-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlm_components.py
370 lines (297 loc) · 16 KB
/
lm_components.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
from transformers import AutoTokenizer,GenerationConfig,AutoModelForCausalLM
from safe_rlhf.models import AutoModelForScore
import os
import torch.nn as nn
import torch
import itertools
from collections import defaultdict as ddict
import numpy as np
import torch
import copy
import json
from torch.nn import CrossEntropyLoss
loss_fct = CrossEntropyLoss(reduction="none")
def cal_loss_avg(loss):
non_zero_mask = loss != 0
average_ignoring_zeros = torch.zeros(loss.size(0))
for i in range(loss.size(0)):
non_zero_values = loss[i, non_zero_mask[i]]
if len(non_zero_values) > 0:
average_ignoring_zeros[i] = non_zero_values.mean()
else:
average_ignoring_zeros[i] = float('nan')
return average_ignoring_zeros
def check_torch_dtype(config):
kwargs = {}
if config.torch_dtype == "bf16":
kwargs["torch_dtype"] = torch.bfloat16
return kwargs
def create_reward(config):
if os.environ.get("RANK", "0") == "0":
class RewardModel(nn.Module):
def __init__(
self,
config,
device_map
):
super().__init__()
model_name = config.model_name
self.template = config.template
self.batch_size = config.batch_size
self.config = config
kwargs = check_torch_dtype(config)
if "beaver" in model_name.lower():
model = AutoModelForScore.from_pretrained(model_name, **kwargs,**device_map)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
tokenizer.padding_side = "right"
elif "harmbench" in model_name.lower():
template_path = self.template.replace("path:","")
with open(template_path) as f:
self.template = json.load(f)["LLAMA2_CLS_PROMPT"]["prompt"]
model = AutoModelForCausalLM.from_pretrained(model_name, **kwargs,**device_map)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
tokenizer.padding_side = "left"
else:
raise NotImplementedError()
if not tokenizer.pad_token:
tokenizer.pad_token = tokenizer.eos_token
self.model = model
self.tokenizer= tokenizer
self.model_name = model_name
def _reward_run_batch_beaver(self,batch,device):
input_ids = self.tokenizer(batch, return_tensors='pt',padding= True).to(device)
outputs = self.model(**input_ids).end_scores
outputs = outputs.view(-1).cpu().tolist()
return outputs
def _reward_run_batch_harmbench(self,batch,device):
input_ids = self.tokenizer(batch, return_tensors='pt',padding= True).to(device)
outputs = self.model.generate(**input_ids,max_new_tokens = 1)
outputs = self.tokenizer.batch_decode(outputs[:,input_ids["input_ids"].shape[-1]:])
return outputs
def _reward_run(self, q_and_p_s, ans_s, device,func):
outputs_l = []
batch_size = self.batch_size
for i in range(0,len(q_and_p_s),batch_size):
batch_inputs = q_and_p_s[i: i +batch_size]
batch_outputs = ans_s[i: i +batch_size]
batch = [self.template.format(model_input = batch_inputs[index], model_output = batch_outputs[index]) for index in range(len(batch_inputs))]
outputs_l.extend(func(batch,device))
return outputs_l
def reward_run(self, q_and_p_s, ans_s, device, mode):
# "q_and_p_s are 'harmful input + prompt' question + prompt, ans_s are cost_lm's response"
if "beaver" in self.model_name.lower():
scores = self._reward_run(q_and_p_s, ans_s, device,self._reward_run_batch_beaver)
elif "harmbench" in self.model_name.lower():
scores = self._reward_run(q_and_p_s, ans_s, device,self._reward_run_batch_harmbench)
else:
raise NotImplementedError()
return scores
device_map = {"device_map":"auto"}
reward_model_device = "cuda:0"
reward_model = RewardModel(config.reward_lm,device_map=device_map)
reward_model.eval()
reward_model.requires_grad_(False)
@torch.no_grad()
def get_reward(q_s,ans_s,mode = "train"):
scores = reward_model.reward_run(q_s,ans_s,device = reward_model_device, mode = mode)
return scores
else:
get_reward = True
return get_reward
def create_targetlm(config):
if os.environ.get("RANK", "0") == "0":
class Target_Model(nn.Module):
def __init__(
self,
config,
device_map
):
super().__init__()
self.config = config
model_name = config.model_name
self.original_template = config.template
if config.system_message:
self.template = self.original_template.format(system_message = config.system_message, input = "{input}", prompt = "{prompt}")
self.system_message = config.system_message
else:
self.template = self.original_template.format(input = "{input}", prompt = "{prompt}")
self.system_message = ""
self.ppl_template = config.ppl_template
self.batch_size = config.batch_size
kwargs = check_torch_dtype(config)
model = AutoModelForCausalLM.from_pretrained(model_name, **kwargs,**device_map)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.padding_side = "left"
if not tokenizer.pad_token:
tokenizer.pad_token = tokenizer.eos_token
self.model = model
self.tokenizer= tokenizer
self.gen_kwargs = {"pad_token_id":self.tokenizer.pad_token_id, "eos_token_id":self.tokenizer.eos_token_id, "bos_token_id":self.tokenizer.bos_token_id}
def replace_sys_msg(self,sys_mes):
self.system_message = sys_mes
if self.config.system_message:
self.template = self.original_template.format(system_message = sys_mes, input = "{input}", prompt = "{prompt}")
else:
self.template = self.original_template.format(input = "{input}", prompt = "{prompt}")
def create_gen_config(self,gen_config):
self.gen_config = GenerationConfig(**gen_config, **self.gen_kwargs)
@torch.no_grad()
def get_target_lm_generation(self, q_s,p_s,num_return_sequences = -1,after_sys_tokens = None):
# q_s : questions p_s:prompts
generation_configs = config.target_lm.generation_configs
if num_return_sequences != -1:
generation_configs.num_return_sequences = num_return_sequences
target_model.create_gen_config(generation_configs)
assert len(q_s) == len(p_s)
if after_sys_tokens is not None:
assert len(q_s) == len(after_sys_tokens)
target_model.after_sys_tokens = after_sys_tokens
generation = target_model.targetlm_run(q_s,p_s,device = self.target_model_device)
return generation
def _targetlm_run_batch(self,batch,device):
input_ids = self.tokenizer(batch, return_tensors='pt',padding= True).to(device)
output = self.model.generate(**input_ids,generation_config = self.gen_config)
output = output[:,input_ids["input_ids"].shape[-1]:]
output_text = self.tokenizer.batch_decode(output,skip_special_tokens= True)
return output_text
# q_s questions, p_s prompts
def _targetlm_run(self, q_s, p_s, device):
outputs_l = []
batch_size = self.batch_size
for i in range(0,len(q_s),batch_size):
batch_inputs = q_s[i: i +batch_size]
batch_outputs = p_s[i: i +batch_size]
batch = [self.template.format(input = batch_inputs[index], prompt = batch_outputs[index]) for index in range(len(batch_inputs))]
if self.after_sys_tokens is not None:
# space here is important!!
batch = [batch[i] + " " + self.after_sys_tokens[i] for i in range(len(batch))]
if i < 2:
print(batch[0])
print(self.tokenizer.decode(self.tokenizer.encode(batch[0])))
print("Add special tokens should be True")
outputs_l.extend(self._targetlm_run_batch(batch,device))
return outputs_l
def targetlm_run(self, q_s, p_s, device):
generations = self._targetlm_run(q_s, p_s, device)
return generations
@torch.no_grad()
def ppl_run(self,q_s,p_s):
ppl = self._ppl_run(q_s, p_s, device = self.target_model_device)
return ppl
def _ppl_run_batch(self,batch,device):
input_ids = self.tokenizer(batch, return_tensors='pt',padding= True).to(device)
attention_mask = input_ids.attention_mask
labels = copy.deepcopy(input_ids.input_ids)
labels = torch.where(attention_mask == 0, torch.tensor(-100), labels)
logits = self.model(**input_ids).logits
shifted_labels = labels[...,1:].contiguous()
shifted_logits = logits[...,:-1,:].contiguous()
shifted_logits = shifted_logits.permute(0,2,1)
loss = loss_fct(shifted_logits, shifted_labels)
loss = cal_loss_avg(loss)
ppl = torch.exp(loss)
return ppl.detach().cpu().tolist()
# q_s questions, p_s prompts
def _ppl_run(self, q_s, p_s, device):
outputs_l = []
batch_size = self.batch_size
for i in range(0,len(q_s),batch_size):
batch_inputs = q_s[i: i +batch_size]
batch_outputs = p_s[i: i +batch_size]
batch = [self.ppl_template.format(input = batch_inputs[index], prompt = batch_outputs[index]).strip() for index in range(len(batch_inputs))]
# batch = [self.template.format(input = batch_inputs[index], prompt = batch_outputs[index]).strip() for index in range(len(batch_inputs))]
if i < 2:
print(batch[0])
print(self.tokenizer.decode(self.tokenizer.encode(batch[0])))
print("Add special tokens should be True")
outputs_l.extend(self._ppl_run_batch(batch,device))
return outputs_l
device_map = {"device_map":"auto"}
target_model_device = "cuda:0"
target_model = Target_Model(config.target_lm,device_map=device_map)
target_model.target_model_device = target_model_device
target_model.eval()
target_model.requires_grad_(False)
return target_model
else:
target_model = None
return target_model
def create_prompterlm(config):
if os.environ.get("RANK", "0") == "0":
class Prompter_Model(nn.Module):
def __init__(
self,
config,
device_map
):
super().__init__()
model_name = config.model_name
self.batch_size = config.batch_size
self.template = config.template
kwargs = check_torch_dtype(config)
model = AutoModelForCausalLM.from_pretrained(model_name, **kwargs,**device_map)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.padding_side = "left"
if not tokenizer.pad_token:
tokenizer.pad_token = tokenizer.eos_token
self.model = model
self.tokenizer= tokenizer
self.gen_kwargs = {"pad_token_id":self.tokenizer.pad_token_id, "eos_token_id":self.tokenizer.eos_token_id, "bos_token_id":self.tokenizer.bos_token_id}
def create_gen_config(self,gen_config):
self.gen_config = GenerationConfig(**gen_config, **self.gen_kwargs)
def _prompterlm_run_batch(self,batch,device):
input_ids = self.tokenizer(batch, return_tensors='pt',padding= True).to(device)
output = self.model.generate(**input_ids,generation_config = self.gen_config)
output = output[:,input_ids["input_ids"].shape[-1]:]
output_text = self.tokenizer.batch_decode(output,skip_special_tokens= True)
return output_text
# q_s questions, p_s prompts
def _prompterlm_run(self, q_s, device):
outputs_l = []
batch_size = self.batch_size
for i in range(0,len(q_s),batch_size):
batch_inputs = q_s[i: i +batch_size]
batch = [self.template.format(input = batch_inputs[index]) for index in range(len(batch_inputs))]
if i < 2:
print(batch[0])
print(self.tokenizer.decode(self.tokenizer.encode(batch[0])))
print("Add special tokens should be True")
outputs_l.extend(self._prompterlm_run_batch(batch,device))
return outputs_l
def prompterlm_run(self, q_s, device):
generations = self._prompterlm_run(q_s, device)
return generations
# get socre
def _prob_run_batch(self,batch,device):
input_ids = self.tokenizer(batch, return_tensors='pt',padding= True).to(device)
attention_mask = input_ids.attention_mask
labels = copy.deepcopy(input_ids.input_ids)
labels = torch.where(attention_mask == 0, torch.tensor(-100), labels)
logits = self.model(**input_ids).logits
shifted_labels = labels[...,1:].contiguous()
shifted_logits = logits[...,:-1,:].contiguous()
shifted_logits = shifted_logits.permute(0,2,1)
loss = loss_fct(shifted_logits, shifted_labels)
loss = cal_loss_avg(loss)
ppl = torch.exp(loss)
return ppl.detach().cpu().tolist()
def prob_run(self,q_s,p_s,device):
pass
@torch.no_grad()
def get_prompter_lm_generation(self,q_s,num_return_sequences = -1):
# q_s : questions p_s:prompts
generation_configs = config.prompter_lm.generation_configs
if num_return_sequences != -1:
generation_configs.num_return_sequences = num_return_sequences
print(generation_configs)
prompter_model.create_gen_config(generation_configs)
generation = prompter_model.prompterlm_run(q_s,device = prompter_model_device)
return generation
device_map = {"device_map":"auto"}
prompter_model_device = "cuda:0"
prompter_model = Prompter_Model(config.prompter_lm,device_map=device_map)
prompter_model.eval()
prompter_model.requires_grad_(False)
else:
prompter_model = None
return prompter_model