diff --git a/src/mod3/fourier_lecture_notes.jl b/src/mod3/fourier_lecture_notes.jl index 505fb22..1369118 100644 --- a/src/mod3/fourier_lecture_notes.jl +++ b/src/mod3/fourier_lecture_notes.jl @@ -1,5 +1,5 @@ ### A Pluto.jl notebook ### -# v0.19.46 +# v0.19.45 #> [frontmatter] #> chapter = 3 @@ -214,9 +214,6 @@ function nunorm(B, nu) return maximum((weights * abs.(B)) .* invweights) end -# ╔═╡ 0f04a415-b4c1-4b05-a35a-6d3029decb12 -maximum([1.9414153246843213 1.9290258804863343 1.4084075531504734]) - # ╔═╡ 31a59e3d-32af-4328-b3bc-cc434728429d md""" ## Zero finding problem @@ -227,7 +224,7 @@ md""" We define the zero finding problem $F(a)=0$ on $X$ by ($n \in \mathbb{Z}$) $\begin{align} -F_n(a) := a_n + \lambda_n^{-1} (a*a)_n +c_n . +F_n(a) := a_n + \lambda_n^{-1} [(a*a)_n +c_n]. \end{align}$ """ @@ -509,7 +506,7 @@ begin # Ia0 = a0 # Ibeta = Fbeta # IA = AN - # Inu = nu + # Inu = mid(nu) end # ╔═╡ 9433b6f1-3460-48c4-b587-9009823327c0 @@ -758,7 +755,7 @@ Hence the following lemma finishes our proof. # ╔═╡ 35df9eed-5f22-4e26-b119-ea7354d2c762 Markdown.MD(Markdown.Admonition("tip", "Lemma (symmetry of the solution)", [md""" -Assume that $\bar{a}^\dagger=\bar{a}$ and that the asummptions of the Newton-Kantorovich theorem were satisfied for some $r=r_0>0$. Then the zero $\tilde{a}$ of $F$ such that $\|\tilde{a}-\bar{a}\|_X \leq r_0$ satisfies $\tilde{a}^\dagger = \tilde{a}$. +Assume that $\bar{a}^\dagger=\bar{a}$ and that the assumptions of the Newton-Kantorovich theorem were satisfied for some $r=r_0>0$. Then the zero $\tilde{a}$ of $F$ such that $\|\tilde{a}-\bar{a}\|_X \leq r_0$ satisfies $\tilde{a}^\dagger = \tilde{a}$. """])) # ╔═╡ bae570fe-8219-4cf2-b763-fcd9f0f02735 @@ -2239,7 +2236,6 @@ version = "1.4.1+1" # ╟─7e78028c-f70b-4474-8bee-783ad7d99d56 # ╟─c7a10c87-a95d-4b0b-b63d-f9546e97bb36 # ╠═efb766e3-e41f-4113-ae6e-c4dd7766c784 -# ╠═0f04a415-b4c1-4b05-a35a-6d3029decb12 # ╟─31a59e3d-32af-4328-b3bc-cc434728429d # ╟─8d7fb15d-32d3-4fbb-9d06-c8ec1ed7d00e # ╟─b2defc79-da78-47c8-bb78-44cb9000ff58