-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathAVL.py
183 lines (142 loc) · 5.19 KB
/
AVL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
class Node:
def __init__(self, key):
self.key = key
self.left = None
self.right = None
self.height = 1 # New node is initially added at leaf, hence height is 1
class AVLTree:
def get_height(self, node):
if not node:
return 0
return node.height
def get_balance(self, node):
if not node:
return 0
return self.get_height(node.left) - self.get_height(node.right)
def left_rotate(self, z):
y = z.right
T2 = y.left
# Perform rotation
y.left = z
z.right = T2
# Update heights
z.height = 1 + max(self.get_height(z.left), self.get_height(z.right))
y.height = 1 + max(self.get_height(y.left), self.get_height(y.right))
# Return new root
return y
def right_rotate(self, z):
y = z.left
T3 = y.right
# Perform rotation
y.right = z
z.left = T3
# Update heights
z.height = 1 + max(self.get_height(z.left), self.get_height(z.right))
y.height = 1 + max(self.get_height(y.left), self.get_height(y.right))
# Return new root
return y
def insert(self, node, key):
# 1. Perform the normal BST insertion
if not node:
return Node(key)
elif key < node.key:
node.left = self.insert(node.left, key)
else:
node.right = self.insert(node.right, key)
# 2. Update the height of this ancestor node
node.height = 1 + max(self.get_height(node.left), self.get_height(node.right))
# 3. Get the balance factor
balance = self.get_balance(node)
# 4. If the node becomes unbalanced, then we need to rotate it
# Left Left Case
if balance > 1 and key < node.left.key:
return self.right_rotate(node)
# Right Right Case
if balance < -1 and key > node.right.key:
return self.left_rotate(node)
# Left Right Case
if balance > 1 and key > node.left.key:
node.left = self.left_rotate(node.left)
return self.right_rotate(node)
# Right Left Case
if balance < -1 and key < node.right.key:
node.right = self.right_rotate(node.right)
return self.left_rotate(node)
# Return the (unchanged) node pointer
return node
def min_value_node(self, node):
if node is None or node.left is None:
return node
return self.min_value_node(node.left)
def delete(self, root, key):
# 1. Perform the normal BST delete
if not root:
return root
elif key < root.key:
root.left = self.delete(root.left, key)
elif key > root.key:
root.right = self.delete(root.right, key)
else:
# Node with only one child or no child
if root.left is None:
temp = root.right
root = None
return temp
elif root.right is None:
temp = root.left
root = None
return temp
# Node with two children: Get the inorder successor
temp = self.min_value_node(root.right)
# Copy the inorder successor's content to this node
root.key = temp.key
# Delete the inorder successor
root.right = self.delete(root.right, temp.key)
# If the tree had only one node then return
if root is None:
return root
# 2. Update the height of the current node
root.height = 1 + max(self.get_height(root.left), self.get_height(root.right))
# 3. Get the balance factor
balance = self.get_balance(root)
# 4. If the node becomes unbalanced, then balance it
# Left Left Case
if balance > 1 and self.get_balance(root.left) >= 0:
return self.right_rotate(root)
# Left Right Case
if balance > 1 and self.get_balance(root.left) < 0:
root.left = self.left_rotate(root.left)
return self.right_rotate(root)
# Right Right Case
if balance < -1 and self.get_balance(root.right) <= 0:
return self.left_rotate(root)
# Right Left Case
if balance < -1 and self.get_balance(root.right) > 0:
root.right = self.right_rotate(root.right)
return self.left_rotate(root)
return root
# A utility function to print the preorder traversal of the tree
def pre_order(self, node):
if not node:
return
print(f"{node.key} ", end="")
self.pre_order(node.left)
self.pre_order(node.right)
# Example usage of AVL Tree
if __name__ == "__main__":
tree = AVLTree()
root = None
# Insert nodes into the tree
keys = [10, 20, 30, 40, 50, 25]
for key in keys:
root = tree.insert(root, key)
# Preorder traversal of the constructed AVL tree
print("Preorder traversal of the AVL tree is:")
tree.pre_order(root)
print()
# Deleting a node
root = tree.delete(root, 40)
# Preorder traversal after deletion
print("Preorder traversal after deletion of 40:")
tree.pre_order(root)
print()