We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I am using MOABB from git and MOABB benchmark function.
Does anyone has any problems with Zhou2016? Is it possible that the last commit to Zhou2016 made it unusable?
I am getting this error:
Zhou2016-WithinSession: 0%| | 0/4 [00:00<?, ?it/s] --------------------------------------------------------------------------- OverflowError Traceback (most recent call last) File C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\mne\io\cnt\cnt.py:545, in RawCNT.__init__(self, input_fname, eog, misc, ecg, emg, data_format, date_format, header, preload, verbose) 544 try: --> 545 info, cnt_info = _get_cnt_info( 546 input_fname, eog, ecg, emg, misc, data_format, _date_format, header 547 ) 548 except Exception: File C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\mne\io\cnt\cnt.py:346, in _get_cnt_info(input_fname, eog, ecg, emg, misc, data_format, date_format, header) 345 if data_format == "auto": --> 346 if n_samples == 0 or data_size // (n_samples * n_channels) not in [2, 4]: 347 warn( 348 "Could not define the number of bytes automatically. " 349 "Defaulting to 2." 350 ) OverflowError: Python int too large to convert to C long During handling of the above exception, another exception occurred: RuntimeError Traceback (most recent call last) File C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\spyder_kernels\customize\utils.py:209, in exec_encapsulate_locals(code_ast, globals, locals, exec_fun, filename) 207 if filename is None: 208 filename = "<stdin>" --> 209 exec_fun(compile(code_ast, filename, "exec"), globals, None) 210 finally: 211 if use_locals_hack: 212 # Cleanup code File c:\work\pythoncode\ml_examples\eeg\mdm-mf\article_comparison_moabb.py:81 77 pipeline_folder = "C:\\Work\\PythonCode\\ML_examples\\EEG\\MDM-MF\\pipelines9\\" 79 #The EN_grid.yml is too slow!!!!!!!! and memory consuming ---> 81 results = benchmark( 82 pipelines=pipeline_folder, 83 evaluations=["WithinSession"], 84 paradigms=["LeftRightImagery"], 85 #include_datasets=["BNCI2014_001"], 86 #include_datasets=["Stieger2021"], 87 88 exclude_datasets=["Stieger2021","Liu2024"], 89 results="./results/", 90 overwrite=False, 91 plot=False, 92 n_jobs=9, #4 otherwise memory is not enough 93 output="./benchmark/", 94 ) 96 print("Results:") 97 print(results) File C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\moabb\benchmark.py:214, in benchmark(pipelines, evaluations, paradigms, results, overwrite, output, n_jobs, plot, contexts, include_datasets, exclude_datasets, n_splits, cache_config, optuna) 202 if len(ppl_with_array) > 0: 203 context = eval_type[evaluation]( 204 paradigm=p, 205 datasets=d, (...) 212 optuna=optuna, 213 ) --> 214 paradigm_results = context.process( 215 pipelines=ppl_with_array, param_grid=param_grid 216 ) 217 paradigm_results["paradigm"] = f"{paradigm}" 218 paradigm_results["evaluation"] = f"{evaluation}" File C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\moabb\evaluations\base.py:237, in BaseEvaluation.process(self, pipelines, param_grid, postprocess_pipeline) 228 # (we only keep the pipeline for the first frequency band, better ideas?) 230 results = self.evaluate( 231 dataset, 232 pipelines, (...) 235 postprocess_pipeline=postprocess_pipeline, 236 ) --> 237 for res in results: 238 self.push_result(res, pipelines, process_pipeline) 239 res_per_db.append( 240 self.results.to_dataframe( 241 pipelines=pipelines, process_pipeline=process_pipeline 242 ) 243 ) File C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\moabb\evaluations\evaluations.py:427, in WithinSessionEvaluation.evaluate(self, dataset, pipelines, param_grid, process_pipeline, postprocess_pipeline) 423 yield from self._evaluate_learning_curve( 424 dataset, pipelines, process_pipeline, postprocess_pipeline 425 ) 426 else: --> 427 yield from self._evaluate( 428 dataset, pipelines, param_grid, process_pipeline, postprocess_pipeline 429 ) File C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\moabb\evaluations\evaluations.py:157, in WithinSessionEvaluation._evaluate(self, dataset, pipelines, param_grid, process_pipeline, postprocess_pipeline) 154 return [] 156 # get the data --> 157 X, y, metadata = self.paradigm.get_data( 158 dataset=dataset, 159 subjects=[subject], 160 return_epochs=self.return_epochs, 161 return_raws=self.return_raws, 162 cache_config=self.cache_config, 163 postprocess_pipeline=postprocess_pipeline, 164 ) 165 # iterate over sessions 166 for session in np.unique(metadata.session): File C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\moabb\paradigms\base.py:274, in BaseProcessing.get_data(self, dataset, subjects, return_epochs, return_raws, cache_config, postprocess_pipeline) 269 process_pipelines = self.make_process_pipelines( 270 dataset, return_epochs, return_raws, postprocess_pipeline 271 ) 272 labels_pipeline = self.make_labels_pipeline(dataset, return_epochs, return_raws) --> 274 data = [ 275 dataset.get_data( 276 subjects=subjects, 277 cache_config=cache_config, 278 process_pipeline=process_pipeline, 279 ) 280 for process_pipeline in process_pipelines 281 ] 283 X = [] 284 labels = [] File C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\moabb\paradigms\base.py:275, in <listcomp>(.0) 269 process_pipelines = self.make_process_pipelines( 270 dataset, return_epochs, return_raws, postprocess_pipeline 271 ) 272 labels_pipeline = self.make_labels_pipeline(dataset, return_epochs, return_raws) 274 data = [ --> 275 dataset.get_data( 276 subjects=subjects, 277 cache_config=cache_config, 278 process_pipeline=process_pipeline, 279 ) 280 for process_pipeline in process_pipelines 281 ] 283 X = [] 284 labels = [] File C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\moabb\datasets\base.py:433, in BaseDataset.get_data(self, subjects, cache_config, process_pipeline) 431 if subject not in self.subject_list: 432 raise ValueError("Invalid subject {:d} given".format(subject)) --> 433 data[subject] = self._get_single_subject_data_using_cache( 434 subject, 435 cache_config, 436 process_pipeline, 437 ) 438 check_subject_names(data) 439 check_session_names(data) File C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\moabb\datasets\base.py:527, in BaseDataset._get_single_subject_data_using_cache(self, subject, cache_config, process_pipeline) 525 # Load and eventually overwrite: 526 if len(cached_steps) == 0: # last option: we don't use cache --> 527 sessions_data = self._get_single_subject_data(subject) 528 assert sessions_data is not None # should not happen 529 else: File C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\moabb\datasets\Zhou2016.py:104, in Zhou2016._get_single_subject_data(self, subject) 102 for run_ind, fname in enumerate(runlist): 103 run_key = str(run_ind) --> 104 raw = read_raw_cnt(fname, preload=True, eog=["VEOU", "VEOL"]) 105 stim = raw.annotations.description.astype(np.dtype("<10U")) 106 stim[stim == "1"] = "left_hand" File C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\mne\io\cnt\cnt.py:263, in read_raw_cnt(input_fname, eog, misc, ecg, emg, data_format, date_format, header, preload, verbose) 178 @fill_doc 179 def read_raw_cnt( 180 input_fname, (...) 190 verbose=None, 191 ) -> "RawCNT": 192 """Read CNT data as raw object. 193 194 .. Note:: (...) 261 .. versionadded:: 0.12 262 """ --> 263 return RawCNT( 264 input_fname, 265 eog=eog, 266 misc=misc, 267 ecg=ecg, 268 emg=emg, 269 data_format=data_format, 270 date_format=date_format, 271 header=header, 272 preload=preload, 273 verbose=verbose, 274 ) File C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\mne\io\cnt\cnt.py:549, in RawCNT.__init__(self, input_fname, eog, misc, ecg, emg, data_format, date_format, header, preload, verbose) 545 info, cnt_info = _get_cnt_info( 546 input_fname, eog, ecg, emg, misc, data_format, _date_format, header 547 ) 548 except Exception: --> 549 raise RuntimeError( 550 f"{_explain_exception()}\n" 551 "WARNING: mne.io.read_raw_cnt " 552 "supports Neuroscan CNT files only. If this file is an ANT Neuro CNT, " 553 "please use mne.io.read_raw_ant instead." 554 ) 555 last_samps = [cnt_info["n_samples"] - 1] 556 super().__init__( 557 info, 558 preload, (...) 563 verbose=verbose, 564 ) RuntimeError: : > File "C:\Work\PythonCode\envs\eeg4_pr_moabb_git\lib\site-packages\mne\io\cnt\cnt.py", line 346, in _get_cnt_info > if n_samples == 0 or data_size // (n_samples * n_channels) not in [2, 4]: > > OverflowError: Python int too large to convert to C long WARNING: mne.io.read_raw_cnt supports Neuroscan CNT files only. If this file is an ANT Neuro CNT, please use mne.io.read_raw_ant instead.
The text was updated successfully, but these errors were encountered:
@bruAristimunha can you have a look please?
Sorry, something went wrong.
I am using MNE 1.9.0 and pyRIemann 0.8.dev0
No branches or pull requests
I am using MOABB from git and MOABB benchmark function.
Does anyone has any problems with Zhou2016? Is it possible that the last commit to Zhou2016 made it unusable?
I am getting this error:
The text was updated successfully, but these errors were encountered: