forked from zjunlp/KnowPrompt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·244 lines (181 loc) · 9.28 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""Experiment-running framework."""
import argparse
import importlib
from logging import debug
import numpy as np
from pytorch_lightning.trainer import training_tricks
import torch
import pytorch_lightning as pl
import lit_models
import yaml
import time
from lit_models import TransformerLitModelTwoSteps
from transformers import AutoConfig, AutoModel
from pytorch_lightning.plugins import DDPPlugin
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# In order to ensure reproducible experiments, we must set random seeds.
def _import_class(module_and_class_name: str) -> type:
"""Import class from a module, e.g. 'text_recognizer.models.MLP'"""
module_name, class_name = module_and_class_name.rsplit(".", 1)
module = importlib.import_module(module_name)
class_ = getattr(module, class_name)
return class_
def _setup_parser():
"""Set up Python's ArgumentParser with data, model, trainer, and other arguments."""
parser = argparse.ArgumentParser(add_help=False)
# Add Trainer specific arguments, such as --max_epochs, --gpus, --precision
trainer_parser = pl.Trainer.add_argparse_args(parser)
trainer_parser._action_groups[1].title = "Trainer Args" # pylint: disable=protected-access
parser = argparse.ArgumentParser(add_help=False, parents=[trainer_parser])
# Basic arguments
parser.add_argument("--wandb", action="store_true", default=False)
parser.add_argument("--litmodel_class", type=str, default="TransformerLitModel")
parser.add_argument("--seed", type=int, default=7)
parser.add_argument("--data_class", type=str, default="DIALOGUE")
parser.add_argument("--lr_2", type=float, default=3e-5)
parser.add_argument("--model_class", type=str, default="bert.BertForSequenceClassification")
parser.add_argument("--two_steps", default=False, action="store_true")
parser.add_argument("--load_checkpoint", type=str, default=None)
# Get the data and model classes, so that we can add their specific arguments
temp_args, _ = parser.parse_known_args()
data_class = _import_class(f"data.{temp_args.data_class}")
model_class = _import_class(f"models.{temp_args.model_class}")
litmodel_class = _import_class(f"lit_models.{temp_args.litmodel_class}")
# Get data, model, and LitModel specific arguments
data_group = parser.add_argument_group("Data Args")
data_class.add_to_argparse(data_group)
model_group = parser.add_argument_group("Model Args")
model_class.add_to_argparse(model_group)
lit_model_group = parser.add_argument_group("LitModel Args")
litmodel_class.add_to_argparse(lit_model_group)
parser.add_argument("--help", "-h", action="help")
return parser
device = "cuda"
from tqdm import tqdm
def _get_relation_embedding(data):
train_dataloader = data.train_dataloader()
#! hard coded
relation_embedding = [[] for _ in range(36)]
model = AutoModel.from_pretrained('bert-base-uncased')
model.eval()
model = model.to(device)
cnt = 0
for batch in tqdm(train_dataloader):
with torch.no_grad():
#! why the sample in this case will cause errors
if cnt == 416:
continue
cnt += 1
input_ids, attention_mask, token_type_ids , labels = batch
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
token_type_ids = token_type_ids.to(device)
logits = model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids).last_hidden_state.detach().cpu()
_, mask_idx = (input_ids == 103).nonzero(as_tuple=True)
bs = input_ids.shape[0]
mask_output = logits[torch.arange(bs), mask_idx] # [batch_size, hidden_size]
labels = labels.detach().cpu()
mask_output = mask_output.detach().cpu()
assert len(labels[0]) == len(relation_embedding)
for batch_idx, label in enumerate(labels.tolist()):
for i, x in enumerate(label):
if x:
relation_embedding[i].append(mask_output[batch_idx])
# get the mean pooling
for i in range(36):
if len(relation_embedding[i]):
relation_embedding[i] = torch.mean(torch.stack(relation_embedding[i]), dim=0)
else:
relation_embedding[i] = torch.rand_like(relation_embedding[i-1])
del model
return relation_embedding
def main():
parser = _setup_parser()
args = parser.parse_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
pl.seed_everything(args.seed)
data_class = _import_class(f"data.{args.data_class}")
model_class = _import_class(f"models.{args.model_class}")
litmodel_class = _import_class(f"lit_models.{args.litmodel_class}")
config = AutoConfig.from_pretrained(args.model_name_or_path)
model = model_class.from_pretrained(args.model_name_or_path, config=config)
data = data_class(args, model)
data_config = data.get_data_config()
model.resize_token_embeddings(len(data.tokenizer))
# gpt no config?
# if "gpt" in args.model_name_or_path or "roberta" in args.model_name_or_path:
# tokenizer = data.get_tokenizer()
# model.resize_token_embeddings(len(tokenizer))
# model.update_word_idx(len(tokenizer))
# if "Use" in args.model_class:
# continous_prompt = [a[0] for a in tokenizer([f"[T{i}]" for i in range(1,3)], add_special_tokens=False)['input_ids']]
# continous_label_word = [a[0] for a in tokenizer([f"[class{i}]" for i in range(1, data.num_labels+1)], add_special_tokens=False)['input_ids']]
# discrete_prompt = [a[0] for a in tokenizer(['It', 'was'], add_special_tokens=False)['input_ids']]
# dataset_name = args.data_dir.split("/")[1]
# model.init_unused_weights(continous_prompt, continous_label_word, discrete_prompt, label_path=f"{args.model_name_or_path}_{dataset_name}.pt")
# data.setup()
# relation_embedding = _get_relation_embedding(data)
lit_model = litmodel_class(args=args, model=model, tokenizer=data.tokenizer)
data.tokenizer.save_pretrained('test')
logger = pl.loggers.TensorBoardLogger("training/logs")
dataset_name = args.data_dir.split("/")[-1]
if args.wandb:
logger = pl.loggers.WandbLogger(project="dialogue_pl", name=f"{dataset_name}")
logger.log_hyperparams(vars(args))
# init callbacks
early_callback = pl.callbacks.EarlyStopping(monitor="Eval/f1", mode="max", patience=5,check_on_train_epoch_end=False)
model_checkpoint = pl.callbacks.ModelCheckpoint(monitor="Eval/f1", mode="max",
filename='{epoch}-{Eval/f1:.2f}',
dirpath="output",
save_weights_only=True
)
callbacks = [early_callback, model_checkpoint]
# args.weights_summary = "full" # Print full summary of the model
gpu_count = torch.cuda.device_count()
accelerator = "ddp" if gpu_count > 1 else None
trainer = pl.Trainer.from_argparse_args(args, callbacks=callbacks, logger=logger, default_root_dir="training/logs", gpus=gpu_count, accelerator=accelerator,
plugins=DDPPlugin(find_unused_parameters=False) if gpu_count > 1 else None,
)
# trainer.tune(lit_model, datamodule=data) # If passing --auto_lr_find, this will set learning rate
trainer.fit(lit_model, datamodule=data)
# two steps
path = model_checkpoint.best_model_path
print(f"best model save path {path}")
if not os.path.exists("config"):
os.mkdir("config")
config_file_name = time.strftime("%H:%M:%S", time.localtime()) + ".yaml"
day_name = time.strftime("%Y-%m-%d")
if not os.path.exists(os.path.join("config", day_name)):
os.mkdir(os.path.join("config", time.strftime("%Y-%m-%d")))
config = vars(args)
config["path"] = path
with open(os.path.join(os.path.join("config", day_name), config_file_name), "w") as file:
file.write(yaml.dump(config))
# lit_model.load_state_dict(torch.load(path)["state_dict"])
if not args.two_steps: trainer.test()
step2_model_checkpoint = pl.callbacks.ModelCheckpoint(monitor="Eval/f1", mode="max",
filename='{epoch}-{Step2Eval/f1:.2f}',
dirpath="output",
save_weights_only=True
)
if args.two_steps:
# we build another trainer and model for the second training
# use the Step2Eval/f1
# lit_model_second = TransformerLitModelTwoSteps(args=args, model=lit_model.model, data_config=data_config)
step_early_callback = pl.callbacks.EarlyStopping(monitor="Eval/f1", mode="max", patience=6, check_on_train_epoch_end=False)
callbacks = [step_early_callback, step2_model_checkpoint]
trainer_2 = pl.Trainer.from_argparse_args(args, callbacks=callbacks, logger=logger, default_root_dir="training/logs", gpus=gpu_count, accelerator=accelerator,
plugins=DDPPlugin(find_unused_parameters=False) if gpu_count > 1 else None,
)
trainer_2.fit(lit_model, datamodule=data)
trainer_2.test()
# result = trainer_2.test(lit_model, datamodule=data)[0]
# with open("result.txt", "a") as file:
# a = result["Step2Test/f1"]
# file.write(f"test f1 score: {a}\n")
# file.write(config_file_name + '\n')
# trainer.test(datamodule=data)
if __name__ == "__main__":
main()