-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglobal_gauss_newton_trust_region.m
executable file
·154 lines (130 loc) · 4.52 KB
/
global_gauss_newton_trust_region.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
% Globalization of Gauss Newton with
% F: R^n -> R^m Objective function
% G: R^n -> R^l Equality constraint
% param: Parameters containing
% delta in (0,1)
% x_0 in R^n
% gamma in (0,1)
% mu_bar vector in (0,infinity)^2 where mu_bar(1) < mu_bar(2).
function [ x_star, x_all, F_star, J ] = global_gauss_newton_trust_region(F, G, param )
import casadi.*
%% Functions
psi = @(x,mu) norm(F(x)) + mu*norm(G(x));
%% Step (0) (INIT)
alpha(1) = 1;
k = 1;
mu = [0 1];
% Parameters
delta_1 = param.delta_1;
delta_2 = param.delta_2;
x(:, 1) = param.x_0;
gamma_1 = param.gamma_1;
gamma_2 = param.gamma_2;
gamma_3 = param.gamma_3;
gamma_4 = param.gamma_4;
mu_bar = param.mu_bar;
epsilon = 10^(-8); % tolerance.
alpha_0 = 1;
% Casadi variable
n_x = size(x(:, 1), 1);
u = SX.sym('u', n_x);
F_sym = F(u);
G_sym = G(u);
F_cas = Function('F',{u},{F_sym, jacobian(F_sym,u)});
G_cas = Function('G',{u},{G_sym, jacobian(G_sym,u)});
n_F = size(F_sym, 1);
n_G = size(G_sym, 1);
%% THE ALGORITHM.
while(true)
%% Step (1)
% Using Casadi to differentiate.
[ F_k, JF_k_cas ] = F_cas(x(:, k));
[ G_k, JG_k_cas ] = G_cas(x(:, k));
F_k = full(F_k);
F_k_prime = full(JF_k_cas);
G_k = full(G_k);
G_k_prime = full(JG_k_cas);
%% Step (2)
G_k_prime_plus = pinv(G_k_prime, 10^(-6));
% Orthoprojector.
I_n_x = eye(n_x);
E = I_n_x - G_k_prime_plus*G_k_prime;
% Save important values
G_pp_G = G_k_prime_plus * G_k;
F_p_G_pp_G = F_k_prime * G_pp_G;
F_p_E_p = pinv(F_k_prime*E, 10^(-6));
P = F_k_prime*E*F_p_E_p;
% Computing d using MPI.
d_tilde(:, k) = -G_pp_G + F_p_E_p*(F_p_G_pp_G - F_k);
%end
%fprintf('d_tilde - d = %f\n', norm(d(:, k) - d_tilde(:, k)));
if (norm(d_tilde(:, k)) <= epsilon)
break;
end
%% Step (3)
% Finally compute return value.
I_n_F = eye(n_F);
denom = (norm(F_k) + norm(F_k_prime*d_tilde(:, k) + F_k))*norm(G_k);
if ( denom > eps )
num_1 = F_k + (I_n_F - P)*(F_k - F_p_G_pp_G);
num_2 = (I_n_F - P)*F_p_G_pp_G;
omega(k) = (num_1'*num_2)/denom;
else
omega(k) = 0;
end
if ( mu(1) >= abs(omega(k)) + mu_bar(1) )
mu(2) = mu(1);
else
mu(2) = abs(omega(k)) + mu_bar(2);
end
%% Step (4)
% Update
if (k > 1)
alpha(k) = max(alpha(k-1)*norm(d_tilde(:, k-1))/norm(d_tilde(:, k)),gamma_1*alpha(k-1) );
end
%% Step (5)
alpha_n = alpha(k);
while(true)
psi_1 = psi(x(:,k), mu(2));
psi_2n = psi(x(:,k) + alpha_n*d_tilde(:, k), mu(2));
p_n = alpha_n*d_tilde(:, k);
phi_n = norm(F_k_prime*p_n+F_k) + mu(2)*norm(G_k_prime*p_n+G_k);
if (psi_1 - psi_2n < delta_2*(psi_1 - phi_n) )
break;
end
alpha_0 = alpha_n;
alpha_n = min(gamma_3*alpha_n,1);
end
if (psi_1 - psi_2n >= delta_1*(psi_1 - phi_n) )
alpha(k) = alpha_n;
else
alpha(k) = alpha_0;
end
while(true)
psi_2 = psi(x(:,k) + alpha(k)*d_tilde(:, k), mu(2));
p = alpha(k)*d_tilde(:, k);
phi = norm(F_k_prime*p+F_k) + mu(2)*norm(G_k_prime*p+G_k);
if (psi_1 - psi_2 >= delta_1*(psi_1 - phi) )
break;
end
alpha(k) = gamma_1*alpha(k);
end
fprintf('k = %d || alpha(k) = %e || norm(d) = %e || Res = %e\n', k, alpha(k), norm(d_tilde(:, k)), norm(F_k));
%% Step (6)
x(:, k+1) = x(:, k) + alpha(k)*d_tilde(:, k);
alpha_old = alpha(k);
k = k + 1;
if( norm(x(:, k) - x(:, k-1)) <= 10^(-8) )
break;
end
% TAKE OUT EVENTUALLY
if (k > 1000)
break;
end
end
%% return val
x_star = x(:, k);
x_all = x;
F_star = F_k;
J = F_k_prime;
end