ds, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True, drop_last=True)
def transform(data, label, is_train):
if label in range(10):
label = one_hot(11, label)
else:
label = one_hot(11,10)
transform_train = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
data = transform_train(data)
return data, label
images,labels = get_split_dataset_info(args.target,'/home/tongyujun/Office/')
ds1 = CustomDataset(images,labels,img_transformer=transform,is_train=True)
target_train = torch.utils.data.DataLoader(ds1, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True, drop_last=True)
def transform(data, label, is_train):
label = one_hot(31,label)
transform_test = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
])
data = transform_test(data)
return data, label
ds2 = CustomDataset(images,labels,img_transformer=transform,is_train=True)
target_test = torch.utils.data.DataLoader(ds2, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True, drop_last=False)
#----------------------------load the class centroids bank
all_centroids = Centroids(class_num=args.shared_classes, dim=args.shared_classes, use_cuda=True)
discriminator = LargeAdversarialNetwork(256).cuda()
feature_extractor = ResNetFc(model_name='resnet50',model_path='/home/tongyujun/.cache/torch/hub/checkpoints/resnet50-19c8e357.pth')
cls = CLS(feature_extractor.output_num(), args.all_classes, bottle_neck_dim=256)
net = nn.Sequential(feature_extractor, cls).cuda()
#----------------------------find virtual class
customgenearator = DomainBus([source_train, target_train])
with torch.no_grad():
with Accumulator(['fs','ft','ls', 'lt']) as ProbRecorder:#feature_source, feature_target, label_source, label_target
for i, ((im_source, label_source), (im_target, label_target)) in enumerate(customgenearator):
im_source = im_source.cuda()
label_source = label_source.cuda()
im_target = im_target.cuda()
_, feature_source, fc_source, predict_prob_source = net.forward(im_source)
ft1, feature_target, fc_target, predict_prob_target = net.forward(im_target)
fs,ft,ls,lt = [variable_to_numpy(x) for x in (feature_source, feature_target, torch.nonzero(label_source,as_tuple=True)[1], torch.nonzero(label_target,as_tuple=True)[1]) ]
ProbRecorder.updateData(globals())
s_centroids = [] #calculate source class centroids
for i in range(args.shared_classes):
s_centroids.append(ProbRecorder['fs'][ProbRecorder['ls']==i].mean(axis=0))
s_centroids = np.stack(s_centroids,axis=0)
K_cluster =20# cluster target class centroids
faiss_kmeans = faiss.Kmeans(256, int(K_cluster), niter=800, verbose=False, min_points_per_centroid=1, gpu=False)
faiss_kmeans.train(ProbRecorder['ft'])
t_centroids = faiss_kmeans.centroids
#find nomatched target cluster
cost = np.linalg.norm(s_centroids[:,None,:] - t_centroids[None,:,:],axis=-1)
_,t_match = linear_sum_assignment(cost)
nomatch = []
for i in range(args.all_classes):
if i not in t_match:
nomatch.append(t_centroids[i])
nomatch = np.stack(nomatch,axis=0)
fcweight = np.concatenate([s_centroids,nomatch],axis=0)
for key, v in net.state_dict().items(): #fast initial classifier weight
if key=='1.main.1.2.weight':
cost = np.linalg.norm(fcweight[:,None,:] - v.cpu().numpy()[None,:,:],axis=-1)
_,t_match = linear_sum_assignment(cost)
param = torch.from_numpy(v.cpu().numpy()[t_match]).cuda().detach().clone()
net.state_dict()['1.fc.weight'].copy_(param)
nomatch = torch.from_numpy(nomatch).cuda().detach().clone()
del(ProbRecorder)
scheduler = lambda step, initial_lr : inverseDecaySheduler(step, initial_lr, gamma=10, power=0.75, max_iter=max_iter)
optimizer_discriminator = OptimWithSheduler(optim.SGD(discriminator.parameters(), lr=args.learning_rate*10, weight_decay=5e-4, momentum=0.9, nesterov=True),
scheduler)
optimizer_feature_extractor = OptimWithSheduler(optim.SGD(feature_extractor.parameters(), lr=args.learning_rate, weight_decay=5e-4, momentum=0.9, nesterov=True),
scheduler)
optimizer_cls = OptimWithSheduler(optim.SGD(cls.parameters(), lr=args.learning_rate*10, weight_decay=5e-4, momentum=0.9, nesterov=True),
scheduler)
##----------------------------train start
epoch = 0
k=0
best_os = 0
best_os_star = 0
best_unk = 0
best_hos = 0
best_epoch = 0
c_weight = torch.ones(args.shared_classes)
while epoch <70:
customgenearator = DomainBus([source_train, target_train])
losscounter = LossCounter()
with Accumulator(['pred_s','pred_t','label_s', 'label_unk', 'feature_unk','kl','fss','ftt']) as ProbRecorder:
for i, ((im_source, label_source), (im_target, label_target)) in enumerate(customgenearator):
im_source = im_source.cuda()
label_source = label_source.cuda()
im_target = im_target.cuda()
_, feature_source, fc_source, predict_prob_source = net.forward(im_source)
ft1, feature_target, fc_target, predict_prob_target = net.forward(im_target)
domain_prob_discriminator_1_source = discriminator.forward(feature_source)
domain_prob_discriminator_1_target = discriminator.forward(feature_target)
s_ctds, t_ctds = all_centroids.get_centroids()
unk_ctds = all_centroids.get_virtual_centroids()
_, pseudo_t_label = predict_prob_target[:,:args.shared_classes].max(1)
kltarget = torch.nn.functional.kl_div( (nn.Softmax(-1)(fc_target[:,:args.shared_classes])).log(), s_ctds[pseudo_t_label], reduction='none').sum(1).detach()
kltarget = torch.where(torch.isinf(kltarget), torch.full_like(kltarget, 10), kltarget)
if epoch<=1:
gmm = GaussianMixture(n_components=3, covariance_type='full').fit(to_np(kltarget)[:,None])
known_cluster = np.argmin(gmm.means_)
unknown_cluster = np.argmax(gmm.means_)
gmm_index = gmm.predict(to_np(kltarget)[:,None])
_, predict_t = predict_prob_target.max(1)
predict_t = (predict_t.cpu().numpy())<10
unk = (gmm_index!= known_cluster)
label_unk = pseudo_t_label[predict_t*unk]
feature_unk = feature_target[predict_t*unk]
pred_s, pred_t, label_s, label_unk, feature_unk, kl, fss, ftt \
= [variable_to_numpy(x) for x in (nn.Softmax(-1)(fc_source[:,:args.shared_classes]), \
predict_prob_target, label_source, label_unk, feature_unk, kltarget, feature_source, feature_target)]
ProbRecorder.updateData(globals())
weight = gmm.predict_proba(to_np(kltarget)[:,None])[:,known_cluster]
weight = torch.tensor(weight).cuda().detach()
if epoch<=10:
weight = torch.where(weight>0.8,torch.tensor([1]).float().cuda(),torch.tensor([0]).float().cuda()).detach()
r = torch.nonzero(torch.tensor(gmm_index!=known_cluster).cuda()).unsqueeze(-1)
topk=16
if r.size()[0]>topk:
r = torch.sort(kltarget.detach(),dim = 0)[1][-1*topk:]
else:
weight = torch.where(torch.tensor(gmm_index==known_cluster).cuda(),torch.tensor([1]).float().cuda(),torch.tensor([0]).float().cuda()).detach()
r = torch.nonzero(torch.tensor(gmm_index==unknown_cluster).cuda()).unsqueeze(-1)
feature_otherep = torch.index_select(ft1, 0, r.view(-1))
K = args.all_classes-args.shared_classes
if r.size()[0]>1:
_, feature_otherep, logits_otherep, predict_prob_otherep = cls.forward(feature_otherep)
_, pseudo_index = predict_prob_otherep[:,args.shared_classes:].max(1)
pseudo_index=pseudo_index + args.shared_classes
pseudo_label = torch.zeros(r.size()[0],args.all_classes).cuda().scatter_(1,pseudo_index.unsqueeze(1),torch.ones(r.size()[0],1).cuda())
ce_ep1 = CrossEntropyLoss(pseudo_label[:,:],predict_prob_otherep[:,:])
else:
ce_ep1=torch.tensor(0.0)
ce = CrossEntropyLoss(label_source, nn.Softmax(-1)(fc_source))
virtual_predict_prob_source = cls.virt_forward( nomatch, feature_source, fc_source[:,:],torch.nonzero(label_source)[:,1],)
p = torch.zeros([label_source.shape[0],nomatch.size(0)]).cuda()
v_label_source = torch.cat((label_source[:,:],p),1)
vir_weight = c_weight[torch.nonzero(label_source)[:,1]].cuda()
vir_weight = torch.where(vir_weight>0,torch.tensor([1]).float().cuda(),torch.tensor([0]).float().cuda()).detach()
virtual_ce = CrossEntropyLoss(v_label_source, virtual_predict_prob_source, instance_level_weight= vir_weight.contiguous())
virtual_ce = CrossEntropyLoss(v_label_source, virtual_predict_prob_source)
entropy = EntropyLoss(predict_prob_target [:,:], instance_level_weight= weight.contiguous())
adv_loss = BCELossForMultiClassification(label=torch.ones_like(domain_prob_discriminator_1_source), predict_prob=domain_prob_discriminator_1_source )
adv_loss += BCELossForMultiClassification(label=torch.ones_like(domain_prob_discriminator_1_target), predict_prob=1 - domain_prob_discriminator_1_target,
instance_level_weight = weight.contiguous())
with OptimizerManager([optimizer_cls, optimizer_feature_extractor,optimizer_discriminator]):
if epoch<=warmiter:
loss = 1 * ce + 1* virtual_ce
else:
loss = ce + 0.01 * virtual_ce + 0.3 * adv_loss + 1 * entropy + 1 * ce_ep1
loss.backward()
losscounter.addOntBatch(ce, entropy, virtual_ce, ce_ep1, adv_loss)
k += 1
torch.cuda.empty_cache()
all_centroids.update(ProbRecorder['pred_s'],ProbRecorder['pred_t'],ProbRecorder['label_s'])
if epoch>=0:
fcweight = []
for i in range(args.shared_classes):
fcweight.append(ProbRecorder['fss'][np.nonzero(ProbRecorder['label_s'])[1]==i].mean(axis=0))
fcweight = np.stack(fcweight,axis=0)
faiss_kmeans = faiss.Kmeans(256, int(K_cluster), niter=800, verbose=False, min_points_per_centroid=1, gpu=False)
faiss_kmeans.train(ProbRecorder['ftt'])
t_centroids = faiss_kmeans.centroids
cost = np.linalg.norm(fcweight[:,None,:] - t_centroids[None,:,:],axis=-1)
_,t_match = linear_sum_assignment(cost)
nomatch = []
for i in range(args.all_classes):
if i not in t_match:
nomatch.append(t_centroids[i])
nomatch = np.stack(nomatch,axis=0)
nomatch = torch.from_numpy(nomatch).cuda().detach().clone()
if epoch ==warmiter:
faiss_kmeans = faiss.Kmeans(256, int(1*args.all_classes), niter=800, verbose=False, min_points_per_centroid=1, gpu=False)
faiss_kmeans.train(ProbRecorder['ftt'])
# a = ProbRecorder['lt']
# D, I = faiss_kmeans.index.search(ProbRecorder['ft'],k=args.all_classes)
# cluster_assign = I[:,0]
t_centroids = faiss_kmeans.centroids
cost = np.linalg.norm(fcweight[:,None,:] - t_centroids[None,:,:],axis=-1)
_,t_match = linear_sum_assignment(cost)
nomatch1 = []
for i in range(args.all_classes):
if i not in t_match:
nomatch1.append(t_centroids[i])
nomatch1 = np.stack(nomatch1,axis=0)
for key, v in net.state_dict().items():
if key=='1.main.1.2.weight':
# print(v.norm(dim=1))
v.requires_grad = False
net.state_dict()['1.fc.weight'].requires_grad = False
vvnorm = (torch.norm(v, dim = -1)).mean().cpu().numpy()
nomatch1 = nomatch1/np.linalg.norm(nomatch1,axis=-1,keepdims=True)*vvnorm
# v = np.linalg.norm(nomatch1,axis=-1).mean()*v[:args.shared_classes].clone().detach().cpu().numpy()/vvnorm
fcweight = np.concatenate([v[:args.shared_classes].clone().detach().cpu().numpy(), nomatch1,],axis=0)
param = torch.from_numpy(fcweight).cuda().detach().clone()
net.state_dict()['1.fc.weight'].copy_(param)
v.requires_grad = True
net.state_dict()['1.fc.weight'].requires_grad = True
c_weight = all_centroids.update_virtual(ProbRecorder['feature_unk'], ProbRecorder['label_unk'])
# gmm = GaussianMixture(n_components=5, covariance_type='full').fit(ProbRecorder['kl'][:,None])
# gum, pi, c = gauss_unif(ProbRecorder['kl'][:,None])
# weight = gauss_unif_predict(ProbRecorder['kl'][:,None],gum, pi, c)
if epoch<=30:
gmm = BayesianGaussianMixture(n_components=4, max_iter=800).fit(ProbRecorder['kl'][:,None])
else:
gmm = BayesianGaussianMixture(n_components=2, max_iter=800).fit(ProbRecorder['kl'][:,None])
torch.cuda.empty_cache()
# =================================evaluation
with TrainingModeManager([feature_extractor, cls], train=False) as mgr, Accumulator(['predict_prob','predict_index', 'label']) as accumulator:
for (i, (im, label)) in enumerate(target_test):
im = im.cuda()
label = label.cuda()
ss, fs,_, predict_prob = net.forward(im)
predict_prob, label = [variable_to_numpy(x) for x in (predict_prob,label)]
label = np.argmax(label, axis=-1).reshape(-1, 1)
predict_index = np.argmax(predict_prob, axis=-1).reshape(-1, 1)
accumulator.updateData(globals())
for x in list(accumulator.keys()):
globals()[x] = accumulator[x]
y_true = label.flatten()
y_pred = predict_index.flatten()
m = extended_confusion_matrix(y_true, y_pred, true_labels=(list(range(args.shared_classes))+list(range(20,31))), pred_labels=list(range(args.all_classes)))
cm = m
cm = cm.astype(float) / np.sum(cm, axis=1, keepdims=True)
acc_os_star = sum([cm[i][i] for i in range(args.shared_classes)]) / args.shared_classes
# from IPython import embed;embed()
unkn = sum(sum([cm[i][args.shared_classes:] for i in range(10, 21)])) / 11
acc_os = (acc_os_star * args.shared_classes + unkn) / 11
hos = (2*acc_os_star*unkn)/(acc_os_star+unkn)
ce = losscounter.ce/losscounter.batch
entropy = losscounter.entropy/losscounter.batch
virtual = losscounter.virtual/losscounter.batch
ce_ep = losscounter.ce_ep/losscounter.batch
adv = losscounter.adv/losscounter.batch
print ('Epoch:{}\tOS: {:.3f}\tOS*:{:.3f}\tUnk:{:.3f}\tHos:{:.3f}\tce: {:.3f}\tentropy:{:.3f}\tvirtual:{:.3f}\tce_ep:{:.3f}\tadv:{:.3f}'.format(epoch,acc_os,acc_os_star,unkn,hos, ce, entropy, virtual, ce_ep, adv))
if hos>best_hos:
best_os = acc_os
best_os_star = acc_os_star
best_unk = unkn
best_hos = hos
best_epoch = epoch
torch.cuda.empty_cache()
epoch = epoch + 1
print ('Best: Epoch:{}\tOS: {:.3f}\tOS*:{:.3f}\tUnk:{:.3f}\tHos:{:.3f}'.format(best_epoch, best_os,best_os_star,best_unk,best_hos))
print('class_num'+ str(args.all_classes) + 'k' + str(topk) +'a'+ str(a) + str(args))
sys.stdout = orig_stdout
f.close()