diff --git a/.ipynb_checkpoints/2_Model_selection-checkpoint.ipynb b/.ipynb_checkpoints/2_Model_selection-checkpoint.ipynb index 7818a65..756579c 100644 --- a/.ipynb_checkpoints/2_Model_selection-checkpoint.ipynb +++ b/.ipynb_checkpoints/2_Model_selection-checkpoint.ipynb @@ -30,7 +30,8 @@ "- [ 3 - Model definition](#3) \n", "- [ 4 - Run 1 EXPERIMENT with 6 RUNs](#4)\n", "- [ 5 - Model Evaluation](#(5)\n", - "- [ 6 - Feature Importance](#(6)" + "- [ 6 - Feature Importance](#(6)\n", + "- [ 7 - Feature Selection after SHAP feature Importance](#(7)" ] }, { @@ -124,6 +125,37 @@ "print(\"feature names\", feature_names.shape)" ] }, + { + "cell_type": "code", + "execution_count": 255, + "id": "81ed0da2", + "metadata": {}, + "outputs": [], + "source": [ + "def scale_data(df_train, df_test):\n", + " \"\"\"\n", + " Scale the features in the training and testing datasets using Min-Max scaling.\n", + "\n", + " Args:\n", + " df_train (DataFrame): The training dataset to be scaled.\n", + " df_test (DataFrame): The testing dataset to be scaled.\n", + "\n", + " Returns:\n", + " df_train_scaled (DataFrame): The scaled training dataset.\n", + " df_test_scaled (DataFrame): The scaled testing dataset.\n", + " \"\"\"\n", + " # Initialize MinMaxScaler with feature range between 0 and 1\n", + " scaler = MinMaxScaler(feature_range=(0, 1))\n", + "\n", + " # Fit and transform the training dataset\n", + " df_train_scaled = scaler.fit_transform(df_train)\n", + "\n", + " # Transform the testing dataset using the same scaler fitted on the training data\n", + " df_test_scaled = scaler.transform(df_test)\n", + "\n", + " return df_train_scaled, df_test_scaled" + ] + }, { "cell_type": "code", "execution_count": null, @@ -576,6 +608,7 @@ " start = time.time()\n", " print(\"START time\", time.ctime(time.time()))\n", " \n", + " \n", " # Define hyperparameters for LightGBM model\n", " lgbm_params = {\n", " 'boosting_type': ['gbdt'], # Gradient boosting type\n", @@ -595,7 +628,7 @@ " lgbm_model = LGBMClassifier()\n", "\n", " # Perform RandomizedSearchCV to find the best hyperparameters\n", - " lgbm_random_search = RandomizedSearchCV(lgbm_model, param_distributions=lgbm_params, n_iter=50, cv=5, n_jobs=-1, verbose=5)\n", + " lgbm_random_search = RandomizedSearchCV(lgbm_model, param_distributions=lgbm_params, n_iter=100, cv=5, n_jobs=-1, verbose=5)\n", " lgbm_random_search.fit(X_train, Y_train)\n", "\n", " # Access the best hyperparameters and the best models\n", @@ -2291,7 +2324,7 @@ }, { "cell_type": "code", - "execution_count": 208, + "execution_count": 254, "id": "73845c9f", "metadata": {}, "outputs": [ @@ -2299,29 +2332,47 @@ "name": "stdout", "output_type": "stream", "text": [ - " time_in_s FP_10_FN FP TP Accuracy Recall \\\n", - "Run Name \n", - "RFC_newFEATURE 12256.283958 36534.0 19814.0 3212.0 0.650651 0.657658 \n", - "XGB 12256.283958 36534.0 19814.0 3212.0 0.650651 0.657658 \n", - "XGB 26824.582238 32675.0 12635.0 2880.0 0.761979 0.589681 \n", - "RFC 13921.119884 37986.0 18046.0 2890.0 0.674162 0.591728 \n", - "RFC_smote 1510.164263 35067.0 10407.0 2418.0 0.790693 0.495086 \n", - "LightGBM_smote 302.068259 35415.0 15435.0 2886.0 0.716550 0.590909 \n", - "LightGBM 499.470917 35415.0 15435.0 2886.0 0.716550 0.590909 \n", - "XGB_smote 194.733210 33112.0 18292.0 3402.0 0.678487 0.696560 \n", - "XGB 765.409359 32675.0 12635.0 2880.0 0.761979 0.589681 \n", + " time_in_s FP_10_FN FP TP Accuracy \\\n", + "Run Name \n", + "LGBM_Shap002 508.117909 35429.0 15139.0 2855.0 0.720859 \n", + "RFC_newFEATURE_001 13614.842443 36741.0 19881.0 3198.0 0.649334 \n", + "XGB_Shap002 401.376422 32718.0 12948.0 2907.0 0.757329 \n", + "RFC_newFEATURE_002 5635.813629 35370.0 17020.0 3049.0 0.693430 \n", + "RFC_newFEATURE 12256.283958 36534.0 19814.0 3212.0 0.650651 \n", + "XGB 26824.582238 32675.0 12635.0 2880.0 0.761979 \n", + "RFC 13921.119884 37986.0 18046.0 2890.0 0.674162 \n", + "RFC_smote 1510.164263 35067.0 10407.0 2418.0 0.790693 \n", + "LightGBM_smote 302.068259 35415.0 15435.0 2886.0 0.716550 \n", + "LightGBM 499.470917 35415.0 15435.0 2886.0 0.716550 \n", + "XGB_smote 194.733210 33112.0 18292.0 3402.0 0.678487 \n", + "\n", + " Recall threshold ROC_AUC FN Precision \\\n", + "Run Name \n", + "LGBM_Shap002 0.584562 0.2 0.658589 2029.0 0.158664 \n", + "RFC_newFEATURE_001 0.654791 0.1 0.651827 1686.0 0.138568 \n", + "XGB_Shap002 0.595209 0.1 0.683261 1977.0 0.183349 \n", + "RFC_newFEATURE_002 0.624283 0.1 0.661839 1835.0 0.151926 \n", + "RFC_newFEATURE 0.657658 0.1 0.653852 1672.0 0.139494 \n", + "XGB 0.589681 0.1 0.683261 2004.0 0.185627 \n", + "RFC 0.591728 0.1 0.636501 1994.0 0.138040 \n", + "RFC_smote 0.495086 0.4 0.655639 2466.0 0.188538 \n", + "LightGBM_smote 0.590909 0.2 0.659149 1998.0 0.157524 \n", + "LightGBM 0.590909 0.2 0.659149 1998.0 0.157524 \n", + "XGB_smote 0.696560 0.3 0.686744 1482.0 0.156818 \n", "\n", - " threshold ROC_AUC FN Precision F1 TN \n", - "Run Name \n", - "RFC_newFEATURE 0.1 0.653852 1672.0 0.139494 0.230168 36805.0 \n", - "XGB 0.1 0.653852 1672.0 0.139494 0.230168 36805.0 \n", - "XGB 0.1 0.683261 2004.0 0.185627 0.282367 43984.0 \n", - "RFC 0.1 0.636501 1994.0 0.138040 0.223857 38573.0 \n", - "RFC_smote 0.4 0.655639 2466.0 0.188538 0.273081 46212.0 \n", - "LightGBM_smote 0.2 0.659149 1998.0 0.157524 0.248739 41184.0 \n", - "LightGBM 0.2 0.659149 1998.0 0.157524 0.248739 41184.0 \n", - "XGB_smote 0.3 0.686744 1482.0 0.156818 0.256001 38327.0 \n", - "XGB 0.1 0.683261 2004.0 0.185627 0.282367 43984.0 \n" + " F1 TN \n", + "Run Name \n", + "LGBM_Shap002 0.249585 41480.0 \n", + "RFC_newFEATURE_001 0.228731 36738.0 \n", + "XGB_Shap002 0.280341 43671.0 \n", + "RFC_newFEATURE_002 0.244379 39599.0 \n", + "RFC_newFEATURE 0.230168 36805.0 \n", + "XGB 0.282367 43984.0 \n", + "RFC 0.223857 38573.0 \n", + "RFC_smote 0.273081 46212.0 \n", + "LightGBM_smote 0.248739 41184.0 \n", + "LightGBM 0.248739 41184.0 \n", + "XGB_smote 0.256001 38327.0 \n" ] } ], @@ -2363,7 +2414,7 @@ "id": "688750c6", "metadata": {}, "source": [ - "\n", + "\n", "# 6 Feature Importance\n", "\n", "- get feature importance\n", @@ -2482,7 +2533,7 @@ { "cell_type": "code", "execution_count": null, - "id": "93b880b7", + "id": "cebf98bc", "metadata": {}, "outputs": [], "source": [ @@ -2511,29 +2562,154 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 232, "id": "9aa9ebad", "metadata": {}, - "outputs": [], - "source": [ - "explainer = shap.Explainer(best_xgb_model, X_train)\n", - "\n", - "shap_values = explainer.shap_values(X_train)\n", - "shap_df = pd.DataFrame({'Feature': feature_names['0'].tolist(), 'SHAP Value': shap_values[0]})\n", - "print(\"\\n SHAP Values:\")\n", - "# Sort shap_df by the 'SHAP Value' column in ascending order\n", - "sorted_shap_df = shap_df.sort_values(by='SHAP Value')\n", - "\n", - "# Print the sorted DataFrame\n", - "print(sorted_shap_df)" - ] - }, - { - "cell_type": "code", - "execution_count": 162, - "id": "89a45ac4", - "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 10%|== | 25527/246008 [15:49<136:36] " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[CV 2/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=170, subsample=0.3;, score=0.919 total time= 2.3min\n", + "[CV 2/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=185, subsample=0.3;, score=0.919 total time= 2.5min\n", + "[CV 3/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=195, subsample=0.3;, score=0.919 total time= 1.5min\n", + "[CV 3/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=170, subsample=0.3;, score=0.919 total time= 2.3min\n", + "[CV 4/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=180, subsample=0.3;, score=0.919 total time= 2.5min\n", + "[CV 5/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=190, subsample=0.3;, score=0.919 total time= 1.5min\n", + "[CV 4/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=175, subsample=0.3;, score=0.919 total time= 2.4min\n", + "[CV 4/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=185, subsample=0.3;, score=0.919 total time= 2.5min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 10%|== | 25721/246008 [15:51<135:44] " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[CV 4/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=170, subsample=0.3;, score=0.919 total time= 2.3min\n", + "[CV 5/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=180, subsample=0.3;, score=0.919 total time= 2.5min\n", + "[CV 2/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=195, subsample=0.3;, score=0.919 total time= 1.5min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 11%|== | 25833/246008 [15:52<135:13] " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[CV 1/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=170, subsample=0.3;, score=0.919 total time= 2.3min\n", + "[CV 1/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=185, subsample=0.3;, score=0.919 total time= 2.5min\n", + "[CV 4/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=195, subsample=0.3;, score=0.919 total time= 1.5min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 11%|== | 25936/246008 [15:53<134:46] " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[CV 1/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=175, subsample=0.3;, score=0.919 total time= 2.4min\n", + "[CV 1/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=190, subsample=0.3;, score=0.919 total time= 2.6min\n", + "[CV 1/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=180, subsample=0.3;, score=0.919 total time= 2.4min\n", + "[CV 3/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=190, subsample=0.3;, score=0.919 total time= 2.6min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 11%|== | 26350/246008 [15:56<132:49] " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[CV 3/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=175, subsample=0.3;, score=0.919 total time= 2.4min\n", + "[CV 2/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=190, subsample=0.3;, score=0.919 total time= 2.6min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 12%|== | 28833/246008 [16:13<122:08] " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[CV 5/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=175, subsample=0.3;, score=0.919 total time= 2.4min\n", + "[CV 3/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=185, subsample=0.3;, score=0.919 total time= 2.5min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 29%|====== | 70477/246008 [20:50<51:53] " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[CV 2/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=180, subsample=0.3;, score=0.919 total time= 2.4min\n", + "[CV 4/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=190, subsample=0.3;, score=0.919 total time= 2.6min\n", + "[CV 2/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=175, subsample=0.3;, score=0.919 total time= 2.4min\n", + "[CV 5/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=185, subsample=0.3;, score=0.919 total time= 2.5min\n", + "[CV 5/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=195, subsample=0.3;, score=0.919 total time= 1.4min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 29%|====== | 70630/246008 [20:51<51:46] " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[CV 5/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=170, subsample=0.3;, score=0.919 total time= 2.3min\n", + "[CV 3/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=180, subsample=0.3;, score=0.919 total time= 2.5min\n", + "[CV 1/5] END colsample_bytree=0.3, learning_rate=0.1, max_depth=6, n_estimators=195, subsample=0.3;, score=0.919 total time= 1.5min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|===================| 245994/246008 [41:00<00:00] " + ] + }, { "name": "stdout", "output_type": "stream", @@ -2784,7 +2960,9 @@ } ], "source": [ - "pd.set_option('display.max_rows', None) # Show all rows\n", + "explainer = shap.Explainer(best_xgb_model, X_train)\n", + "\n", + "shap_values = explainer.shap_values(X_train)\n", "shap_df = pd.DataFrame({'Feature': feature_names['0'].tolist(), 'SHAP Value': shap_values[0]})\n", "print(\"\\n SHAP Values:\")\n", "# Sort shap_df by the 'SHAP Value' column in ascending order\n", @@ -2796,122 +2974,397 @@ }, { "cell_type": "code", - "execution_count": 155, - "id": "e50cfcb3", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAOsCAYAAADX7yC0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVhV1f4G8Jd5OMigCMrkhISCikiggQNKl0lETQNzuGIOGOYEXc0RvXV/pqZcyxQtLXHOiUHEERVBMDCsSDKcAMUBEBQQEDi/P3g41+M54IENYvl+nofnxt5rrf3dm57uec9ea28lsVgsBhERERERkQDKrV0AERERERH99TFYEBERERGRYAwWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQnGYEFERERERIIxWBAREZFCtmzZgmfPnrV2GUT0mmKwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMCWxWCxu7SKIiIjo9ae0tqq1SyCiZiAOUW2RcXnHgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKsZd6OQUREr5XU1FQEBgbWu19FRQUpKSlITk7GrFmz4OXlhZUrV8q027RpE7777jssXrwYx44dw+XLlxU6/vLly+Hj46NQ2+rqasTFxeHQoUPIzc3FkydPoK+vD3Nzc/Tt2xdTpkyBurq6VJ/CwkJEREQgMTERd+/ehbKyMszMzODq6opx48ZBR0dHqn10dDRWrFhRb113797FiBEjMHz4cISGhkq2Ozg4SLVTU1ODsbExBg4ciA8//BD6+voyYz1+/Bj79u1DQkICsrOzUV5ejrZt28LGxgaenp5wdXWFkpISAMDHxwd5eXn1XpuVK1fCy8vrZZdQ4sKFCzh48CCysrJQWFgIdXV1mJiYwNvbG++99x40NDQUHouI6GUYLIiI3iDu7u5wdnaW2a6sXHsDu3///hg1ahQOHz6MYcOGYfDgwZI2GRkZ+P777zFgwACMGjUKHTt2xMiRIyX7i4qKsG7dOvTt2xejRo2SGr93794K17hkyRKcPHkSffr0wfjx46Grq4v79+8jMzMTO3bsgL+/v1Sw+OWXXzBv3jyUlpbC09MTfn5+qKmpQWpqKrZs2YLo6Gh89dVX6NSpk8I1NMTKygoTJkwAUBsaUlJSsGfPHqSkpGDXrl1QU1OTtP3tt98QHByMR48eYdCgQfDw8IBIJMLDhw+RmJiIf/3rX1iwYAHGjh0r6WNsbIygoCC5x+7Tp0+jas3KyoKKigp8fX1haGiI8vJypKenY926dbhw4QI2btwoCTVEREIxWBARvUGsra1f+o333LlzkZycjP/85z+ws7ODnp4eKioqEBoaCm1tbSxduhRAbQh53t27d7Fu3TqYmpo26lv15129ehUnT56Eq6sr1qxZI7O/qKhI6u5Dfn4+goODUV1dje+++w42NjaSfWPHjsWFCxcQEhKC+fPnY9euXdDU1GxSXc8zMjKSOj9/f3+EhITg7NmzOH/+PIYNGyapbf78+aioqMCWLVtgZ2cnNc7UqVNx8eJFPH78WGq7SCRq8vV70eTJk2W2+fv744svvsCPP/6IjIwM2NraNsuxiIi4xoKIiKSIRCIsXboUhYWFWL16NQDgm2++wc2bNxEcHAwjI6MWO3Z2djYA2SlHdfT19aGq+r/vxCIiIvDo0SMEBQVJhYo6Li4uGDduHG7fvo3IyMiWKRqAo6MjACAnJ0eqtsLCQnz88ccyoaLOgAED4O7u3mJ11adDhw4AgCdPnrzyYxPR3xfvWBARvUHKy8tRVFQks11VVVXqToCjoyPGjBmDH3/8EUZGRtizZw8GDRqE4cOHt2h9ZmZmAIDTp0/D09MTurq6DbY/c+YM1NTUGly/MWrUKERERODMmTPw8/Nr1nrr5ObmAoBUvXW1Nfaa1dTUyP0bAYCenl6Tpi6Vlpbi2bNnKCkpwZUrV7Bjxw7o6enxbgURNSsGCyKiN0h4eDjCw8Nltru4uCAsLExq2+zZs5GUlISIiAjo6elh0aJFLV6fjY0NBg4ciISEBHh5eaF3796wtbWFra0tHB0dpaYylZaWIi8vD5aWlg1OcbKwsIBIJEJWVlaz1FhVVSX54P/kyRNcvHgRP/74I7S1tTFkyJBG1SbPrVu34ObmJnffqVOn5C4Qf5kVK1bgzJkzkt9tbW2xYMECtGnTptFjERHVh8GCiOgNMmrUKLkfWg0MDGS2qampQSQSAQB69OgBQ0PDFq8PANasWYODBw8iNjYWaWlpuHTpEoDaKVrTpk2TLJwuLS0FAJknPskjEolQUFDQLPUlJyfLXENra2ssXLgQbdu2laqt7vo1homJCRYvXix3nyLnKs/06dPx3nvv4dGjR0hLS8Off/6J4uLiJo1FRFQfBgsiojeIhYUFnJycFGr73Xff4dq1a7CyskJycjLi4uLg4eHRwhXWTsvy8/ODn58fysvLkZmZicTEROzbtw9hYWEwNDSUPF0JAEpKSl46ZmlpaZM+lMubdmRra4uZM2dCLBbj3r172L17Nx48eCC19qOutrKyskYfU1NTU+G/kaIsLS1haWkJAPDw8MDBgwcxe/ZsuYvKiYiaiou3iYhIRmZmJrZt24b+/ftj27ZtsLCwwJo1a5rtW39FaWpqws7ODkFBQZKF5FFRUQBqP7x36NABt2/fRnl5eb1j5OTkoLS0VPLBGoDk/Q319Xv69KlUu+fp6+vDyckJ/fv3x8iRI7F161aoqKhgwYIFkvFEIhE6duyIW7duNVhba6l76tTBgwdbuRIi+jthsCAiIimVlZVYtmwZtLS0sGTJEmhqamLZsmV48uQJVq1a1Wp19erVCwDw4MEDyTZXV1c8e/YMMTEx9fY7cuSIpG0dExMTAMDNmzfl9qnbXteuIXp6epg5cybu3LmD3bt3y9QWGxv70jFetWfPnqGmpkbmUbdEREIwWBARkZTw8HDcuHED8+bNkzyW1M7ODn5+foiPj0dcXFyLHTs7O1vqka3PO3v2LACgS5cukm2TJk2Cnp4eNm7ciMzMTJk+Fy9exK5du2BhYSH1Mj9ra2sYGxvjxIkTePjwoVSfZ8+eYf/+/VBSUsKgQYMUqtvLywumpqbYuXOnZGrWpEmTYGBggA0bNuCXX36R2y85ORnHjx9X6BhNkZ+fL3f73r17AfwvrBERNQeusSAieoNkZmbW+w36kCFDcP36dezcuRPOzs7w9fWV2h8UFITExESsWbMGb7/9Ntq1a9fs9V27dg2LFi2Cvb09+vXrByMjIzx9+hQZGRk4efKkZAF3nfbt2+PLL79EcHAwAgIC4OHhgV69eqGmpgZpaWk4ffo0OnTogHXr1kk9nUlVVRWffvopQkJC4O/vD19fX5iZmaGwsBAnTpzAjRs3EBAQgM6dOytUt6qqKgICAvDZZ59h7969mDp1KgwNDbF+/XoEBwdj6tSpGDx4MOzt7SVv3r548SLS09OxcOFCqbFKS0vr/RtZWlrCyspK4evp5+cHOzs7WFtbo3379igqKsKlS5dw6dIlWFpaYty4cQqPRUT0MkpisVjc2kUQEVHLSk1NRWBgYINt9u7diwULFqCwsBD79+9H+/btZdqkp6dj+vTpGDx4sMybse/evYsRI0Zg+PDhCA0NbVKdhYWFiI2NxaVLl3Dz5k0UFhZCLBbD2NgYDg4OmDRpEszNzWX65efnY+fOnbhw4QLy8vKgrKwMc3NzDBkyBB988EG9C7czMjKwY8cOpKeno6ioCFpaWnjrrbcwZswYvPvuuzLtHRwc5D6aF6h9DO3IkSNRWlqK6OhoyTGLi4uxb98+JCQkIDs7GxUVFWjbti1sbW3h7e2NwYMHS8bw8fFBXl5evddnypQp+Oijj152GSW+/fZbJCcnIzs7G8XFxdDU1ESnTp3g6uoKf39/aGlpKTwWACitrWpUeyJ6PYlDWubeAoMFERERKYTBgujvoaWCBddYEBERERGRYFxjQURELa64uBjPnj1rsI2mpmaTXwD3JikrK3vp+zFUVFTkvvSQiKglMVgQEVGL++STT3D58uUG2whZm/EmiYiIwNatWxts07FjR0RHR7+iioiIajFYEBFRi5s3b95L35kgb7E4yfL29n7p27LlvdiPiKilcfE2ERERKYSLt4n+Hrh4m4iIiIiIXlucCkVEREQKCdfdhoCAAKipqbV2KUT0GuIdCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsGUxGKxuLWLICIiotef0tqq1i6B6C9HHKLa2iW8MrxjQUREREREgjFYEBERERGRYAwWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQn25ryxg4joDZaamorAwMB696uoqCAlJQXJycmYNWsWvLy8sHLlSpl2mzZtwnfffYfFixfj2LFjuHz5skLHX758OXx8fBRqW11djbi4OBw6dAi5ubl48uQJ9PX1YW5ujr59+2LKlClQV1eX6lNYWIiIiAgkJibi7t27UFZWhpmZGVxdXTFu3Djo6OhItY+OjsaKFSvqrevu3bsYMWIEhg8fjtDQUMl2BwcHqXZqamowNjbGwIED8eGHH0JfX19mrMePH2Pfvn1ISEhAdnY2ysvL0bZtW9jY2MDT0xOurq5QUlICAPj4+CAvL6/ea7Ny5Up4eXm97BJKpKWl4dSpU7h8+TLu3bsHNTU1WFhY4P3334e7u7vkuEREzYHBgojoDeLu7g5nZ2eZ7crKtTew+/fvj1GjRuHw4cMYNmwYBg8eLGmTkZGB77//HgMGDMCoUaPQsWNHjBw5UrK/qKgI69atQ9++fTFq1Cip8Xv37q1wjUuWLMHJkyfRp08fjB8/Hrq6urh//z4yMzOxY8cO+Pv7SwWLX375BfPmzUNpaSk8PT3h5+eHmpoapKamYsuWLYiOjsZXX32FTp06KVxDQ6ysrDBhwgQAtaEhJSUFe/bsQUpKCnbt2gU1NTVJ299++w3BwcF49OgRBg0aBA8PD4hEIjx8+BCJiYn417/+hQULFmDs2LGSPsbGxggKCpJ77D59+jSq1q+++goPHjzAkCFDYGlpiadPn+LkyZNYsmQJUlNTsWTJkiZcASIi+RgsiIjeINbW1i/9xnvu3LlITk7Gf/7zH9jZ2UFPTw8VFRUIDQ2FtrY2li5dCqA2hDzv7t27WLduHUxNTRv1rfrzrl69ipMnT8LV1RVr1qyR2V9UVCR19yE/Px/BwcGorq7Gd999BxsbG8m+sWPH4sKFCwgJCcH8+fOxa9cuaGpqNqmu5xkZGUmdn7+/P0JCQnD27FmcP38ew4YNk9Q2f/58VFRUYMuWLbCzs5MaZ+rUqbh48SIeP34stV0kEjX5+r3o448/hp2dHVRUVCTbxo0bh8DAQBw5cgT+/v6wtLRslmMREXGNBRERSRGJRFi6dCkKCwuxevVqAMA333yDmzdvIjg4GEZGRi127OzsbACyU47q6OvrQ1X1f9+JRURE4NGjRwgKCpIKFXVcXFwwbtw43L59G5GRkS1TNABHR0cAQE5OjlRthYWFkg/38gwYMADu7u4tVle/fv2kQgVQe3dq6NChAIDr16+32LGJ6M3DYEFE9AYpLy9HUVGRzE9JSYlUO0dHR4wZMwbHjx/Hf//7X+zZsweDBg3C8OHDW7Q+MzMzAMDp06dlvsmX58yZM1BTU2tw/UbdtKwzZ840T5Fy5ObmAgB0dXVlamvsNaupqZH7NyoqKoJYLG6Weh88eAAAaNeuXbOMR0QEcCoUEdEbJTw8HOHh4TLbXVxcEBYWJrVt9uzZSEpKQkREBPT09LBo0aIWr8/GxgYDBw5EQkICvLy80Lt3b9ja2sLW1haOjo5SU5lKS0uRl5cHS0vLBqc4WVhYQCQSISsrq1lqrKqqQlFREQDgyZMnuHjxIn788Udoa2tjyJAhjapNnlu3bsHNzU3uvlOnTsldIN4YDx8+xOHDh2FqalrvnRQioqZgsCAieoOMGjVK7odWAwMDmW1qamoQiUQAgB49esDQ0LDF6wOANWvW4ODBg4iNjUVaWhouXboEoHaK1rRp0yQLp0tLSwFA5olP8ohEIhQUFDRLfcnJyTLX0NraGgsXLkTbtm2laqu7fo1hYmKCxYsXy92nyLk2pLy8HCEhISgrK8O6deukppUREQnF/6IQEb1BLCws4OTkpFDb7777DteuXYOVlRWSk5MRFxcHDw+PFq4QUFVVhZ+fH/z8/FBeXo7MzEwkJiZi3759CAsLg6GhoeTpSgBkpnHJU1pa2qQP5fIex2pra4uZM2dCLBbj3r172L17Nx48eCD1Ib2utrKyskYfU1NTU+G/UWNUVFQgODgYV69eRWhoKPr27dvsxyCiNxvXWBARkYzMzExs27YN/fv3x7Zt22BhYYE1a9Y027f+itLU1ISdnR2CgoIkC8mjoqIA1H5479ChA27fvo3y8vJ6x8jJyUFpaanU0480NDQAoN5+T58+lWr3PH19fTg5OaF///4YOXIktm7dChUVFSxYsEAynkgkQseOHXHr1q0Ga3tVKioqEBISgkuXLmHJkiXN9tQpIqLnMVgQEZGUyspKLFu2DFpaWliyZAk0NTWxbNkyPHnyBKtWrWq1unr16gXgfwuPAcDV1RXPnj1DTExMvf2OHDkiaVvHxMQEAHDz5k25feq217VriJ6eHmbOnIk7d+5g9+7dMrXFxsa+dIyWVBcqkpOTsXjxYowYMaJV6yGivy8GCyIikhIeHo4bN25g3rx56NChAwDAzs4Ofn5+iI+PR1xcXIsdOzs7W+qRrc87e/YsAKBLly6SbZMmTYKenh42btyIzMxMmT4XL17Erl27YGFhIfUyP2traxgbG+PEiRN4+PChVJ9nz55h//79UFJSwqBBgxSq28vLC6ampti5c6dkatakSZNgYGCADRs24JdffpHbLzk5GcePH1foGE1RWVmJTz75BMnJyfj000+lrgERUXPjGgsiojdIZmZmvd+gDxkyBNevX8fOnTvh7OwMX19fqf1BQUFITEzEmjVr8Pbbb7fIo0qvXbuGRYsWwd7eHv369YORkRGePn2KjIwMnDx5UrKAu0779u3x5ZdfIjg4GAEBAfDw8ECvXr1QU1ODtLQ0nD59Gh06dMC6deukns6kqqqKTz/9FCEhIfD394evry/MzMxQWFiIEydO4MaNGwgICEDnzp0VqltVVRUBAQH47LPPsHfvXkydOhWGhoZYv349goODMXXqVAwePBj29vaSN29fvHgR6enpWLhwodRYpaWl9f6NLC0tYWVlpfD1XLJkCZKSkiRP1Hpx3O7du6N79+4Kj0dE1BAlcXM9FJuIiF5bqampCAwMbLDN3r17sWDBAhQWFmL//v1o3769TJv09HRMnz4dgwcPlnkz9t27dzFixAgMHz4coaGhTaqzsLAQsbGxuHTpEm7evInCwkKIxWIYGxvDwcEBkyZNgrm5uUy//Px87Ny5ExcuXEBeXh6UlZVhbm6OIUOG4IMPPqh34XZGRgZ27NiB9PR0FBUVQUtLC2+99RbGjBmDd999V6a9g4OD3EfzArWPoR05ciRKS0sRHR0tOWZxcTH27duHhIQEZGdno6KiAm3btoWtrS28vb0xePBgyRg+Pj7Iy8ur9/pMmTIFH3300csuo8LjTZs2DTNmzFB4PKW1VQq3JaJa4pA353t8BgsiIiJSCIMFUeO9ScGCayyIiIiIiEiwNydCERFRqykuLsazZ88abKOpqSn4BXBvgrKyspe+H0NFRUXuSw+JiFoSgwUREbW4Tz75BJcvX26wjZC1GW+SiIgIbN26tcE2HTt2RHR09CuqiIioFoMFERG1uHnz5uHx48cNtpG3WJxkeXt7w87OrsE28l7sR0TU0rh4m4iIiBTCxdtEjcfF20RERERERI3AYEFERERERIK9OfdmiIiISJBw3W0ICAiAmppaa5dCRK8h3rEgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISTEksFotbuwgiIiJ6/SmtrWrtEqgZiENUW7sE+pviHQsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIML4hhYjoDZCamorAwMB696uoqCAlJQXJycmYNWsWvLy8sHLlSpl2mzZtwnfffYfFixfj2LFjuHz5skLHX758OXx8fBRqW11djbi4OBw6dAi5ubl48uQJ9PX1YW5ujr59+2LKlClQV1eX6lNYWIiIiAgkJibi7t27UFZWhpmZGVxdXTFu3Djo6OhItY+OjsaKFSvqrevu3bsYMWIEhg8fjtDQUMl2BwcHqXZqamowNjbGwIED8eGHH0JfX19mrMePH2Pfvn1ISEhAdnY2ysvL0bZtW9jY2MDT0xOurq5QUlICAPj4+CAvL6/ea7Ny5Up4eXm97BJK5OfnY9++fcjMzMTVq1dRVFQkc05ERM2FwYKI6A3i7u4OZ2dnme3KyrU3sPv3749Ro0bh8OHDGDZsGAYPHixpk5GRge+//x4DBgzAqFGj0LFjR4wcOVKyv6ioCOvWrUPfvn0xatQoqfF79+6tcI1LlizByZMn0adPH4wfPx66urq4f/8+MjMzsWPHDvj7+0sFi19++QXz5s1DaWkpPD094efnh5qaGqSmpmLLli2Ijo7GV199hU6dOilcQ0OsrKwwYcIEALWhISUlBXv27EFKSgp27doFNTU1SdvffvsNwcHBePToEQYNGgQPDw+IRCI8fPgQiYmJ+Ne//oUFCxZg7Nixkj7GxsYICgqSe+w+ffo0qtZbt25h+/btMDY2Rs+ePZGUlNSEMyYiUgyDBRHRG8Ta2vql33jPnTsXycnJ+M9//gM7Ozvo6emhoqICoaGh0NbWxtKlSwHUhpDn3b17F+vWrYOpqWmjvlV/3tWrV3Hy5Em4urpizZo1MvuLioqk7j7k5+cjODgY1dXV+O6772BjYyPZN3bsWFy4cAEhISGYP38+du3aBU1NzSbV9TwjIyOp8/P390dISAjOnj2L8+fPY9iwYZLa5s+fj4qKCmzZsgV2dnZS40ydOhUXL17E48ePpbaLRKImX78X9ejRAydPnoSBgQGKiorg5ubWLOMSEcnDNRZERCRFJBJh6dKlKCwsxOrVqwEA33zzDW7evIng4GAYGRm12LGzs7MByE45qqOvrw9V1f99JxYREYFHjx4hKChIKlTUcXFxwbhx43D79m1ERka2TNEAHB0dAQA5OTlStRUWFuLjjz+WCRV1BgwYAHd39xarSyQSwcDAoMXGJyJ6HoMFEdEbpLy8HEVFRTI/JSUlUu0cHR0xZswYHD9+HP/973+xZ88eDBo0CMOHD2/R+szMzAAAp0+flvkmX54zZ85ATU2twfUbddOyzpw50zxFypGbmwsA0NXVlamtsdespqZG7t+oqKgIYrG4WesmImpOnApFRPQGCQ8PR3h4uMx2FxcXhIWFSW2bPXs2kpKSEBERAT09PSxatKjF67OxscHAgQORkJAALy8v9O7dG7a2trC1tYWjo6PUVKbS0lLk5eXB0tKywSlOFhYWEIlEyMrKapYaq6qqUFRUBAB48uQJLl68iB9//BHa2toYMmRIo2qT59atW/VOWTp16pTcBeJERK8DBgsiojfIqFGj5H5olTddRk1NDSKRCEDtXH1DQ8MWrw8A1qxZg4MHDyI2NhZpaWm4dOkSgNppPdOmTZMsnC4tLQUAmSc+ySMSiVBQUNAs9SUnJ8tcQ2trayxcuBBt27aVqq3u+jWGiYkJFi9eLHefIudKRNRaGCyIiN4gFhYWcHJyUqjtd999h2vXrsHKygrJycmIi4uDh4dHC1cIqKqqws/PD35+figvL0dmZiYSExOxb98+hIWFwdDQUPJ0JQAy07jkKS0tbdKH8rrHwD7P1tYWM2fOhFgsxr1797B79248ePBAau1HXW1lZWWNPqampqbCfyMiotcJ11gQEZGMzMxMbNu2Df3798e2bdtgYWGBNWvWNNu3/orS1NSEnZ0dgoKCJAvJo6KiANR+eO/QoQNu376N8vLyesfIyclBaWkpLC0tJds0NDQAoN5+T58+lWr3PH19fTg5OaF///4YOXIktm7dChUVFSxYsEAynkgkQseOHXHr1q0GayMi+jthsCAiIimVlZVYtmwZtLS0sGTJEmhqamLZsmV48uQJVq1a1Wp19erVCwDw4MEDyTZXV1c8e/YMMTEx9fY7cuSIpG0dExMTAMDNmzfl9qnbXteuIXp6epg5cybu3LmD3bt3y9QWGxv70jGIiP4OGCyIiEhKeHg4bty4gXnz5qFDhw4AADs7O/j5+SE+Ph5xcXEtduzs7GypR7Y+7+zZswCALl26SLZNmjQJenp62LhxIzIzM2X6XLx4Ebt27YKFhYXUy/ysra1hbGyMEydO4OHDh1J9nj17hv3790NJSQmDBg1SqG4vLy+Ymppi586dkqlZkyZNgoGBATZs2IBffvlFbr/k5GQcP35coWMQEb3uuMaCiOgNkpmZWe836EOGDMH169exc+dOODs7w9fXV2p/UFAQEhMTsWbNGrz99tto165ds9d37do1LFq0CPb29ujXrx+MjIzw9OlTZGRk4OTJk5IF3HXat2+PL7/8EsHBwQgICICHhwd69eqFmpoapKWl4fTp0+jQoQPWrVsn9XQmVVVVfPrppwgJCYG/vz98fX1hZmaGwsJCnDhxAjdu3EBAQAA6d+6sUN2qqqoICAjAZ599hr1792Lq1KkwNDTE+vXrERwcjKlTp2Lw4MGwt7eXvHn74sWLSE9Px8KFC6XGKi0trfdvZGlpCSsrq0Zd02+//RYAUFFRAQD4888/Jdvs7e1hb2/fqPGIiOqjJOZDsYmI/vZSU1MRGBjYYJu9e/diwYIFKCwsxP79+9G+fXuZNunp6Zg+fToGDx4s82bsu3fvYsSIERg+fDhCQ0ObVGdhYSFiY2Nx6dIl3Lx5E4WFhRCLxTA2NoaDgwMmTZoEc3NzmX75+fnYuXMnLly4gLy8PCgrK8Pc3BxDhgzBBx98UO/C7YyMDOzYsQPp6ekoKiqClpYW3nrrLYwZMwbvvvuuTHsHBwe5j+YFah9DO3LkSJSWliI6OlpyzOLiYuzbtw8JCQnIzs5GRUUF2rZtC1tbW3h7e2Pw4MGSMXx8fJCXl1fv9ZkyZQo++uijl11GmZrrM23aNMyYMUPhsZTWVjXq2PR6Eofwe2VqGQwWREREpBAGi78HBgtqKVxjQUREREREgjGyEhFRiysuLsazZ88abKOpqckXwCmgrKzspe/HUFFRkfvSQyKilsRgQURELe6TTz7B5cuXG2wjZG3GmyQiIgJbt25tsE3Hjh0RHR39iioiIqrFYEFERC1u3rx5ePz4cYNt5C0WJ1ne3t6ws7NrsI28F/sREbU0Lt4mIiIihXDx9t8DF29TS+HibSIiIiIiEoyRlYiIiBQSrrsNAQEBUFNTa+1SiOg1xDsWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQnGYEFERERERIIxWBARERERkWAMFkREREREJBiDBRERERERCcZgQUREREREgjFYEBERERGRYEpisVjc2kUQERHR609pbVVrl/C3Jg5Rbe0SiAThHQsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwfjAZCIiajaPHz+Gp6cnKioqsGLFCnh7e8u08fHxQV5eHvT09HDs2DGoq6vLtJk/fz7Onz8PAIiKigIAjBgxQuE6UlNTG1V3VVUVjh49iuPHj+PatWsoKSmBSCSCpaUlXF1dMXLkSGhqagIAQkNDERMTI+mrrKwMPT092Nra4p///Cfs7Oykxr579+5Laz969CiMjY0B/O/61NHS0oKuri66deuGd955B97e3mjTpo3MGA4ODnBxcUFYWBjCw8OxdetWhc59+PDhCA0NVagtEVFDGCyIiKjZHDt2DJWVlTA1NUVUVJTcYAEAGhoaKC4uxvnz5+Hm5ia1r6CgAImJidDQ0EBFRQUAwMDAACtXrpRqFx8fj/j4eAQEBKBLly5NrvnRo0eYP38+fv31V9ja2mLcuHEwNDTEkydP8PPPP2P9+vVIT0/HqlWrpPotXLgQ2traePbsGW7cuIHDhw8jKSkJmzZtgr29vcxxnJyc6r0eenp6Ur8bGxsjKCgIAFBZWYmHDx8iLS0Na9euxbZt2/D555/j7bffrvechg4dCnNzc6lt69atA1Ab2p5nZmZW7zhERI3BYEFERM0mMjISDg4OGDx4ML788kvk5ubK/eBqamoKZWVlREVFyQSLo0ePAgAGDhyIU6dOAaj91t7Ly0uqXU5ODuLj4+Hk5AQHB4cm1SsWi7FgwQL8+uuvCAkJgb+/v9T+CRMmIDs7W1LH89zc3KCvry/53d7eHsHBwYiIiJAbLCwsLGTOoT4ikUim7bRp05CWlob58+cjODgYu3btkgkPdbp3747u3btLbdu0aRMAKFwDEVFjcY0FERE1i8zMTFy7dg3e3t7w8PCAioqKZBqTPD4+PkhJScHDhw+ltkdHR8PFxQUGBgYtXTISEhJw+fJlvPvuuzKhoo6FhQWmTJny0rEcHR0BANnZ2c1a4/P69euHefPmoaysDN9//32LHYeIqCkYLIiIqFlERkZCW1sbw4YNg76+PgYOHIijR4+ipqZGbnsvLy8oKSlJrVf49ddfcfPmzUatpxDi9OnTAIDRo0cLHis3NxeA7LSmOpWVlSgqKpL5efLkSaOO4+XlBXV1dSQmJgqumYioOXEqFBERCVZRUYG4uDgMHToUWlpaAABvb2/Ex8fj4sWLcHZ2luljYGCAgQMHIjo6GgEBAQBqF2q3a9cOzs7OSE5ObvG6r1+/DgCwsrJqdN/i4mIAkKyxCAsLAwB4enrKbR8ZGYnIyEiZ7V27dsX+/fsVPq66ujosLCyQlZWF0tJSiESiRtdORNQSGCyIiEiw+Ph4PHnyBMOHD5dsq5vOFBUVJTdYAICvry/mzp2L9PR0WFtb48SJExg9ejRUVV/N/z2VlpYCQJM+nL/33ntSv+vo6GDOnDkYO3as3PaDBw/G+++/L7NdW1u70ceuq5fBgoheJwwWREQkWGRkJAwMDGBkZIScnBzJ9v79++PUqVMoKiqSWuhcZ8CAATA0NER0dDTu3LmD0tLSVzYNCvjfB/SysjLo6uo2qu/q1ashEolQVlaGs2fP4tixY5KnWMljZGQEJycnQfXWERKIiIhaCoMFEREJcufOHaSmpkIsFte7ViE2NhYffPCBzHYVFRV4e3vjwIEDuHHjBnr16iXo0bGN1a1bN2RmZuKPP/5o8PGt8tjb20vCkqurKzQ0NLB582b06NGj3js0zaGyshLZ2dkwNDRksCCi1wqDBRERCRIdHQ2xWIwlS5ZAR0dHZv+mTZsQFRUlN1gAtS++++GHH/Drr79i8eLFLV2ulKFDh+Lo0aM4cuRIo4PFi2bNmoWTJ09i/fr16N+/P1RUVJqpSmmxsbGorKyEi4tLi4xPRNRUDBZERNRkNTU1iI6OhqWlJUaOHCm3zY0bN7BlyxZkZGTAxsZGZn+nTp0QEhKC4uJivPvuuy1csbRBgwbB3t4ex48fh52dndz1ETk5OTh16pRkgXl9dHV14e/vj61bt+L48eMt8r6ItLQ0rF+/HiKRCJMnT2728YmIhGCwICKiJktOTsb9+/fh6+tbb5uhQ4diy5YtiIyMlBssANT7DomWpqSkhC+++ALz5s3DF198gdjYWAwaNAjt2rXDkydPkJ6ejvPnz2Po0KEKjefv74/du3fj22+/hbu7u9Rdi+zsbMTGxsrt5+joCENDQ8nvpaWlkraVlZXIz89Hamoq0tLS0LZtW3z++ed8YzYRvXYYLIiIqMnqHp/a0AdvS0tLWFhY4MSJE5g/f/6rKk1hBgYG+PbbbxETE4MTJ05g586dKCkpgY6ODrp3746QkBD4+PgoNJaenh7Gjh2L77//HseOHZN6SlZKSgpSUlLk9tu4caNUsLh//z6WLVsGANDQ0IC+vj66deuG4OBgeHt7o02bNgLOmIioZSiJxWJxaxdBRERErz+ltVWtXcLfmjiE3/fSXxvfvE1ERERERIIxGhMR0d9KdXU1Hj169NJ2enp6UFNTewUVERG9GRgsiIjob+X+/fsKvWRv8+bNcHBweAUVERG9GRgsiIjob6Vdu3bYuHHjS9tZWVm9gmqIiN4cDBZERPS3oqGhAScnp9Yug4jojcPF20REREREJBiDBRERERERCcapUERERKSQcN1tCAgI4NO0iEgu3rEgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISTEksFotbuwgiIiJ6/SmtrWrtEv7WxCGqrV0CkSC8Y0FERERERIIxWBARERERkWAMFkREREREJBiDBRERERERCcZgQUREREREgjFYEBERERGRYAwWREREREQkGIMFEREREREJxjexEBG1gMePH8PT0xMVFRVYsWIFvL29Zdr4+PggLy8Penp6OHbsGNTV1WXazJ8/H+fPnwcAREVFAQBGjBihcB2pqamNqru6uhrHjx9HXFwc/vjjDxQXF0NdXR2mpqbo27cvvL29YWNjI9OvpKQEe/fuRXx8PHJyclBdXQ0TExO4uLhgwoQJaNeundzjVVZW4tChQzhx4gRu3LiByspKGBkZwcnJCRMnToSZmZlMHwcHB8k/KykpQUtLCwYGBujevTsGDRqEf/zjH9DU1JTpl5+fj507dyIpKQn37t2DkpIS2rZtC2tra7z77rsYOnRoo65VaGgoYmJiJL8rKytDT08Ptra2mDx5Mvr06SPZN336dFy+fFnyu4qKCgwMDNC3b198+OGHsLS0lBo7NTUVgYGBmDNnDiZOnCi1TywWIz4+HtHR0fj9999RXFwMTU1NdO3aFQMHDsTo0aOhp6cHAAgPD8fWrVvrPQdHR0d88803jTpvIqL6MFgQEbWAY8eOobKyEqampoiKipIbLABAQ0MDxcXFOH/+PNzc3KT2FRQUIDExERoaGqioqAAAGBgYYOXKlVLt4uPjER8fj4CAAHTp0qXJNRcVFSE4OBhXrlxBjx498N5778HY2BiVlZW4ceMGzp07h/3792Pbtm3o3bu3pN/t27fx8ccfIy8vD66urvD19YWqqip+/fVX7NmzB1FRUVi/fr1Un7rzmz17Nv744w84OTlh+vTp0NbWxrVr1xATE4OYmBh8/vnnGDJkiEytVlZWmDBhAgCgvLwc9+7dQ3JyMlauXIlt27Zh9erVsLKykrTPy8vDP//5T5SWlsLDwwNjxowBAOTk5CAtLQ3R0dGNDhZ1Fi5cCG1tbVRWVuL69es4fPgwkpKS8M0336Bfv36Sdurq6liyZAkAoKKiAlevXkV0dDQSExOxY8cOdO7c+aXHKi8vx6effoqEhAR07doVo0ePRocOHfD06VP8+uuv+PbbbxEfH48dO3ZI9QsMDISJiYnMeIaGhk06ZyIieRgsiIhaQGRkJBwcHDB48GB8+eWXyM3Nlfvtu6mpKZSVlREVFSUTLI4ePQoAGDhwIE6dOgUA0NLSgpeXl1S7nJwcxMfHw8nJSerb/MYQi8VYsGABrly5gk8++QR+fn4ybYKDgxEdHS11Z6W8vBzz5s3DgwcPsH79eri4uEj2jR49GmPHjsVHH32E4OBg7N27V3LnQiwWY+HChfjjjz+waNEijB49WupYH3zwAWbMmIHFixdjx44d6Natm9R+IyMjmevw0Ucf4dSpU1iyZAlmz56N/fv3Q1dXFwAQERGBwsJCrF27Vm5Qyc/Pb9wFe46bmxv09fUlv9vZ2WHBggXYsWOHVLBQUVGRqnnUqFHo2rUr1q5di/379+Nf//rXS4/1n//8BwkJCZg4cSI+/vhjKCv/b0azv78/8vPzsW/fPpl+77zzDnr27NnEMyQiUgzXWBARNbPMzExcu3YN3t7e8PDwgIqKimQakzw+Pj5ISUnBw4cPpbZHR0fDxcUFBgYGLV0yEhISkJaWBg8PD7mhAgBUVVUxatQoWFtbS7YdOXIE2dnZGDdunFSoqNOzZ08EBQXh0aNHiIiIkDrezz//DDc3N5lQAQBmZmb49NNPUVFRgfDwcIXPw83NDZMmTUJ+fj72798v2Z6TkwOgduqPPM35zf2AAQOkjtmQt99+W+G2f/75J2JjY9GrVy/Mnj1bKlTUMTQ0RFBQUCMrJiJqHgwWRETNLDIyEtra2hg2bBj09fUxcOBAHD16FDU1NXLbe3l5QUlJSWq+/q+//oqbN282aj2FEKdPnwYAjBw5slH9zpw5AwByw0EdHx8fqKqqSto+f7xRo0bV28/Z2RnGxsZITExEZWWlwjXVnUNiYqJkW93dosOHD0MsFis8VlNkZ2cDgNRdjPrk5uYCgOTOSkPqrt/IkSOhpKTUqJpKSkpQVFQk81NeXt6ocYiIGsKpUEREzaiiogJxcXEYOnQotLS0AADe3t6Ij4/HxYsX4ezsLNPHwMAAAwcORHR0NAICAgDULtRu164dnJ2dkZyc3OJ1X79+HQCk1iXUKSoqkvpdQ0NDcm7Xr1+HSCSCubl5vWNramqic+fOyMrKQllZGbS1tSXHe/7ux4uUlJRgZWWFhIQEZGdnyyxwro+JiQlEIpHkAz4AjB8/HrGxsVi/fj12796Nvn37omfPnujbty969Oih0Lj1KS4uBgA8e/YMf/75J8LCwgBA7rqaumtZXl6OzMxMfPnllwAAT0/Plx4nKysLAPDWW281usaPPvpI7nZ5i8OJiJqKwYKIqBnFx8fjyZMnGD58uGRb3XSmqKgoucECAHx9fTF37lykp6fD2toaJ06cwOjRo6Gq+mr+M11aWgoAEIlEUtvLyspk1n6MHTsWCxYsAFD7Tbgi04jqxi0pKYG2trbkeDo6Og32q9tfUlKiwFlIH6+goEDyu5mZGfbs2YOIiAicP38ecXFxiIuLAwBYWlpi+fLlTQ4Y7733ntTvbdq0waxZs2S2P336VOZaGhoaIjQ0VO40shfV9zdSxIIFC2BhYSGzvVOnTo0ei4ioPgwWRETNKDIyEgYGBjAyMpKaN9+/f3+cOnUKRUVFcqfIDBgwAIaGhoiOjsadO3dQWlr6yqZBAf/7sFpaWio1LUdDQwMbN24EABQWFmLp0qVS/XR0dBT60P9ikHg+aNQ9GlWeurFfFkDkHe/FPiYmJliwYAEWLFiA/Px8pKen4+jRo0hISMDcuXOxf//+Bmupz+rVqyESiaCiogI9PT106dJFbiDU0NDAunXrANQ+jvjo0aNISUlReGrW83+jxrKxseHibSJqcQwWRETN5M6dO0hNTYVYLK53zUFsbCw++OADme0qKirw9vbGgQMHcOPGDfTq1UvQo2Mbq1u3bpJF588/WUpFRQVOTk4AgLt378rtd/nyZeTk5NQ7Haq8vBy3bt2CiYkJtLW1pY6XmZkpGV+ea9euQUNDQ+637fW5e/cuSktLZR5v+zxDQ0O4ubnBzc0NS5YsQVxcHBITE2WeNKUIe3t7hdZTKCsrS53rsGHDMHfuXHz++eewtrZG9+7dG+xvaWmJ+Ph4/PHHHw1OISMiai1cvE1E1Eyio6MhFouxZMkSrFq1SuanU6dODT4dasSIESgtLcWvv/76Su9WALUfcoHapzw1hqur60v7xcTEoKqqStJW0X5JSUm4f/8+3nnnHbkvD6xP3Zj1TTt7ka2tLQDgwYMHCh+jOSgrKyMkJARisViyLqMhddcsMjKyxRegExE1BYMFEVEzqKmpQXR0NCwtLTFy5EjJt+HP/7i7uyMrKwsZGRlyx+jUqRNCQkIwbdo0vPvuu6+0/oEDB8Le3h5xcXFy34MAQO6H2ZEjR8Lc3By7du1CUlKSzP7MzExs3LgRBgYGUouEBw8ejD59+uDkyZOIjIyU6Xf37l385z//gYaGBmbMmKHweZw6dQo7duxA+/bt8f7770u2p6amyn0CUk1NDRISEgAAXbt2Vfg4zcXCwgIeHh5ISUlBenp6g22trKzg5eWFX375BV9//bXcv0d+fr5k6hoR0avGqVBERM0gOTkZ9+/fh6+vb71thg4dii1btiAyMhI2NjZy2/j7+7dUiQ1SUlLC6tWrERwcjDVr1iAmJgYDBw6EsbExysvLkZubK3lJ3/NvcNbS0sK6devw8ccfY+7cuRg6dCj69esHFRUVZGRkIDY2Ftra2li7dq3UIm8lJSV88cUXmD17Nv7973/j1KlTcHZ2hqamJrKyshAdHY2qqip8/vnncp8G9eDBA8TGxgKofRJX3Zu3MzIyYG5ujjVr1qBNmzaS9jt37sSVK1cwcOBAWFtbQ0dHBwUFBThz5gyuXr0KBwcHhRZQt4SAgAAcO3YM4eHh2LRpU4NtFy1ahCdPnuCHH37AhQsXMHToUHTs2BFlZWXIyMhAfHy83OuVlJSEW7duyWzX0tKSupNERCQEgwURUTOo+9Z96NCh9baxtLSEhYUFTpw4gfnz57+q0hSmr6+P8PBwHD9+HMePH8eBAwdQXFwMDQ0NmJiYYMiQIfDx8ZFZBNylSxfs3bsXe/bsQXx8PBITE1FTU4MOHTrAz88PEyZMkPvkKENDQ2zfvh0HDx7EiRMnsGnTJjx79gzt27eHu7s7Jk2aJPdt5UDt2otly5YBqP1wbGBggO7du2Pp0qVwd3eHpqamVPsPP/wQp06dws8//4zk5GQUFxdDS0sLXbp0wdy5c/H+++/LfeHcq9C5c2e4ubnhxIkTSEtLk3pb94s0NTWxbt06nDlzBtHR0Th06BCKioqgpaWFrl27YurUqTJPowKAzZs3yx3PyMiIwYKImo2SmBM1iYiISAFKa6tau4S/NXEIv++lvzausSAiIiIiIsEYjYmI/qaqq6vx6NGjl7bT09ODmpraK6jo9VdSUiJ3kffz1NTUmvS+CyKivzsGCyKiv6n79+8r9NjazZs3S7274k22du1axMTENNjG3t4eW7ZseUUVERH9dXCNBRHR31RFRcVLH2EKAD169JB62/ab7MaNG3j48GGDbXR1ddGjR49XVNHrhWssWhbXWNBfHYMFERERKYTBomUxWNBfHRdvExERERGRYIzGREREpJBw3W0ICAjgYn8ikot3LIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsGUxGKxuLWLICIiotef0tqq1i7hL0kcotraJRC9ErxjQUREREREgjFYEBERERGRYAwWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYH6xMRPQXkpqaisDAQMnvysrKEIlEaN++PXr06AF3d3cMGDAASkpKcvtv2LABO3bsgLm5OQ4fPizZnpmZicmTJ8PBwQFff/213L6zZs1Camoqvv/+e1hbW6O6uhpxcXE4dOgQcnNz8eTJE+jr68Pc3Bx9+/bFlClToK6u3uRze5GKigpSUlIkvzs4OAAAunbtiv3798vt88EHH+DatWuS8euEh4dj69atkt+VlJTQpk0bWFtbY9y4cRg4cKBkX2hoKGJiYnDq1Cno6+s3eA4lJSXYu3cv4uPjkZOTg+rqapiYmMDFxQUTJkxAu3btAADr16/Hrl278Nlnn8HDw0NmnJycHIwbNw6Wlpb47rvvcP/+fYwYMaLBYx89ehTGxsYAAB8fH+Tl5Un2aWlpQVdXF926dcM777wDb29vtGnTpsHxiIgai8GCiOgvyN3dHc7OzhCLxSgrK8Pt27dx9uxZHD16FI6Ojvjiiy9kPjhWVVXh6NGjMDMzQ05ODtLS0tCvXz8AgLW1NaZMmYItW7bgwIEDGDNmjFTfgwcPIjk5GTNmzIC1tTUAYMmSJTh58iT69OmD8ePHQ1dXF/fv30dmZiZ27NgBf3//RgWLF8/tRcrKsjfZNTQ0cOPGDWRkZMDGxkZq39WrV3Ht2jVoaGigoqJC7rECAwNhYmKC6upqZGdn49ChQ5g3b169H/gbcvv2bXz88cfIy8uDq6srfH19oaqqil9//RV79uxBVFQU1q9fj969e+Ojjz5CUlIS1qxZAwcHBxgaGkrGqampQWhoKMRiMUJDQ6GioiLZ5+TkBG9vb7nH19PTk/rd2NgYQUFBAIDKyko8fPgQaWlpWLt2LbZt24bPP/8cb7/9dqPOkYioIQwWRER/QdbW1vDy8pLaNm/ePGzYsAG7du3C4sWLsWHDBqn9Fy5cQEFBATZt2oTFixcjKipKEiwAYMqUKUhISMCGDRswYMAAmJqaAgDy8vKwYcMG9OzZEwEBAQBqP7SfPHkSrq6uWLNmjUx9RUVF0NHRabZzq4+dnR0yMzMRHR0tEyyioqKgr68Pa2trJCcny+3/zjvvoGfPnpLfhw4diokTJ2Lbtm2NChbl5eWYN28eHjx4gPXr18PFxUWyb/To0Rg7diw++ugjBAcHY+/evWjXrh1WrFiBgIAAfPbZZwgLC5O03717N65cuYLg4GB07txZ6jgWFhYKXxuRSCTTdtq0aUhLS8P8+fMRHByMXbt2wdzcXOHzJCJqCNdYEBH9TaioqGDevHmws7NDUlIS0tPTpfZHRkbC1NQUDg4O8PDwwOnTp1FSUiLZr6qqihUrVqCqqgorVqyAWCyGWCzGypUrJdtUVWu/j8rOzgbwv+lIL9LX15e0bUlqamrw9PTE8ePHpe5KVFZW4vjx4/D09GxUHT169ICenh5ycnIaVceRI0eQnZ2NcePGSYWKOj179kRQUBAePXqEiIgIybaAgABcuHABR44cAQDcunULmzZtQr9+/eDv79+oGhTVr18/zJs3D2VlZfj+++9b5BhE9GZisCAi+pvx9fUFUHuHok5+fj6SkpLg7e0NJSUl+Pj4oLy8HCdOnJDq27VrV8ycOROXL1/G7t278eOPP+Knn37CzJkz0aVLF0k7MzMzAMDp06fx+PHjZq2/vLwcRUVFMj/Ph6DnjRgxAk+ePEF8fLxkW3x8PB4/fvzSdQkvKioqkqwVaYwzZ84AqL07UR8fHx+oqqpK2gLA1KlT8dZbb2H9+vXIzc2VhLfly5fLXSdTWVkp99o8efKkUfV6eXlBXV0diYmJjepHRNQQToUiIvqb6d69O4DaOf91YmJiUFNTI5mf3717d1hZWSEyMlLmw/D48eNx7tw5fPPNN1BWVkbfvn3xwQcfSLWxsbHBwIEDkZCQAC8vL/Tu3Ru2trawtbWFo6MjNDU1m1x/eHg4wsPDZba7uLhITRmqY2VlBWtra0RHR0umL0VFRaFHjx6Sa1GfkpISFBUVoaqqCtnZ2di4caPUdVLU9evXIRKJGpxWpKmpic6dOyMrKwtlZWXQ1taW3CWaNGkSJk+ejKKiIixZsgQmJiZyx4iMjERkZKTM9oYWsMujrq4OCwsLZGVlobS0FCKRSOG+RET1YbAgIvqbqfuQWFpaKtkWFRWFvn37StZNALXfoH/55Ze4fv06unXrJtmurKyM0NBQ+Pn5oaamBsuXL5e7cHrNmjU4ePAgYmNjkZaWhkuXLkmOP23aNEyYMKFJ9Y8aNQpubm4y2w0MDOrtM2LECKxduxb37t0DAPz000/45JNPXnqsjz76SOp3TU1NjB8/vsGnU8lTUlIitQC7PnV/m5KSEmhrawMALC0tMW3aNGzcuBH9+/fHyJEj6+0/ePBgvP/++zLb68ZqjOf/PWGwIKLmwGBBRPQ3Uxco6j4s/vzzz8jOzoaXl5fU2gFbW1soKysjMjIS8+fPlxrDzMwMbdu2lfyzPKqqqvDz84Ofnx/Ky8uRmZmJxMRE7Nu3D2FhYTA0NGz0k5WA2gXKTk5Ojerj4eGBsLAwxMTEAKhde+Hu7v7SfgsWLICFhQWUlZXRpk0bdO7cuUl3W3R0dOqdqvW8ur/Niwvbe/XqJfW/9TEyMmr0tXlZLQwVRNRcGCyIiP5m/vzzTwCQPFGoburM5s2bsXnzZpn2x44dw+zZswUtttbU1ISdnR3s7OzQr18/zJo1C1FRUU0KFk2hq6uLwYMHIyYmBmKxGIMHD4auru5L+9nY2Eg9FaqpunXrhsuXLyMnJ6fe6VDl5eW4desWTExMmnSHoTlVVlYiOzsbhoaGDBZE1GwYLIiI/mbqgoSzszNKS0tx+vRpODk5YdSoUTJts7Ky8O233+LcuXMYNmxYsxy/7lv3Bw8eNMt4ivL19cXJkycBAJ9++ukrPbarqysuX76MI0eO4OOPP5bbJiYmBlVVVXB1dX2ltckTGxuLyspKuU+wIiJqKgYLIqK/ierqanz11VdIT0+Hs7Mz7OzscPjwYTx9+hTvvfcehg4dKtPHxcUFO3fuRFRUVKOCRXZ2NpSUlOR+O3/27FkAkHqK1Kvg6OiIwMBAKCkpwdHR8ZUee+TIkdi/fz927dqFfv364Z133pHan5mZiY0bN8LAwAATJ058pbW9KC0tDevXr4dIJMLkyZNbtRYi+nthsCAi+gvKzMxEbGwsAEi9eTsvLw/9+/fH559/DqD27oWmpqbMB906dfvOnTuHBw8ewMjISKHjX7t2DYsWLYK9vT369esHIyMjPH36FBkZGTh58qRkAbfQc3vRkCFD6p1GpKysjKlTpzbpmIrYtWsXNDQ0ZLa//fbb6NOnD9atW4ePP/4Yc+fOxdChQ9GvXz+oqKggIyMDsbGx0NbWxtq1axVa5F2f7Ozseq+No6Oj1NilpaWStpWVlcjPz0dqairS0tLQtm1bfP755/WunyEiagoGCyKiv6Djx4/j+PHjUFZWhpaWFoyNjWFvbw93d3dJiLh+/Tp+++03uLq6NrggeejQoThz5gxiYmIwZcoUhY5vb2+P2bNn49KlS4iKikJhYSHEYjGMjY3h4+ODSZMmNfmNznXnJs/hw4dbbX3C9u3b5W5XVVVFnz590KVLF+zduxd79uxBfHw8EhMTUVNTgw4dOsDPzw8TJkwQFCoAICUlBSkpKXL3bdy4UWr8+/fvY9myZQAADQ0N6Ovro1u3bggODoa3tzfatGkjqBYiohcpicVicWsXQURERK8/pbVVrV3CX5I4hN/j0puBb94mIiIiIiLBGKGJiKjFPHv2DMXFxS9tZ2BgABUVlVdQERERtRQGCyIiajFXrlxR6C3WUVFRMDExeQUVERFRS2GwICKiFmNlZYWNGze+tF27du1eQTVERNSSGCyIiKjF6OrqwsnJqbXLICKiV4CLt4mIiIiISDAGCyIiIiIiEoxToYiIiEgh4brbEBAQADU1tdYuhYheQ7xjQUREREREgjFYEBERERGRYAwWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQnGYEFERERERIIxWBARERERkWAMFkREREREJJiSWCwWt3YRRERE9PpTWlvV2iW0GHGIamuXQPSXxzsWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQnGYEFERERERIIxWBARERERkWB8GwwR0WsiNTUVgYGBkt+VlZUhEonQvn179OjRA+7u7hgwYACUlJTk9t+wYQN27NgBc3NzHD58WLI9MzMTkydPhoODA77++mu5fWfNmoXU1FR8//33sLa2RnV1NeLi4nDo0CHk5ubiyZMn0NfXh7m5Ofr27YspU6ZAXV290ec2Z84cTJw4UbLdwcFB8s9KSkrQ0tKCgYEBunfvjkGDBuEf//gHNDU1FT7O854fGwDU1dVhbGyMgQMH4sMPP4Senp5UbdOmTcOMGTPqHcve3h5btmyRbPPx8UFeXp5U/W3btkWnTp3w3nvvwd3dXWqM0NBQxMTE4NSpU9DX16+37vraXbt2Dd9//z1+//13PHjwAFpaWmjfvj169eqF9957D9bW1lL1uri4ICwsTO4xpk+fjqtXryIhIaHeOoiIGovBgojoNePu7g5nZ2eIxWKUlZXh9u3bOHv2LI4ePQpHR0d88cUXaNOmjVSfqqoqHD16FGZmZsjJyUFaWhr69esHALC2tsaUKVOwZcsWHDhwAGPGjJHqe/DgQSQnJ2PGjBmSD6dLlizByZMn0adPH4wfPx66urq4f/8+MjMzsWPHDvj7+zcqWDTEysoKEyZMAACUl5fj3r17SE5OxsqVK7Ft2zasXr0aVlZWgsd+/PgxEhMTsXv3bqSkpGDnzp1QU1MTVLuxsTGCgoIAADU1NXjw4AFiYmKwePFi5OfnY/z48YLGr5OQkICQkBDo6+vD29sb5ubmePLkCbKzs5GYmAgLCwupYEFE1BoYLIiIXjPW1tbw8vKS2jZv3jxs2LABu3btwuLFi7Fhwwap/RcuXEBBQQE2bdqExYsXIyoqShIsAGDKlClISEjAhg0bMGDAAJiamgIA8vLysGHDBvTs2RMBAQEAgKtXr+LkyZNwdXXFmjVrZOorKiqCjo5Os52vkZGRzPl+9NFHOHXqFJYsWYLZs2dj//790NXVFTy2v78/5s2bh4SEBJw7dw5ubm6CaheJRDK1jx49Gh4eHoiJiWm2YPH1119DQ0MDO3bsgLGxsdS+mpoaFBcXN8txiIiE4BoLIqK/ABUVFcybNw92dnZISkpCenq61P7IyEiYmprCwcEBHh4eOH36NEpKSiT7VVVVsWLFClRVVWHFihUQi8UQi8VYuXKlZJuqau13TdnZ2QBkpxLV0dfXl7RtSW5ubpg0aRLy8/Oxf//+Zhu3f//+AICcnJxmG/N5urq60NDQEHw35Hk5OTno1KmTTKgAaqfMGRgYNNuxiIiaisGCiOgvxNfXF0DtHYo6+fn5SEpKgre3N5SUlODj44Py8nKcOHFCqm/Xrl0xc+ZMXL58Gbt378aPP/6In376CTNnzkSXLl0k7czMzAAAp0+fxuPHj1/BWdVv5MiRAIDExMRmG7MuUDS0zkFRNTU1KCoqQlFREQoKCvDHH3/g3//+N0pLSzF69GjB49cxMzPDjRs3cOXKFYX7VFVVSWp78aeqqqrZaiMiqsOpUEREfyHdu3cHANy+fVuyLSYmBjU1NfD29pa0sbKyQmRkpMyH2/Hjx+PcuXP45ptvoKysjL59++KDDz6QamNjY4OBAwciISEBXl5e6N27N2xtbWFrawtHR8cmL6ZuChMTE4hEIsldlMaq+3AN1K6xSEhIwIEDB6Cjo4PBgwcLru/WrVsy06k0NDSwaNEiSShqDtOnT8enn36KDz/8EJaWlujduzdsbGzw9ttvw8TERG6f5OTkBqd6aWlpNVt9REQAgwUR0V+KSCQCAJSWlkq2RUVFoW/fvpJ1E0DtE4u+/PJLXL9+Hd26dZNsV1ZWRmhoKPz8/FBTU4Ply5dDWVn25vWaNWtw8OBBxMbGIi0tDZcuXZIcf9q0aZIF0a+CSCRCQUFBk/rK+3BtZWWFRYsWoW3btoJrMzExweLFiwEAYrEY+fn5iI6OxqpVq6CqqooRI0YIPgZQOy3M0NAQe/bswaVLl3Do0CEcOnQIADBo0CAsXbpUZjqUra0tZs6cKXe8sLAw5ObmNkttRER1GCyIiP5C6gJFXcD4+eefkZ2dDS8vL6k1A7a2tlBWVkZkZCTmz58vNYaZmZnkQ3XdtKcXqaqqws/PD35+figvL0dmZiYSExOxb98+hIWFwdDQEB4eHi1xijJKS0ubvFj8+Q/X6urq6NixIzp06NCkseQ95ldTUxNOTk5S2zw8PDB+/HisWbMGgwYNapYpVwBgZ2cHOzs7iMViZGdnIzU1FQcOHMD58+exdOlSmUcJ6+vry9RW58WnihERNQcGCyKiv5A///wTANC5c2cAtYu2AWDz5s3YvHmzTPtjx45h9uzZghZba2pqSj7U9uvXD7NmzUJUVNQrCRZ3795FaWkpevfu3aT+DX24rlM3tau8vFzu/qdPnwKoneKkCFVVVTg6OmLPnj347bff4OLi0oiKX05JSQmdOnVCp06dMHz4cLz//vtITk7G/fv35S7uJiJ6VRgsiIj+QuqChLOzM0pLS3H69Gk4OTlh1KhRMm2zsrLw7bff4ty5cxg2bFizHL9Xr14AgAcPHjTLeC9z5MgRALXn21Lq1ijcunVL7v6bN28CgNRUs5epWxxdVlYmrLiX0NDQgJWVFe7cuYOHDx8yWBBRq2KwICL6C6iursZXX32F9PR0ODs7w87ODocPH8bTp0/x3nvvYejQoTJ9XFxcsHPnTkRFRTUqWGRnZ0NJSQnm5uYy+86ePQsAUk+RaimnTp3Cjh070L59e7z//vstdpy2bduid+/eSE5ORlZWFiwtLSX7ampqsGfPHgBQeLF3RUUFkpKSAKDZXlqXlJQk963rjx49wi+//AIVFRW5fy8ioleJwYKI6DWTmZmJ2NhYAJB683ZeXh769++Pzz//HEDt3QtNTU288847csep23fu3Dk8ePAARkZGCh3/2rVrWLRoEezt7dGvXz8YGRnh6dOnyMjIwMmTJyULuJvLgwcPJOdbUVEhefN2RkYGzM3NsWbNmhZfE/Cvf/0L06dPx+TJkzFy5Eh07twZJSUlOH/+PH755Rd4eHhI3n/xvNLSUkntYrEYDx8+xLFjx3Dnzh2MGjUKFhYWMn127dold1rV22+/jT59+sitb8GCBWjbti1cXFzQpUsXqKqq4s6dO4iNjUVBQQGmTZsGPT09gVeBiEgYBgsiotfM8ePHcfz4cSgrK0NLSwvGxsawt7eHu7u7JERcv34dv/32G1xdXRt8/OvQoUNx5swZxMTEYMqUKQod397eHrNnz8alS5cQFRWFwsJCiMViGBsbw8fHB5MmTWrWb8evXbuGZcuWAah9BKqBgQG6d++OpUuXwt3d/ZU83tba2hoRERHYvn074uPjkZ+fDw0NDXTt2hULFy6s950U9+/fl9QO1Ia5l/XZvn273O2qqqr1Bovly5cjMTERP/30E2JjY1FWVgY9PT1YW1tj/vz5zTbVjYhICCWxWCxu7SKIiIjo9ae09u/7Yj1xCL9rJRKKb94mIiIiIiLBGM+JiKhJnj17huLi4pe2MzAwgIqKSrMcMz8//6VtdHR0XunbwYmIqBaDBRERNcmVK1cQGBj40nZRUVGSR7oKpci7M5YvXw4fH59mOR4RESmOayyIiKhJHj9+jKtXr760nZ2dncIvl3uZlJSUl7bp1q0bDA0Nm+V4JI1rLIioIQwWREREpBAGCyJqCBdvExERERGRYIznREREpJBw3W0ICAiAmppaa5dCRK8h3rEgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEUxKLxeLWLoKIiIhef0prq1q7hBYhDlFt7RKI/hZ4x4KIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMD64mYiIWkRqaioCAwMlvysrK0MkEqF9+/bo0aMH3N3dMWDAACgpKcntv2HDBuzYsQPm5uY4fPiwZHtmZiYmT54MBwcHfP3113L7zpo1C6mpqfj+++9hbW2N6upqxMXF4dChQ8jNzcWTJ0+gr68Pc3Nz9O3bF1OmTIG6unqTzw0A1NXV0b59e9jb22PSpEno0qWL1H4HBwe4uLggLCxMsm369Om4fPmy5HcVFRUYGBigb9+++PDDD2FpaSn3WPXp2LEjoqOjER0djRUrVmDVqlVwc3OTaXf37l2MGDECY8eOxYIFCxQ+byKihjBYEBFRi3J3d4ezszPEYjHKyspw+/ZtnD17FkePHoWjoyO++OILtGnTRqpPVVUVjh49CjMzM+Tk5CAtLQ39+vUDAFhbW2PKlCnYsmULDhw4gDFjxkj1PXjwIJKTkzFjxgxYW1sDAJYsWYKTJ0+iT58+GD9+PHR1dXH//n1kZmZix44d8Pf3b1SwePHcAKCiogJ//vknIiMjcebMGezduxcdO3Z86Rjq6upYsmSJZIyrV68iOjoaiYmJ2LFjB7p06YKVK1dK9Tl8+DB+/vlnzJ8/H/r6+pLt2trajT4HIqLmwmBBREQtytraGl5eXlLb5s2bhw0bNmDXrl1YvHgxNmzYILX/woULKCgowKZNm7B48WJERUVJggUATJkyBQkJCdiwYQMGDBgAU1NTAEBeXh42bNiAnj17IiAgAABw9epVnDx5Eq6urlizZo1MfUVFRdDR0Wm2c7OwsMDatWtx5swZjB8//qVjqKioSI0xatQodO3aFWvXrsX+/fvxr3/9S+YYly5dws8//4whQ4bAxMSkSbUTETU3rrEgIqJXTkVFBfPmzYOdnR2SkpKQnp4utT8yMhKmpqZwcHCAh4cHTp8+jZKSEsl+VVVVrFixAlVVVVixYgXEYjHEYjFWrlwp2aaqWvvdWXZ2NoDaqUjy6OvrS9o2B0NDQwCAmppak8d4++23AQA5OTnNUhMR0avAYEFERK3G19cXQO0dijr5+flISkqCt7c3lJSU4OPjg/Lycpw4cUKqb9euXTFz5kxcvnwZu3fvxo8//oiffvoJM2fOlFrfYGZmBgA4ffo0Hj9+3Kz1l5eXo6ioCEVFRbh37x4SExPxzTffQF9fH0OHDm3yuLm5uQAAXV1dQfWVlZVJ6nv+p7mvAxERwKlQRETUirp37w4AuH37tmRbTEwMampq4O3tLWljZWWFyMhIjB49Wqr/+PHjce7cOXzzzTdQVlZG37598cEHH0i1sbGxwcCBA5GQkAAvLy/07t0btra2sLW1haOjIzQ1NZtcf3h4OMLDw6W2de3aFd9++63kzoUiioqKANQGlczMTHz55ZcAAE9PzybXBkBmbQYRUUtisCAiolYjEokAAKWlpZJtUVFR6Nu3r2TdBAD4+Pjgyy+/xPXr19GtWzfJdmVlZYSGhsLPzw81NTVYvnw5lJVlb8avWbMGBw8eRGxsLNLS0nDp0iXJ8adNm4YJEyY0qf5Ro0ZJnrpUWVmJGzduYNeuXZgzZw42b96s0OLtp0+fyjy5ydDQEKGhoXBxcWlSXXWmTZsGOzs7me2FhYVYunSpoLGJiF7EYEFERK2mLlDUBYyff/4Z2dnZ8PLyklpfYGtrC2VlZURGRmL+/PlSY5iZmaFt27aSf5ZHVVUVfn5+8PPzk9wVSExMxL59+xAWFgZDQ0N4eHg0un4LCws4OTlJfh84cCD69euHyZMnY8OGDfi///u/l46hoaGBdevWAQAeP36Mo0ePIiUlBWKxuNH1vKhbt25S9dW5e/eu4LGJiF7EYEFERK3mzz//BAB07twZQO2ibQDYvHkzNm/eLNP+2LFjmD17tqDF1pqamrCzs4OdnR369euHWbNmISoqqknBQh5bW1vo6OggNTVVofbKyspSH/6HDRuGuXPn4vPPP4e1tbVkuhgR0euOwYKIiFpNXZBwdnZGaWkpTp8+DScnJ4waNUqmbVZWFr799lucO3cOw4YNa5bj9+rVCwDw4MGDZhmvTnV1NZ49e9akvsrKyggJCcHYsWMRFhaGjRs3NmttREQthcGCiIheuerqanz11VdIT0+Hs7Mz7OzscPjwYTx9+hTvvfee3Ccqubi4YOfOnYiKimpUsMjOzoaSkhLMzc1l9p09exYAZN6SLURycjKePn2KPn36NHkMCwsLeHh44OjRo0hPT5e7ToKI6HXDYEFERC0qMzMTsbGxACD15u28vDz0798fn3/+OYDauxeampp455135I5Tt+/cuXN48OABjIyMFDr+tWvXsGjRItjb26Nfv34wMjLC06dPkZGRgZMnT0oWcAs9t7rF24cPH4aqqipmzpzZpDHrBAQE4NixYwgPD8emTZsEjUVE9CowWBARUYs6fvw4jh8/DmVlZWhpacHY2Bj29vZwd3eXhIjr16/jt99+g6ura4OPfx06dCjOnDmDmJgYTJkyRaHj29vbY/bs2bh06RKioqJQWFgIsVgMY2Nj+Pj4YNKkSXLvZjTm3IDaKUx6enro378/Jk+eDBsbmyaNWadz585wc3PDiRMnkJaWJvXmcSKi15GSuDkeO0FERER/e0prq1q7hBYhDuH3rETNgW/eJiIiIiIiwRjRiYiIADx79gzFxcUvbWdgYAAVFZVXUBER0V8LgwURERGAK1euIDAw8KXtoqKiYGJi8goqIiL6a2GwICIiAmBlZaXQOyPatWv3CqohIvrrYbAgIiICoKurK/UGbCIiahwu3iYiIiIiIsEYLIiIiIiISDBOhSIiIiKFhOtuQ0BAANTU1Fq7FCJ6DfGOBRERERERCcZgQUREREREgjFYEBERERGRYAwWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQnGYEFERERERIIxWBARERERkWBKYrFY3NpFEBER0etPaW1Va5fQJOIQ1dYugeiNwDsWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQnGYEFERERERIIxWBARERERkWB8YwwREcn1+PFjeHp6oqKiAitWrIC3t7dMGx8fH+Tl5UFPTw/Hjh2Durq6TJv58+fj/PnzAICoqCgAwIgRIxSuIzU1tdG1V1dXY/jw4Xj48CECAwMxdepUue2mT5+Oy5cvw9TUFAcOHICamprU/vDwcGzduhU7duxAz549JfUEBgYCABYvXoxRo0bJjOvg4AAXFxeEhYVJtvn4+AAAoqOj5dYSGhqKmJgYREVFwcTERO7xHRwcFL4Grq6uiI+Px2effQYPDw+Z/Tk5ORg3bhwsLS3x3XffQUVFReGxiYjkYbAgIiK5jh07hsrKSpiamiIqKkpusAAADQ0NFBcX4/z583Bzc5PaV1BQgMTERGhoaKCiogIAYGBggJUrV0q1i4+PR3x8PAICAtClSxfBtSclJeHhw4cwMzNDdHQ0PvzwQygpKdXb/s6dOzhw4ADGjRvXqONs2bIFnp6e0NTUFFqyQl68bj///DMOHz6MUaNGoW/fvlL7XF1dMWnSJKxZswYODg4wNDSU7KupqUFoaCjEYjFCQ0MZKoioWTBYEBGRXJGRkXBwcMDgwYPx5ZdfIjc3F2ZmZjLtTE1NoaysjKioKJlgcfToUQDAwIEDcerUKQCAlpYWvLy8pNrl5OQgPj4eTk5OjfpWvqHazczMMG/ePAQHByMtLa3ecTU0NGBqaorvvvsOI0aMgEgkUugYPXv2xO+//449e/YgICBAcM2KePG6VVdX4/Dhw+jdu7fMPgBYsWIFAgIC8Nlnn0ndPdm9ezeuXLmC4OBgdO7cuYWrJqI3BddYEBGRjMzMTFy7dg3e3t7w8PCAioqKZBqTPD4+PkhJScHDhw+ltkdHR8PFxQUGBgYtXbJEQUEBEhIS4O3tDWdnZ7Rt2xaRkZH1tldWVkZQUBCKioqwY8cOhY/j5uaGHj164IcffkBRUVEzVN78evbsiYCAAFy4cAFHjhwBANy6dQubNm1Cv3794O/v37oFEtHfCoMFERHJiIyMhLa2NoYNGwZ9fX0MHDgQR48eRU1Njdz2Xl5eUFJSQkxMjGTbr7/+ips3bzZqPUVzqKvT29sbqqqq8PDwwJkzZ1BSUlJvn8GDB8POzg67d+9Gfn6+QsdRUlLCrFmzUFJSgm3btjVX+c1u6tSpeOutt7B+/Xrk5uZixYoVUFVVxfLlyxucHkZE1FgMFkREJKWiogJxcXEYOnQotLS0AADe3t64f/8+Ll68KLePgYEBBg4cKLUwOSoqCu3atYOzs/Mrqfv54/bt21eyAHr48OGSc2rIxx9/jKdPn2LLli0KH8vJyQlOTk44cOAA8vLyBNXdUlRVVbFixQo8e/YMkydPxq+//op58+ZJrg8RUXNhsCAiIinx8fF48uQJhg8fLtlWN52poelQvr6+yM7ORnp6OsrLy3HixAl4eXlBVfXVLee7cuUKbt26JVW7lZUVrKysGqwdAPr06YMhQ4YgMjISt2/fVviYH3/8MZ49e4ZNmzY1ue6WZmlpiWnTpqGoqAj9+/fHyJEjW7skIvobYrAgIiIpkZGRMDAwgJGREXJycpCTk4O8vDz0798f58+fr3c9wYABA2BoaIjo6GicPn0apaWlr3waVGRkJFRVVfHWW29Jas/JycGAAQPw+++/488//2yw/6xZswAAX3/9tcLHtLa2hru7O+Li4l46viJaanpSr169pP6XiKi58alQREQkcefOHaSmpkIsFmP06NFy28TGxuKDDz6Q2a6iogJvb28cOHAAN27cQK9evZrl0bGKKisrw6lTp1BVVYXx48fLbRMVFYXg4OB6x+jcuTN8fHxw5MgR/Pbbbwofe+bMmTh9+jS++uorbNiwQW6busfy1ufp06eSdkREf0UMFkREJBEdHQ2xWIwlS5ZAR0dHZv+mTZsQFRUlN1gAtS++++GHH/Drr79i8eLFLV2ulJMnT6KsrAxBQUEwNzeX2b9v3z7ExsZi9uzZMi/Ce96MGTMQFxeHDRs2oF+/fgod29TUFGPGjMGePXvqfaGfiYkJbt26haKiIujr68vsv3nzJkQikdx9RER/BQwWREQEoPaladHR0bC0tKx3Dv6NGzewZcsWZGRkwMbGRmZ/p06dEBISguLiYrz77rstXLG0yMhI6OnpYeLEiXLXdZSXlyM0NBTnzp2Ted/G89q3b49x48Zh+/btKC8vV/j4H374IaKiouq9YzFkyBAkJSVh165dCAoKktp38eJF3LhxAx4eHlBW5ixlIvprYrAgIiIAQHJyMu7fvw9fX9962wwdOhRbtmxBZGSk3GABoFXejXDr1i388ssv8PHxqXex+KBBg6CqqorIyMgGgwUA/POf/8ShQ4fw+++/K1yDvr4+Jk6ciM2bN8vdP2LECMTFxWH79u34448/8Pbbb0NDQwN//PEHYmJi0K5dO8kaDyKivyJ+LUJERAAgeYnc0KFD621jaWkJCwsLnDhxolHf5re0utpdXV3rbaOrqwsHBwekpKTg3r17DY6no6ODKVOmNLqOCRMmwNDQUO4+VVVVfP3115g1axby8/MRHh6O9evXIzU1FaNHj8auXbvQoUOHRh+TiOh1oSQWi8WtXQQRERG9/pTWVrV2CU0iDuEEDaJXgXcsiIiIiIhIMEZ4IiJ6bVVXV+PRo0cvbaenp9fgk56IiKjlMVgQEdFr6/79+wq9ZG/z5s1wcHB4BRUREVF9GCyIiOi11a5dO2zcuPGl7aysrF5BNURE1BAGCyIiem1paGjAycmptcsgIiIFcPE2EREREREJxjsWREREpJBw3W0ICAjgQnkikot3LIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsGUxGKxuLWLICIiotef0tqq1i6h0cQhqq1dAtEbg3csiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiATjw52JiF5z5eXlOHToEM6cOYMbN26gtLQUenp6sLa2xrvvvgtPT0+oqkr/5/zy5cvYt28frly5gqKiIrRp0wY9evTA6NGjMWTIEJljhIaGIiYmRvK7uro6dHR00KlTJ9jZ2cHX1xdmZmYy/aZPn47Lly/XW3tgYCCmTp3a6HMuKSnBgQMHcP78edy+fRslJSXQ0dFB586d4eTkBF9fXxgbG0vah4eHY+vWrfWO5+joiG+++QYAkJqaisDAQADA4sWLMWrUKJn2Dg4OcHFxQVhYmGTbi+eqoaGBNm3aoGvXrnBwcMCIESNgaGgoM5aPjw/y8vLqrW3lypXw8vICIPt3UFZWhp6eHmxtbfHPf/4TdnZ29Y7TEAcHh3r3zZo1C5MnT27SuEREz2OwICJ6jeXk5GDOnDnIzs6Go6MjJk+eDH19fRQWFuLSpUtYsWIFbty4gTlz5kj6bNy4Edu3b0fHjh3h6+sLExMTFBQUIC4uDiEhIfDy8sLy5cuhoqIic7yFCxdCW1sb1dXVKCoqQkZGBnbt2oWdO3ciKCgIEyZMkOmjrq6OJUuWyK3fysqq0ed89epVBAcH4+HDh3B2dsbkyZOhp6eHkpIS/P7779i5cye2b9+OixcvyvQNDAyEiYmJzHZ5H/gBYMuWLfD09ISmpqZCtT1/rs+ePUNhYSGuXLmC8PBw/PDDD1i0aBHc3d1l+hkbGyMoKEjumH369JHZVvd3ePbsGW7cuIHDhw8jKSkJmzZtgr29vUK1vsjKykru3++tt95q0nhERC9isCAiek2Vl5dj7ty5uHPnDlavXo2hQ4dK7Z88eTIyMjLw+++/S7YdOXIE27dvh6OjI9atWyf1gXnSpEn497//jaNHj8LExETyrf3z3NzcoK+vL7Xt3r17mDt3LsLCwmBkZIR//OMfUvtVVFQk37gLVVBQgLlz56KiogJbt26V+w19SUlJvXcn3nnnHfTs2VOhY/Xs2RO///479uzZg4CAAIX61HeuWVlZmDNnDpYtWwZjY2OZukUiUaOu0Yt/B3t7ewQHByMiIqLJwcLIyKjZ/k5ERPJwjQUR0WvqyJEjuH37NiZMmCATKurY2Nhg7NixAGq/Qd+0aRO0tbXx2WefyXwLr6qqikWLFqFDhw6IiIjAo0ePFKqjQ4cO+OKLL6CsrCyZTtRSduzYgYKCAsyZM6feaT86OjqYN2+e4GO5ubmhR48e+OGHH1BUVCRoLEtLSyxbtgzV1dXYsmWL4Npe5OjoCADIzs5u9rGJiJoLgwUR0WvqzJkzACB3DYA8V65cQUFBAQYPHoy2bdvKbaOhoQFPT09UVFQgMTFR4Vrq1lrk5ubi1q1bMvuLiork/lRVVSl8DKD2nNXV1Zv8zXpJSYncOsrLy2XaKikpYdasWSgpKcG2bduadLznOTk5oWPHjkhLS8PTp0+l9tXU1NR7jcRi8UvHzs3NBQDo6ek1ub6qqiqZYxcXFzd5PCKiF3EqFBHRa+r69esQiURyF03Lk5WVBeDlc+Z79Ogh1V5R3bt3x+XLl5GdnY3OnTtLtj99+hRubm5y++zYsUPhqUmlpaXIy8tD9+7doaGhIbWvqqoKJSUlUttEIhHU1NSktn300Udyx54zZw4mTpwos93JyQlOTk44cOAAxo0bh44dOypUa30sLS2Rl5eHO3fuwNLSUrL91q1b9V6jU6dOyUw/q/vAX7fGom4RuaenZ5NrS05OlqmhXbt2OH78eJPHJCJ6HoMFEdFrqqSkBO3atVO4fWlpKYDaqUINEYlEkvEbo65f3XHqaGhoYN26dXL7dOrUSeHx68atO87zLl68KDP9adWqVTIflBcsWAALC4tG1fHxxx9j4sSJ2LRpE1auXKlwvfLUXfsXr62JiQkWL17cYJ/nvffeezJt5syZI5n21hS2traYOXOm1DZ1dfUmj0dE9CIGCyKi15SOjo7Mh/iGKBoYFA0g9fV78YO/srIynJycGjWWPPUFFwDo1asXNm7cCKD2m/eIiAi5Y9jY2Ch8h6SOtbU13N3dERcXh4kTJ6J79+6NrPx/6q79i9dWU1OzUddo9erVEIlEKCsrw9mzZ3Hs2DFUVFQ0uS4A0NfXb5a/ExFRfRgsiIheU926dcPly5eRm5ur0HSouqk3f/zxR4PtMjMzpdor6s8//wTQuLsQjSESidChQwfcvn0bFRUVUtOhnv9Q/ODBg2Y/9syZM3H69Gl89dVX2LBhQ5PHycrKgqqqKkxNTQXVY29vL5ke5erqCg0NDWzevBk9evSAs7OzoLGJiFoKF28TEb2m6p4EFRkZqVD73r17o127djh37ly9TzmqqKjAsWPHoKGhgXfeeUfhWm7fvo309HRYWFi0WLAAgGHDhqGyshKxsbEtdgx5TE1NMWbMGCQlJSE1NbVJY6SkpCAvLw/29vbQ0tJq1vpmzZqFNm3aYP369aiurm7WsYmImguDBRHRa2rkyJHo1KkTIiIicPbsWbltrl69ih9//BFA7Xz5GTNmoKysDEuXLpV5ElJ1dTVWrVqFvLw8TJw4sd4nR73o3r17WLhwIWpqaupdHN1c6ur673//i/T0dLltFHmKUlN8+OGHEIlETbpjkZWVhZUrV0JFRUXu+0GE0tXVhb+/P27dusXF1kT02uJUKCKi15SmpibCwsIwZ84chISEoH///nBycoKenh4ePXqEtLQ0XLx4EZMmTZL0GT16NHJychAREYH3338f3t7e6NixIwoKCnD8+HFkZWXB09MT06ZNk3vMU6dOSd68XVxcjIyMDJw/fx41NTUIDg6W+2Sj6urqeu8wmJqayn2zdH0MDQ0RFhaG4OBgTJ8+Hc7OzrC3t4eenh4eP36MrKwsnD59GhoaGnLfpp2UlCT3cbhaWlpwdXVt8Nj6+vqYOHEiNm/eXG+b58+1qqpK8ubtpKQkaGpq4rPPPkPv3r1l+pWWltZ7jSwtLRV6Q7m/vz92796Nb7/9Fu7u7nLfnE5E1JoYLIiIXmPm5ubYvXs3Dh48iDNnzmDbtm0oKyuDnp4eevTogdDQUHh4eEj1mTNnDpydnbFv3z4cOnQIxcXF0NHRQc+ePTFjxowGP2CvWrUKAKCmpgYdHR106tQJ48ePx4gRI+pd51FZWYlly5bJ3efp6dmoYAHUvhF7//79OHDgAM6fPy8557p6Jk6cCF9fXxgbG8v0rS8UGBkZvTRYAMCECRNw4MAB5Ofny93//Lmqq6ujTZs26Nq1KwIDA+Hj4yM37ADA/fv3671GU6ZMUShY6OnpYezYsfj+++9x7NgxDB8+/KV9iIheJSVxS91TJiIior8VpbWNe+Hh60Acwu9QiV4VrrEgIiIiIiLBGOOJiKhFlZeXK/QyvvqmEZF89U3Xep6Ojg40NTVfQTVERAwWRETUwk6ePIkVK1a8tF1TH/P6pnpxbY08y5cvh4+PzyuohoiIayyIiKiF5efn4/r16y9tx7dCN05KSspL23Tr1q1Z7wRxjQURNYTBgoiIiBTCYEFEDeHibSIiIiIiEozBgoiIiIiIBOP9QSIiIlJIuO42BAQEQE1NrbVLIaLXEO9YEBERERGRYAwWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQnGYEFERERERIIxWBARERERkWAMFkREREREJBiDBRERERERCaYkFovFrV0EERERvf6U1la1dgkKEYeotnYJRG8k3rEgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBOMbZIiIXiPl5eU4dOgQzpw5gxs3bqC0tBR6enqwtrbGu+++C09PT6iqSv+n+/Lly9i3bx+uXLmCoqIitGnTBj169MDo0aMxZMgQmWOEhoYiJiZG8ru6ujp0dHTQqVMn2NnZwdfXF2ZmZjL9pk+fjsuXL9dbe2BgIKZOndrocy4pKcGBAwdw/vx53L59GyUlJdDR0UHnzp3h5OQEX19fGBsbS9qHh4dj69at9Y7n6OiIb775BgCQmpqKwMBAAMDixYsxatQomfYODg5wcXFBWFiYZNuL56qhoYE2bdqga9eucHBwwIgRI2BoaCgzlo+PD/Ly8uqtbeXKlfDy8gIg+3dQVlaGnp4ebG1t8c9//hN2dnb1jtMQBwcHAEDXrl2xf/9+uW0++OADXLt2DUDtNSIiag4MFkREr4mcnBzMmTMH2dnZcHR0xOTJk6Gvr4/CwkJcunQJK1aswI0bNzBnzhxJn40bN2L79u3o2LEjfH19YWJigoKCAsTFxSEkJAReXl5Yvnw5VFRUZI63cOFCaGtro7q6GkVFRcjIyMCuXbuwc+dOBAUFYcKECTJ91NXVsWTJErn1W1lZNfqcr169iuDgYDx8+BDOzs6YPHky9PT0UFJSgt9//x07d+7E9u3bcfHiRZm+gYGBMDExkdku7wM/AGzZsgWenp7Q1NRUqLbnz/XZs2coLCzElStXEB4ejh9++AGLFi2Cu7u7TD9jY2MEBQXJHbNPnz4y2+r+Ds+ePcONGzdw+PBhJCUlYdOmTbC3t1eo1hdpaGjgxo0byMjIgI2NjdS+q1ev4tq1a9DQ0EBFRUWTxicikofBgojoNVBeXo65c+fizp07WL16NYYOHSq1f/LkycjIyMDvv/8u2XbkyBFs374djo6OWLdundQH5kmTJuHf//43jh49ChMTE8m39s9zc3ODvr6+1LZ79+5h7ty5CAsLg5GREf7xj39I7VdRUZF84y5UQUEB5s6di4qKCmzdulXuN/QlJSX13p1455130LNnT4WO1bNnT/z+++/Ys2cPAgICFOpT37lmZWVhzpw5WLZsGYyNjWXqFolEjbpGL/4d7O3tERwcjIiIiCYHCzs7O2RmZiI6OlomWERFRUFfXx/W1tZITk5u0vhERPJwjQUR0WvgyJEjuH37NiZMmCATKurY2Nhg7NixAGq/Qd+0aRO0tbXx2WefyXwLr6qqikWLFqFDhw6IiIjAo0ePFKqjQ4cO+OKLL6CsrCyZTtRSduzYgYKCAsyZM6feaT86OjqYN2+e4GO5ubmhR48e+OGHH1BUVCRoLEtLSyxbtgzV1dXYsmWL4Npe5OjoCADIzs5u8hhqamrw9PTE8ePHpe5KVFZW4vjx43Kn1BERCcVgQUT0Gjhz5gwAyF0DIM+VK1dQUFCAwYMHo23btnLbaGhowNPTExUVFUhMTFS4lrq1Frm5ubh165bM/qKiIrk/VVVVCh8DqD1ndXX1Jt8BKSkpkVtHeXm5TFslJSXMmjULJSUl2LZtW5OO9zwnJyd07NgRaWlpePr0qdS+mpqaeq+RWCx+6di5ubkAAD09PUE1jhgxAk+ePEF8fLxkW3x8PB4/fowRI0YIGpuISB5+XUFE9Bq4fv06RCKR3EXT8mRlZQEA3nrrrQbb9ejRQ6q9orp3747Lly8jOzsbnTt3lmx/+vQp3Nzc5PbZsWOHwlOTSktLkZeXh+7du0NDQ0NqX1VVFUpKSqS2iUQiqKmpSW376KOP5I49Z84cTJw4UWa7k5MTnJyccODAAYwbNw4dO3ZUqNb6WFpaIi8vD3fu3IGlpaVk+61bt+q9RqdOnZKZflZcXAwAkjUWdYvIPT09BdVnZWUFa2trREdHw8PDA0DtNKgePXqge/fugsYmIpKHwYKI6DVQUlKCdu3aKdy+tLQUQO1UoYaIRCLJ+I1R16/uOHU0NDSwbt06uX06deqk8Ph149Yd53kXL16Umf60atUqmQ/rCxYsgIWFRaPq+PjjjzFx4kRs2rQJK1euVLheeequ/YvX1sTEBIsXL26wz/Pee+89mTZz5syRTHsTYsSIEVi7di3u3bsHAPjpp5/wySefCB6XiEgeBgsioteAjo6OzIf4higaGBQNIPX1e/GDv7KyMpycnBo1ljz1BRcA6NWrFzZu3AgASE5ORkREhNwxbGxsFL5DUsfa2hru7u6Ii4vDxIkTBX1zX3ftX7y2mpqajbpGq1evhkgkQllZGc6ePYtjx44129OaPDw8EBYWJnmsrZqamtwnWRERNQcGCyKi10C3bt1w+fJl5ObmKjQdqm7qzR9//NFgu8zMTKn2ivrzzz8BNO4uRGOIRCJ06NABt2/fRkVFhdR0KH19fckH8wcPHjT7sWfOnInTp0/jq6++woYNG5o8TlZWFlRVVWFqaiqoHnt7e8n0KFdXV2hoaGDz5s3o0aMHnJ2dBY2tq6uLwYMHIyYmBmKxGIMHD4aurq6gMYmI6sPF20REr4G6J0FFRkYq1L53795o164dzp07V+9TjioqKnDs2DFoaGjgnXfeUbiW27dvIz09HRYWFi0WLABg2LBhqKysRGxsbIsdQx5TU1OMGTMGSUlJTX45XEpKCvLy8mBvbw8tLa1mrW/WrFlo06YN1q9fj+rqasHj+fr6Ijc3F3fu3OGibSJqUQwWRESvgZEjR6JTp06IiIjA2bNn5ba5evUqfvzxRwC1L2+bMWMGysrKsHTpUpknIVVXV2PVqlXIy8vDxIkT631y1Ivu3buHhQsXoqampt7F0c2lrq7//ve/SE9Pl9tGkacoNcWHH34IkUjUpDsWWVlZWLlyJVRUVOS+H0QoXV1d+Pv749atWzh+/Ljg8RwdHREYGIiZM2dKHmVLRNQSOBWKiOg1oKmpibCwMMyZMwchISHo378/nJycoKenh0ePHiEtLQ0XL17EpEmTJH1Gjx6NnJwcRERE4P3334e3tzc6duyIgoICHD9+HFlZWfD09MS0adPkHvPUqVOSN28XFxcjIyMD58+fR01NDYKDg+U+2ai6urreOwympqZy3yxdH0NDQ4SFhSE4OBjTp0+Hs7Mz7O3toaenh8ePHyMrKwunT5+GhoaG3LdpJyUlyX0crpaWFlxdXRs8tr6+PiZOnIjNmzfX2+b5c62qqpK8eTspKQmampr47LPP0Lt3b5l+paWl9V4jS0tLhd5Q7u/vj927d+Pbb7+Fu7u73DenK0pZWRlTp05tcn8iIkUxWBARvSbMzc2xe/duHDx4EGfOnMG2bdtQVlYGPT099OjRA6GhoZLHhtaZM2cOnJ2dsW/fPhw6dAjFxcXQ0dFBz549MWPGjAY/YK9atQpA7YJeHR0ddOrUCePHj8eIESPqXedRWVmJZcuWyd3n6enZqGAB1L4Re//+/Thw4ADOnz8vOee6eiZOnAhfX18YGxvL9K0vFBgZGb00WADAhAkTcODAAeTn58vd//y5qquro02bNujatSsCAwPh4+MjN+wAwP379+u9RlOmTFEoWOjp6WHs2LH4/vvvcezYMQwfPvylfYiIWpuSuKXuMxMREdHfitLaxr0EsbWIQ/i9KVFr4BoLIiIiIiISjJGeiIiaTXl5uUIv46tvGhHJV990refp6OhAU1PzFVRDRCQfgwURETWbkydPYsWKFS9t19THvL6pXlxbI8/y5cvh4+PzCqohIpKPayyIiKjZ5Ofn4/r16y9t1xxv736TpKSkvLRNt27dWvxOENdYEFFDGCyIiIhIIQwWRNQQLt4mIiIiIiLBGOmJiIhIIeG62xAQEAA1NbXWLoWIXkO8Y0FERERERIIxWBARERERkWAMFkREREREJBiDBRERERERCcZgQUREREREgjFYEBERERGRYAwWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQmmJBaLxa1dBBEREb3+lNZWtXYJDRKHqLZ2CURvNN6xICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMD3wmImqi1NRUBAYG1rt/+/bt6NWrFxwcHODi4oKwsDCFxz5w4ABWrVoFkUiE48ePQ1NTs962ubm52LdvH1JSUnD//n1UVFRAX18fVlZWGDRoELy9vaGlpdWYU0NoaChiYmIkv6urq0NHRwedOnWCnZ0dfH19YWZmVm//y5cvY9++fbhy5QqKiorQpk0b9OjRA6NHj8aQIUPq7Xf79m3s2bMHP/30E+7fvw+xWAxjY2P069cPI0eOhI2NDYD/Xftp06ZhxowZcsdycHCAvb09tmzZItnm4+ODvLw86Onp4dixY1BXV5fpN3/+fJw/fx4AEBUVBRMTEwBAdHQ0VqxYUW/tZmZmOHLkCADg7t27GDFiBAAgICAAQUFBMu19fHygpaWF/fv3v3Ts5714Tg359ddfERERgWvXrqGwsBAA0KFDB7i5ueGDDz6Ajo6OQuMQESmCwYKISCB3d3c4OzvLbDc3N2/ymJGRkTAzM0Nubi5OnTqF4cOHy20XHR2N//u//4OKigrc3Nzw3nvvQVNTEwUFBfj555+xevVqnD17Fl9//XWT6li4cCG0tbVRXV2NoqIiZGRkYNeuXdi5cyeCgoIwYcIEmT4bN27E9u3b0bFjR/j6+sLExAQFBQWIi4tDSEgIvLy8sHz5cqioqEj1O3LkCFatWgUNDQ384x//wFtvvQUVFRVkZ2fjzJkzOHz4MPbv34+uXbs26VzqaGhooLi4GOfPn4ebm5vUvoKCAiQmJkJDQwMVFRVy+/v7+6Nnz54y27W1teW237NnD/z8/GBoaFhvTX379sXKlSultm3btg23bt2S2d62bdt6x3nR7du3UV5eDk9PTxgaGkIsFiMjIwPbtm3D6dOn8cMPPzQYWomIGoPBgohIIGtra3h5eTXbeNeuXcPVq1exYsUK7N69G1FRUXKDxaVLl/Dvf/8b3bp1w3//+18YGRnJtMnNzcXJkyebXIubmxv09fWltt27dw9z585FWFgYjIyM8I9//EOy78iRI9i+fTscHR2xbt06qQ+tkyZNwr///W8cPXoUJiYmUnd7UlJS8J///AddunTB119/jfbt20sdMygoCPv27WvyeTzP1NQUysrKiIqKkgkWR48eBQAMHDgQp06dktvfzs5Opl99evbsid9//x3h4eFYvHhxve3MzMxk7gAdOXIEt27dEvTv1vDhw2X+3RkzZgy6dOmCDRs2ICEhAe+++26Txycieh7XWBARvWYiIyOhra2NoUOHwsfHB5cvX0ZOTo5Muw0bNgAA/u///k9uqABqP7AGBAQ0a30dOnTAF198AWVl5f9n787jasr/P4C/2lRKShEt1iQJqUYoS2mmVFfWwci+71vDd5gZyyz4MvgZS2EYa4yteyvKVg0aS5sxiLGkomGkolJU9/eHx73fbvfeunWzjHk9H48edD7L+ZxzbnXe57McbNq0Sbr91atX2Lx5M+rWrYtvv/1W7km4trY2Fi5ciMaNG2P37t3IycmRpv34448Qi8VYvny5XFAhKTt8+HC1eyskBAIBLl68iL///ltme3h4ONzd3WFiYlIr+2nXrh08PDwgEomQlpZWK3XWhiZNmgAAnj179o5bQkQfEgYWRERqKioqQm5ursxXQUFBjep6+fIloqKi0Lt3b+jr68PHxwfa2toQiUQy+R48eIDU1FQ4OjqiefPmtXAU1SOZa5GZmSm9Yb5y5Qqys7PRs2dPpcN1dHV10adPHxQXF+P8+fMAZI+ltgKHqvj6+kJDQ0NmHsnVq1dx79496dwIZQoLC+Wud25uLl68eKEwv2R+xcaNG2vvAKpJ8hn966+/EBMTgx9//BE6OjpwdXV9Z20iog8Ph0IREakpJCQEISEhMts+/vhjLF++vNp1xcbGIi8vD35+fgAAY2NjuLu7IyIiApMnT5bOS7hz5w4AwNbWVq6OoqIiFBUVyWyrX78+NDQ0qt2eyrRu3RpJSUlIT09H8+bNcfv2bQBAmzZtKi3Xtm1bAJDmr+xY3hQTExN0794d4eHh0h4dkUgEU1NTuLm54cKFC0rLVpzzIDF48GAsWLBAbnvz5s3Rt29fHD16FFevXkX79u1r5yCqITg4GHv27JF+37JlS6xdu7bSCfhERNXFwIKISE39+/eXG3Nvampao7qEQiEsLCzg7Ows3ebv74/Y2Fj89ttvcHd3BwBpj4iBgYFcHRVvIgHg1KlTcnMl1CXZt6Qtkn+rWmlIUi4/P1+mnKJjeZMCAgIwe/ZspKSkwM7ODidOnMCAAQOgrV35n8YJEybA0dFRbru5ubnSMhMnTsTx48exfv16bN26Vd2mV9uAAQPQtWtXPH/+HFevXkViYiJyc3PfejuI6MPGwIKISE1NmzatlSElWVlZuHz5MgICApCZmSnd3qxZMxgYGEAoFEoDi4o39eVJbiIBYPfu3ZU+fVdHxYCgYsBQVTlJACIpV1hYWOttrKyXpmvXrjAzM0N4eDgePHiAgoKCKodBAUCrVq2qfb0bNmyIYcOGYceOHfj111/Ro0ePapVXV9OmTdG0aVMAryfk//bbb5gxYwYAwMfH5622hYg+XAwsiIjeEyKRCGVlZTh69CiOHj0ql3727Fnk5OTAxMQErVq1AvB6BamKyt9EHj9+/I21988//wTwOvABABsbGwDAzZs3Ky2Xmpoqk19yLFWVK08yMbzikC8JyXwHXV1dpXVoaWnBz88Phw4dwt27d9G+fXu0aNFC5TZU16hRo3DkyBFs3LhRGiC+K127doWpqSkOHTrEwIKIag0DCyKi94BYLEZERARsbW0xduxYufTs7GysWrUKkZGRCAwMhKWlJezs7JCSkoK0tLS3PoH7/v37SElJQdOmTaWBRYcOHWBqaoq4uDjk5uYqHHpVXFyM48ePQ1dXF926dQPwevnXNm3a4MqVKyofi+SldcpWWrp375607sr07dsXO3fuxNWrVytdDrY2GBoaYty4cVizZo3MpPF3pbi4mKtCEVGt4qpQRETvgYsXLyIrKwu+vr7w8vKS+xoyZAgsLCxkVoeSDGX54osv5JZNlRCLxbXe1r/++gv/+c9/UFZWhqlTp0q316lTB5MmTUJhYSG++uorud6E0tJSrFixAllZWRgxYoTMylGSY1m4cCGePHkit8/S0lLs27cPd+/eBfD6JXEdOnTAhQsXpJPAJcrKyhAaGgoA6NmzZ6XH0qxZMwQFBWHChAlv5X0OgwcPhoWFBUJCQvDy5cs3vj9F5xIAIiIikJ+fDwcHhzfeBiL692CPBRHRW5CRkYFt27YpTBs+fDiEQiEAwNPTU2kdnp6e2LNnj3RlIVdXV3z11Vf4/vvvMWDAAHh5ecHOzg56enp4+vQpkpOTceHCBZiZmaFOnTo1avepU6ekb97Oy8vDtWvX8Ouvv6KsrAzz5s2Tm7Q+YMAAZGRkYPfu3fj000/h5+eHJk2aIDs7G9HR0bh9+zb69OmDCRMmyJTr0qULFi5ciBUrVmDgwIHw9vaGra0ttLW1kZGRgTNnziAzM1PmJXnz58/HxIkTMXr0aPTr1w/NmzdHfn4+fv31V/z+++/w8fFBly5dqjzGoUOHVuucpKSkKA0K+vTpU+m8Dh0dHUyePBlff/01gNerdb1Js2bNQv369dGhQwc0btwY+fn5SElJQVxcHMzNzTFx4sQ3un8i+ndhYEFE9Bbcv38fwcHBCtMCAgIQFxcHOzs76RAfRSSBhUgkki5ZKhAI0KlTJ+zfvx+XLl3CqVOn8OrVKxgbG8PW1hbz58+Hn58f9PX1a9TuFStWAHh9Q2xoaIhmzZph+PDh6Nu3r9KlSmfNmgU3NzccOHAAR44cQV5eHgwNDWFvb49JkybBw8NDYbl+/frB0dERoaGhuHz5MiIjIyEWi9G4cWO4uLhg+fLlMu+5sLOzw+7du7Fjxw7ExMTgyZMn0NXVRcuWLfGf//wHAwYMqNExV2X//v1K0z755JMqV5Xq06cP9uzZo3B+TG3r378/zpw5g7CwMOTm5kJbWxtWVlYYNWoUAgMDa32lMCL6d9MQv4l+ciIiIvrgaKwueddNqJQ4iM9Lid4lzrEgIiIiIiK1MbQnIvqXyM/PV7o8q4SOjs4bH/dP6ikqKqryXSEAYGZm9hZaQ0T0PwwsiIj+JVavXl3lMqdOTk7YsmXLW2oR1cTJkyexdOnSKvMlJCS8hdYQEf0P51gQEf1L3L17V+mytBJGRkZo27btW2oR1cSTJ09w586dKvPVxtvgK+IcCyKqDAMLIiIiUgkDCyKqDCdvExERERGR2hhYEBERERGR2thnSERERCoJMdqOMWPGQEdH5103hYjeQ+yxICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitWmIxWLxu24EERERvf80Vpe86yYoJQ7SftdNIPrXY48FERERERGpjYEFERERERGpjYEFERERERGpjYEFERERERGpjYEFERERERGpjYEFERERERGpjYEFERERERGpjYEFERERERGpjW+TISL6l8jPz8f+/fsRExODjIwMlJaWwsLCAu7u7ggMDISpqak0b1paGgYNGoQ+ffrgm2++kannyZMn8PHxAQAcPXoU1tbWMunff/89jhw5gt27d6Nt27YIDw/H0qVLAQAbNmxAly5dZPI/fPgQffv2xeDBg7FgwYIaHdv169fxyy+/IDk5GU+ePIGGhgYsLCzg6uqKgQMHonnz5nJlnj17hj59+qC4uBhLly6Fn5+fwroFAgGysrKk32tra8PMzAydO3fGxIkT0bhx4xq1ubrtAIDi4mKIRCKcPn0at2/fxvPnz6Gvr4+mTZvCxcUFffv2lTnW8udeESsrK4SFhanVfiIiCQYWRET/Avfv38eMGTOQlZUFDw8PBAQEQFtbG1evXkVoaChEIhHWrl2LDh06AACaN28OU1NTJCUlydWVkJAAANDS0kJiYqJcYJGQkIB69eqhTZs2cmU3bNgAV1dXaGho1NqxbdmyBVu3boWxsTF8fHzQokULlJWV4e7duzhx4gR++eUXnDlzBgYGBjLljh8/jpcvX8LS0hIikajSG3pzc3NMmzYNAFBYWIiUlBSEh4cjPj4e+/fvh7GxcY3br2o7MjMzMWfOHNy7dw9OTk747LPPYGZmhsLCQty6dQsikQh79uxBREQEGjVqJFN26NChsLe3l6uzbt26NW43EVFFDCyIiD5wRUVFmDNnDh4/foy1a9fC3d1dmjZgwAAMHjwYU6dOxbx587B//35pz4WLiwuio6ORkZEhEzwkJiaiRYsWMDQ0RGJiIvr16ydNe/LkCdLT09G9e3doasqOtrW3t8f169cRHR0t7fFQl1AoxJYtW+Di4oLVq1fD0NBQJn3mzJnYunUrxGKxwrIuLi7o2bMnfvjhB2RmZsLKykrhfgwMDODr6yv9ftCgQWjQoAH27duHiIgIBAYGqnUMVbWjqKgIs2fPRmZmJlatWgUPDw+5eoqLi7Fv3z6FQZujoyO8vLxq3EYiIlVwjgUR0QcuLCwM6enpGDZsmExQIWFvb49p06YhJycHu3fvlm53cXEB8L8eConExEQ4OTnByckJiYmJMmmSvJKy5Q0ZMgSNGjXC5s2b8erVK7WP69WrV9i0aRPq1q2L5cuXywUVAKCnp4cZM2bIpaWmpuLWrVvw8/ODj48PtLS0IBKJqrX/zp07AwDS09NrfAyqtiMsLAxpaWkYMWKEwqACAHR1dTFmzBg0bNiwxu0hIlIHAwsiog/cmTNnALzunVBGIBBAW1tbmhf4X3BQPniQ9EhIAovHjx/L3FhL8ioKLHR1dTFx4kQ8ePAAhw8fVu+gAFy5cgXZ2dno1asXTExMqlVWKBSibt266N27N4yNjdG9e3dERkairKxM5ToyMzMBAPXr16/WvmvSDsl1Kd87VB2FhYXIzc2V+3rx4kWN205EVBEDCyKiD9ydO3dgYGAgNxeiPD09PTRv3hwPHz5EYWEhAMDa2hrm5uYygYWkR8LZ2RmOjo7Q0tKS6dFITEyEkZERWrdurXA/AoEALVq0wE8//YSCggK1juv27dsAAFtb22qVKy4uRlRUFDw9PaGvrw8A8PPzw6NHj/Dbb78pLFNWVia9GX/48CGOHTuGLVu2QEtLC5988kmN2l+ddkiuoaWlpcz20tJSuWChqKhIbl/Lli2Dl5eX3Nf69etr1HYiIkU4x4KI6AOXn58PMzOzKvNJJjfn5+dLJ/U6Ozvj2LFjuH//Ppo1a4bExEQ0bdpUWl+bNm2QmJiIAQMGSHszevXqJTe/QkJLSwvTpk1DUFAQdu/ejcmTJ9f4uCSBiaIhUJWJiYnB8+fP4e/vL93m7u4OExMTiEQiuLm5yZVJS0uTm6NgbW2NZcuWKQ2iarMdyq7hvXv3MHToUJlts2bNwogRI2S2TZgwAY6OjnLlzc3Na9R2IiJFGFgQEX3gDA0NkZ+fX2U+RTfqLi4uOHbsGBISEqSBhbOzszTd2dkZx48fByDbm1GZXr16oWPHjti7dy8GDRpU7eORkARC1e35EAqFMDExQaNGjZCRkSHd3qVLF5w6dQq5ublyqzxZWFhg0aJFAIDs7GwcOnQIt2/fhrZ2zf+MVqcdyq6hpaUlNm7cCAD4888/sW7dOoX7atWqFVxdXWvcViIiVTCwICL6wLVq1QpJSUlyqzuVV1RUhLS0NFhYWMgsQVp+nkXPnj2Rnp6OCRMmSNOdnJywe/dupKWlVTq/oqIZM2Zg/Pjx2Lp1K0aNGlWj47KxsQEA3Lx5U+UyDx48QEJCAsRisdI5J8eOHcNnn30ms01PT0/mxrx3794YM2YMvvjiCxw8eFClHiF12iG5hg8ePJAZDqWvry9tl5aWVrXaQERU2xhYEBF94Dw8PJCUlISwsDDMmDFDYZ6IiAiUlJTIrThkYWEBCwsLJCYmSnsknJycpOmOjo7Q1NREQkICEhMTUb9+fekNf2UcHR3Rs2dPhIWFKV3lqCodO3aEqakp4uLiFPYyKBIeHg6xWIwvv/xS4RCqzZs3QyQSyQUWFenq6mLu3LmYPHkyQkJCpL0ZqqpuOzw9PaXXUPI+DSKi9w0nbxMRfeD69esHa2tr7N27F/Hx8XLpqamp2LhxI0xMTOTG5gOvhzZlZ2fjyJEjsLS0lBmXX69ePbRu3RonTpyQrhal6svvpk+fDgDYtGlTjY5LR0cHU6dORUFBARYuXKhwSFRxcTE2btyI/Px8lJWVITw8HDY2NujXr5/Cycze3t64ffs2rl27VuX+XVxc4OTkhPDwcDx48EDldtekHf369UPz5s2xe/duxMTEqH6SiIjeIvZYEBF94PT19bFmzRrMmDEDs2fPhqenJ5ydnaGlpYVr167h2LFjqFu3LlavXq1wSI+LiwvCw8ORlJQEgUAgl+7k5ITQ0FBpXlW1aNEC/v7+EAqFNT62gIAAPHr0CFu3bkX//v3h7e2Nli1boqysDGlpaTh16hSePn2K0aNH48KFC3j06BECAgKU1ufp6YktW7ZAKBSiXbt2Ve5/3LhxmDZtGn766Sd8/fXXKrW5Ju3Q09PDunXrMGfOHHz++edwdnZGly5dYGpqioKCAqSlpeHkyZPQ0tJSOCE7JSUFL1++VLivPn361Oqb0Ino34uBBRHRv0CLFi2wf/9+hIaGIiYmBufPn0dZWRkaN26MIUOGIDAwUOk8gfLBgqKJ2c7OztLAoqqJ2xVNmjQJUVFRKC4urla58iZOnAh3d3ccOHAAcXFxOHz4MDQ0NGBlZYWPP/4YgwYNgoGBgTSA8fT0VFqXjY0NmjZtihMnTmDu3LnQ09OrdN+urq5o3749IiMjMXbsWKVv7i6vpu2wsrLC7t27IRKJcPr0aezZswf5+fnQ19eHtbU1AgICEBAQgObNm8vVt3//fqX7+uSTT9SahE5EJKEhFovF77oRRERE9P7TWF3yrpuglDiIwRHRu8Y5FkREREREpDaG90RE9F7Jy8vDq1evKs2jp6dX7RfjvWmvXr1CXl5elflMTEy4NCwRfZAYWBAR0Xvl888/R1JSUqV5/P39sWTJkrfTIBVduXJFpTeJi0QiWFhYvIUWERG9XZxjQURE75UbN27g2bNnleZp2LAhWrZs+ZZapJpnz57hxo0bVeZzdHSErq7uW2hR7eMcCyKqDAMLIiIiUgkDCyKqDCdvExERERGR2hjeExERkUpCjLZjzJgx0NHReddNIaL3EHssiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbRpisVj8rhtBRERE7z+N1SXvuglS4iDtd90EIqqAPRZERERERKQ2BhZERERERKQ2BhZERERERKQ2BhZERERERKQ2BhZERERERKQ2BhZERERERKQ2BhZERERERKQ2LgJNREhISMDkyZOl32tqasLAwAANGzZE27Zt4e3tja5du0JDQ0Nh+fXr12PXrl2wtrbG0aNHpdtTU1MxevRouLi4YMOGDQrLTp8+HQkJCfj5559hZ2eH0tJSREVF4ciRI8jMzMTz589hbGwMa2trdOrUCWPHjkWdOnWqfWyzZs3CiBEjVC73xRdf4OTJk/joo4+wefNmpfmSkpKwe/du3L59G0+ePIGhoSEaN26MDh06YNiwYbCysoJAIEBWVpZK+w0ODoaLi4tKeSvWq62tjYYNG6Jz586YMGECGjduLE1zcXGBu7s71q1bp7CuiRMn4saNGzh79qxc2oMHD7B7925cvHgRjx8/ho6ODlq0aIGPP/4YgwYNkrse4eHhWLp0KQBgw4YN6NKli0z6w4cP0bdvXwwePBgLFixQejwVLVu2DL6+vspPiBKPHz9GaGgofvvtNzx8+BCvXr2CmZkZHB0dIRAI0LlzZ2ledc4TAJw/fx6zZs2CpqYmRCKRzDWQkBw/AIwZMwbTpk2TyyMQCKCvr49ffvlFLi0zMxMHDhzAxYsX8ejRIxQXF8PY2Bi2trbo0aMH/Pz8oK+vL9PmpKQkpedn8uTJGD9+vNJ0IiJVMbAgIilvb2+4ublBLBajsLAQ9+/fR2xsLCIjI9G5c2esXLkS9erVkylTUlKCyMhIWFlZISMjA4mJiXB2dgYA2NnZYezYsdiyZQsOHTqEQYMGyZQ9fPgwLly4gEmTJsHOzg4A8OWXX+LkyZPo2LEjhg8fDiMjIzx69AipqanYtWsXhg4dWq3AoiZyc3MRGxsLKysrJCQk4OHDh7CwsJDLd+jQIaxYsQKWlpbw9/eHubk5cnJycO/ePURHR6NTp06wsrLCvHnzUFhYKC1379497NixAx4eHvDw8JCps0WLFtVqq7m5ufTGtLCwEImJiRCJRDh//jz2798PY2Pj6p+AcmJjY7Fo0SJoaWnBz88Ptra2KCoqwvnz57FmzRpERkZi/fr1MDU1VVh+w4YNcHV1VRqUVnY8FXXs2LHa7T937hwWLVqEly9fwsvLC/3794euri6ysrIQGxuLqVOnYt26dXB3d6923YoIhUKYm5vj6dOnEIlEmDhxYqX5Q0NDMWTIEJiZmalUf3h4OJYvXw4tLS14eXlh4MCB0NPTQ3Z2NpKTk/Hf//4XsbGxcoF8nTp18OWXXyqs09bWVrWDIyKqAgMLIpKys7OTeyI8Z84crF+/Hnv37sWiRYuwfv16mfRz584hOzsbmzdvxqJFiyASiaSBBQCMHTsWZ8+exfr169G1a1dYWloCALKysrB+/XrY29tjzJgxAIAbN27g5MmT8PDwwKpVq+Tal5ubC0NDw9o+bDnHjx9HSUkJli9fjjFjxiA8PByTJk2SyVNSUoKNGzeicePG2Lt3r1y7Xr16JQ0mevXqJZOWkJCAHTt2wMbGpkZP4MszMDCQqWPQoEEwMTHBL7/8ApFIhJEjR9a47tu3b2PRokUwNjZGSEgIrKyspGnDhg3D0aNH8d133+GLL75ASEiIXPBgb2+P69evIzo6Gj4+PjU6HnXcuXMHCxYsQP369fHzzz/LBW2TJ0/G8ePHoaurWyv7y8nJwa+//orx48fj5s2biIiIwIQJE5QGVZLzExISgkWLFlVZ/6VLl/DNN9+gVatW+L//+z80atRILk9mZiZOnjwpt11LS6vWzisRkTKcY0FEldLS0sKcOXPg6OiI+Ph4pKSkyKQLhUJYWlrCxcUFPj4+OH36NPLz86Xp2traWLp0KUpKSrB06VKIxWKIxWIsW7ZMuk1b+/UzjvT0dABQOhTI2NhYmvdNEgqFcHZ2Rtu2bdG9e3eEh4ejrKxMJk9ubi6eP38Oe3t7hcGOjo4O6tev/8bbqkjXrl0BABkZGWrVExISguLiYnzxxRcyQYVE//794eXlhaSkJJw7d04ufciQIWjUqBE2b96MV69eqdWWmggODkZxcTG+/PJLhT1BGhoa8PX1xUcffVQr+4uMjERpaSl8fX3h7++Phw8f4tKlS0rzt2vXDh4eHhCJREhLS6uyfklQv3z5coVBBQBYWVlJA3UioreNgQURqSQgIAAAZG4gnzx5gvj4ePj5+UFDQwMCgQBFRUU4ceKETNmWLVtiypQpSEpKwr59+3Dw4EFcvnwZU6ZMkbnhk9y8nj59Gs+ePXsLRyXv2rVruH37Nvz9/QEA/v7++Ouvv+RuEE1NTVG3bl0kJyerdFP4NkkCtIrDoEpKSpCbm6vwq6SkRCZvcXExzp8/D3Nz80qHCfXr1w8AcObMGbk0XV1dTJw4EQ8ePMDhw4dVantZWZnSNorFYpXqqNj+bt26qVwOqN55Kk8kEsHJyQkWFhZwc3NDgwYNIBKJKt2XZNjXxo0bK8334MEDpKamwtHREc2bN6/W8UjU5JiIiKqDQ6GISCWtW7cGANy/f1+6LSIiAmVlZfDz85PmsbW1hVAoxIABA2TKDx8+HHFxcdi0aRM0NTXRqVMnfPbZZzJ52rVrh+7du+Ps2bPw9fVFhw4d4ODgAAcHB3Tu3Bl6enpv+Chf3xzq6+vD09MTAODm5gYTExMIhUKZScgaGhqYOHEi1q1bhyFDhqBNmzbo0KED2rVrh48++kjlMfPqktyIA0BBQQESExOxdetWaGlpwdvbWybvhQsX4OXlpbSu8hN+MzIy8PLlyyrH37dt2xbA62FTiggEAuzduxc//fQTBAIBDAwMKq0vLS1NaRtPnTql8pwRVduvSHXOk8Qff/yBu3fvYvHixQBe99R5e3vjyJEjePbsGYyMjBTW1bx5c/Tt2xdHjx7F1atX0b59e4X57ty5A0DxfIiioiIUFRXJbKtfv77MEKwXL14oPaZdu3bB3t5eYRoRUXUwsCAilUhuCAsKCqTbRCIROnXqJJ03Aby+kfzhhx9w584dtGrVSrpdU1MTS5YswZAhQ1BWVobFixdDU1O+03TVqlU4fPgwjh07hsTERGlPgYGBASZMmIDAwMA3dYgoKipCdHQ0PD09UbduXQCvbxB9fHxw+PBh5OXlyQxvCgwMRNOmTXHo0CEkJyfj+vXrACCd6Dx//vw3HgwpuhG3srLCt99+CxsbG5ntDg4OmDJlisJ61q1bh8zMTOn3kuFsVc1pkXwuyg9/K09LSwvTpk1DUFAQdu/eLbP6mCIWFhZK5xtUZ36Nqu1XpDrnSUIoFEJfXx+9e/eWbhMIBAgNDUVUVBQ+/fRTpfubOHEijh8/jvXr12Pr1q0K80h+7hQFZsHBwdizZ4/MtopBmK6uLtasWaOw7mbNmiltGxFRdTCwICKVVLyxSU5ORnp6Onx9fWXG8js4OEBTUxNCoRBz586VqcPKygoNGjSQ/l8RbW1tDBkyBEOGDEFRURFSU1Nx/vx5HDhwAOvWrYOZmZnKE4GrSzI/xMnJSeaYnJycEBoaiuPHj2Po0KEyZXr06IEePXqgtLQU9+7dw6VLl7B//36IRCJoaWmpNClXHeVvxHV0dNCwYUNYW1srzGtsbAxXV1eFaRVX+5LckCsLGCQkn4vKbuB79eqFjh07Yu/evXIrg1Wkp6entI3VIWlP+UBYVdU5T8Dr3oATJ07A2dkZ2dnZyM7OBvC6Z8Pa2hpCobDSwKJhw4YYNmwYduzYgV9//RU9evSQy6MosJcYMGCAdF7N7t27ceHCBbk8mpqatXJeiYgqw8CCiFTy559/AoB0fLdQKATw+mlpcHCwXP7jx49j5syZak221tPTg6OjIxwdHeHs7Izp06dDJBK9scBCckzffPONwnSRSCQXWEhoaWnBxsZGutJTv379EBkZif/85z/Q0tJ6I+0Fau9GvCJra2vUqVMHt27dqjRfamoqAMj1jlQ0Y8YMjB8/Hlu3bsWoUaNqrZ3KqNr+2nDq1CkUFBTg3LlzCiexA8DNmzfRpk0bpXWMGjUKR44cwcaNGxXOaZH0/ik6nqZNm6Jp06YAXv/cERG9KwwsiEglkptuNzc3FBQU4PTp03B1dUX//v3l8t6+fRvbtm1DXFyczNAQdUjGnj9+/LhW6qsoMzMTycnJ6NOnD3r27CmXfvnyZRw+fBg3btyQzitQxtjYGFZWVkhNTUVubq7Sdzy8z3R1ddGtWzfExsYiPj5e6QTosLAwAJB7H0dFjo6O6NmzJ8LCwqrMWxt0dXXh5uaGmJgYXLhwQe4lfbVJJBKhYcOGmDdvnlxaSUkJFi9eDKFQiPnz5yutw9DQEOPGjcOaNWsQEREhl25paQk7OzukpKQgLS2txhO4iYjeJK4KRUSVKi0txbp165CSkgI3Nzc4OjrixIkTePHiBQYOHAgvLy+5r9GjR0NPT6/KFXEqSk9PV7pEamxsLIDqv0BOVUKhEGKxGMOHD1d4TJKn7JJjKioqQmJiosK60tPTce/ePRgbG8PExOSNtPdtmDRpEurUqYPvv/8eDx8+lEsXCoU4efIknJyc0L179yrrmz59OgBg06ZNtd5WRSZNmgRdXV188803SlfuioqKwuXLl2u8j/v37yM5ORmenp4KPzc+Pj5wdHREdHQ0Xr58WWldgwcPhoWFBUJCQhTmnTFjBoDXb4X/+++/FdZRnZWziIhqG3ssiEgqNTUVx44dAwCZN29nZWWhS5cu+O677wC8vqHU09NT+hRbkhYXF4fHjx8rXXO/olu3bmHhwoVwcnKCs7MzGjVqhBcvXuDatWs4efKkdAJ3TVy+fBnFxcVy242NjdG/f39ERETAwsJC+gbwiiwsLNC2bVtERUVh9uzZKCoqwqRJk9CqVSt069YN1tbWEIvFSEtLw7Fjx1BcXIz58+crnKD+T9G6dWt88803+PrrrzF06FD4+/tL37wdHx+P+Ph42NraYvny5Sq9WbtFixbw9/eX9n4pUlBQIP0MVmRjY1OtVZ5sbGywcuVKLFq0CJ999hm8vLzg4OAAXV1d/PXXX4iLi8OtW7fkXvpYHZJAU7KKmCKenp5ITExETEyM3Epd5eno6GDy5Mn4+uuvAUDuPSiurq746quv8P3332PAgAHw8vKCnZ0d9PT08PTpUyQnJ+PChQswMzOTezt9aWmp0vNqaWlZo7eaExFVxMCCiKSio6MRHR0NTU1N6Ovrw9zcHE5OTvD29pYGEXfu3MEff/wBDw+PSlc88vT0xJkzZxAREYGxY8eqtH8nJyfMnDkTly5dgkgkwtOnTyEWi2Fubg6BQICRI0cqnZhcFcmNcEXNmjVD48aN8ffff2P48OGV1uHp6YmNGzciJiYGXl5e+Prrr3HhwgXExcUhOzsbxcXFMDExgZOTE4YMGaL0RX//JL1794atrS12796N8+fPIywsDDo6OmjRogXmzJmDQYMGVevN1ZMmTUJUVJTCIA8AHj16JL2xrmjs2LHVXj7W3d0dBw8eRGhoKOLj4xETE4OSkhI0bNgQHTt2xNy5c2t8nUpLSxEZGQkTExN06tRJaT4PDw+sXr0aIpGo0sACAPr06YM9e/YonRsiEAjQqVMn7N+/H5cuXcKpU6fw6tUrGBsbw9bWFvPnz4efn5/ckrgvX75Uel779OnDwIKIaoWGmP2mREREpAKN1e/Py/TEQXw2SvS++ef20RMRERER0XuD4T4R/eO8evUKeXl5VeYzMTF5o0u9vgk5OTkoLS2tNE/dunWlL/D7tyksLERhYWGlebS0tP7Rk+aJiP6pGFgQ0T/OlStXqnyDM/B6Yq2FhcVbaFHtGTlyJLKysirNM2HCBEyaNOkttej9snv3bqVvp5Zo0qQJwsPD31KLiIhIgnMsiOgf59mzZ7hx40aV+RwdHas1sfh9kJKSonRis4SlpaXSN5d/6DIzM/HgwYNK8+jq6sLR0fHtNOhfhnMsiKgyDCyIiIhIJQwsiKgynLxNRERERERqY2BBRERERERqYz8iERERqSTEaDvGjBkDHR2dd90UInoPsceCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUpiEWi8XvuhFERET0/tNYXfLO9i0O0n5n+yYi1bDHgoiIiIiI1MbAgoiIiIiI1MbAgoiIiIiI1MbAgoiIiIiI1MbAgoiIiIiI1MbAgoiIiIiI1MbAgoiIiIiI1MbAgojoA7RkyRK4uLjUuHxCQgJcXFwQHh5ei6169wQCASZOnPium6GykJAQuLi44OHDh++6KUREVeLbZkgqISEBkydPBgAsWrQI/fv3l8vj4uICd3d3rFu3TmEd69evx65du2BtbY2jR48qzBMeHo6lS5cCAGbNmoURI0bI5UlNTUVgYCAAwN/fH0uWLJGmCQQCZGVlKT2OZcuWwdfXV2l6RSEhIdi6davS9M6dO2PTpk0AZM8RAGhqasLAwAANGzZE27Zt4e3tja5du0JDQ0PhPoKDgxXe7EnqnTBhAiZNmiSTVlJSgsjISERHR+PWrVvIz8+HgYEBbGxs4OHhgX79+kFPT0+uzkOHDmHFihUwMDBAdHS0NE/5818VJycnbNmyRdr+Xbt2wd7eXiZPfn4+9u/fj5iYGGRkZKC0tBQWFhZwd3dHYGAgTE1NZfI/fPgQffv2BQCMGTMG06ZNk9uvQCCAvr4+fvnlF5XaWfG6VMbc3BxmZma4c+cOQkNDYW1tLZcnKioKX375JQIDAzF79my5c6ahoYG6devCxsYG/fv3h7+/vzStOp8nVUjO1+DBg7FgwQKFeap7vuj9Ehsbi5s3b8r97BMR/dMwsCCFtmzZgj59+ii8YVVGcgNsZWWFjIwMJCYmwtnZWWl+XV1dhIeHKwwsRCIRdHV1UVxcrLCsubm5whtSAOjYsaPKbS5v8uTJsLCwkNtuZmYmt83b2xtubm4Qi8UoLCzE/fv3ERsbi8jISHTu3BkrV65EvXr1atSO8nJycjB37lxcvXoVDg4OGDZsGMzMzPD8+XMkJydj7dq1SElJwYoVK+TKCoVCWFlZITMzE6dOnZLe/Hbq1AnLli2Tybt9+3akpaXJbW/QoEGl7bt//z5mzJiBrKwseHh4ICAgANra2rh69SpCQ0MhEomwdu1adOjQQWH50NBQDBkyROE5ro4WLVrItf3o0aNITk7G3LlzYWxsLN1et25dNG/eHMOHD8fixYuxbds2aGr+r/P2yZMnWLVqFVq2bIkpU6bI1Dl06FDY29ujrKwMWVlZCAsLw5IlS/D48WOMHTtWJm91Pk9vwpdffokvvvjireyL1BMbG4uIiAiFgcW4ceMwevRo1KlT5x20jIioehhYkBx7e3tcv34doaGhGDNmjMrlzp07h+zsbGzevBmLFi2CSCSqNLDo1asXoqOj8ccff8DBwUG6/eXLl4iOjoaHhweioqIUljUwMKhWr4QqunXrJvc0Xhk7Ozu5/c+ZMwfr16/H3r17sWjRIqxfv16t9ojFYixYsABXr15FUFAQhg4dKpMeGBiI9PR0nDp1Sq7srVu3cOPGDSxduhT79u2DSCSSBhZWVlawsrKSyR8WFoa0tLRqndOioiLMmTMHjx8/xtq1a+Hu7i5NGzBgAAYPHoypU6di3rx52L9/v1zPheRzFhISgkWLFqm8X0VMTU3l2n7p0iUkJyejV69eCm/wp02bhjVr1mDPnj0YOXKkdPt3332H/Px8/Pjjj9DV1ZUp4+joCC8vL+n3AoEAAwcOxM6dOzFy5Ehoa//vV2p1Pk9vgra2tkx73ncFBQUwMDB418147/zTriMR/btxjgXJ8fLyQtu2bbFz507k5uaqXE4oFMLS0hIuLi7w8fHB6dOnkZ+frzR/9+7dYWxsLDeGOy4uDnl5eRAIBDU9hHdCS0sLc+bMgaOjI+Lj45GSkqJWfWfPnkVSUhI+/vhjuaBComnTpnJPyoHX16Ju3brw9PSEQCBAUlISMjIy1GpPRWFhYUhPT8ewYcNkggoJe3t7TJs2DTk5Odi9e7dcert27eDh4QGRSIS0tLRabZsqhg0bBicnJwQHB+Pu3bsAgIiICJw9exZjx45VKSho3LgxWrZsiYKCgmr9rLwNyuZYJCYmYsyYMXBzc4O3tzdWr16NO3fuwMXFBSEhIQrrEolE+PTTT9G1a1f4+/tj586dCvNdv34dQUFB6N27N7p27YoBAwbgp59+QklJiUy+iRMnQiAQIDMzE/Pnz4enpyd69uxZ5THl5+dj/fr16NevH7p27QovLy8sXLgQmZmZcnn/+usv/Oc//0HPnj3Rs2dPzJkzR2G+hw8fKj12ZfMbJL1aAQEB6Nq1Kz7++GNMnToVFy5ckOb5448/sGTJEgwYMABubm7o0aMHxo4di5iYGLlzERERAeD1UFPJl+T3orI2PHz4EF999RU++eQTdO3aFQEBAdi4cSOKiooUHkNaWho2btwIX19fdO3aFcOGDcO5c+cqO91ERNXGwILkaGhoYPr06cjPz8f27dtVKvPkyRPEx8fDz88PGhoaEAgEKCoqwokTJ5SW0dbWRp8+fXDixAmZIU8ikQht2rRBmzZtlJYtKytDbm6uwi+xWKz6wZaTn5+vsL6Kf6irEhAQAABq/9E+ffo0gNdP/6vj5cuXiIqKQu/evaGvrw8fHx9oa2tDJBKp1Z6Kzpw5U2X7BAIBtLW1pXkrkgxn27hxY622TRUaGhpYvHgxtLW1sXjxYmRlZeGHH36AnZ0dxo0bp1IdL1++xF9//QUtLS0YGhrKpNXW56n8vpR95svKylSqIyUlBdOnT8fDhw8xatQojB49GtevX5eZw1TR4cOHsW3bNnzyySeYPXs2zMzM8OOPP8r1Jp47dw7jxo1Deno6AgMDERQUhA4dOijtkSosLMSkSZOgpaWFqVOnVjmhOj8/H2PHjsWhQ4fg7u6Ozz//HJ9++ikSEhIwevRomXlXz58/x8SJExETEwNfX19Mnz4denp6mDRpEl68eKHSuVLm4cOHGDFiBA4dOgQnJyfMnTsXI0aMgIGBAS5duiTNFxsbi7S0NHh5eSEoKAhjx47Fs2fP8Pnnn8ucu7Fjx6JTp04AXs8Pk3xJtimSlZWFUaNG4dSpU/D29sbcuXPRtm1b7NixAzNnzpQL5IDXgWZycjICAwMxefJk5OTkICgoiJPCiahWsX+VFHJ1dYWrqysOHTqEYcOGoUmTJpXmj4iIQFlZGfz8/AAArVu3hq2tLYRCYaU3ngEBAQgNDUVMTAx8fHzw6NEjXLx4EfPmzat0f5I/2IqcOnVKZky9qqZOnapwu7IJ5sq0bt0awOv5B+q4c+cOAMDW1rZa5WJjY5GXlye9FsbGxnB3d0dERAQmT54MLS0ttdpVvn0GBgYKJz9L6OnpoXnz5rh9+zYKCwtRt25dmfTmzZujb9++OHr0KK5evYr27dvXSttUZWlpiTlz5uC7777DiBEjUFxcjCVLligdelJYWCi9kc/KysL27duRk5ODTz75RG4+Um19niSEQiGEQqHS9JYtW1ZZx5o1a6ChoYGffvpJOhxu8ODBld7U//XXXzh06JA0cAoICIC/vz8OHDgAHx8fAEBxcTG++eYbODg4YPPmzdLzN3DgQLRu3Rpr166VrjIlkZeXh4EDByo9TxUFBwfjwYMH2LFjh8zPhEAgwNChQxESEiINkHbt2oWHDx/i66+/li4UMHjwYPzwww8IDQ1VaX/KrFixAn///Td+/PFHdO3aVSatfIA3btw4TJ8+XSZ96NCh+Oyzz/DTTz9Jz12XLl0QFRWF5ORklYcibty4ETk5OVi3bp20t3Dw4MH4v//7P+zevRsRERHo16+fTBljY2OsXbtWurCEi4sLRo0ahSNHjsi1k4iophhYkFIzZszAiBEjsHnzZrmJsRWJRCJ06tQJlpaW0m0CgQA//PAD7ty5g1atWiksZ2NjA3t7e4hEIvj4+CAiIkLak1HZU1gLCwul4/IrPjlW1YIFC9C0aVO57c2aNatWPZJx4gUFBTVqh4SkfHXHnQuFQlhYWMjMb/H390dsbCx+++03hcOWaiI/P1+liciS9ufn58sFFsDroSDHjx/H+vXrK11N6U3p378/Tp8+jQsXLmDatGmwsbFRmrfiz4G2tjb8/f0xf/58uby19XmS6NmzJz799FOFaV9//XWV5bOzs3H9+nV8/PHHMnNstLW1MWzYMPz+++8KywkEApmfKT09PbRv314m/8WLF5GdnY1p06bJDX90c3PD2rVrcfHiRbmhWaoGWGKxGMePH0enTp3QqFEjmWFn+vr6cHBwkBmGFBsbC1NTU2lwLTFq1Ci1Aou8vDz89ttv6Natm1xQAUBmEQB9fX3p/4uKiqQ9VR999BEOHz6M/Pz8Gv2uKisrw6+//oo2bdrI/SyPHj0ae/fuRWxsrFxgMXToUJnV6tq1a4e6desiPT292m0gIlKGgQUpZWdnB29vb0RFRWHEiBHSJ/EVJScnIz09Hb6+vjLj+B0cHKCpqQmhUIi5c+cq3Y9AIMCqVauQlZWFiIgI9OzZE0ZGRpWOWdfT04Orq2uNj02Rdu3a1cpk25oGBABk/vBLyhcWFsLIyEil8llZWbh8+TICAgJkxpM3a9YMBgYGEAqFtRZYGBoaVjqHRkJyPpTdRDVs2BDDhg3Djh078Ouvv6JHjx610r7qaN++PS5cuFBlj8mECRPg6OgITU1N6epSyq5zbX2eJBo1aqT0M6/KikGSIS+KApvKgp3yDwsk6tevj7y8POn39+7dAyAfeJWXnZ0t872JiYnKK6fl5OQgLy8PFy5cUNpTWf6m/sGDB7C3t5frnTMzM1NrtbaMjAyIxeJKh2lKPH36FJs3b0ZcXByePn0ql17TwCInJweFhYUKe6jq168PMzMzPHjwQC6t4oINkvzlryMRkboYWFClpkyZgtOnT+PHH39UusqRZHhGcHAwgoOD5dKPHz+OmTNnKh1e4uPjg3Xr1uHbb79FRkaGwqe//yR//vkngNfDfCQkqwspG18v2V5+FaJWrVohNTUVN2/exEcffaTSvkUiEcrKynD06FGF7xE5e/YscnJyYGJiolJ9lWnVqpV0Uriy4VBFRUVIS0uDhYWFwt4KCcmQjI0bN9Za4PMmtGrVqtYD2vedKkPnJPOaZs2apXToXsOGDWW+r85S1pL6O3fujFGjRqlcThUV3zlTXmlpaY3qFIvFmD59Ou7duyddotjQ0BCampoIDw9HVFSUyvNiakv5wKtiW4mIagsDC6qUpaUlBg0ahNDQUCQkJMilFxQU4PTp03B1dVX4Qr3bt29j27ZtiIuLQ+/evRXuo169etKlZ83Nzf/xN26SQMvNzU26TfLUNy0tTeGNs+SJb/mnw56enoiMjERYWJhKgYVYLEZERARsbW0VrhSVnZ2NVatWITIyUvryQXV4eHggKSkJYWFhmDFjhsI8ERERKCkpgYeHR6V1GRoaYty4cVizZo10hRyqXZJ5Uorm/qg7H0gy5EtfX/+N/PxKejcKCgpUqt/S0lL6ssbygdGTJ0/w/PlzmbyS3sBnz57J1VPxyb+1tTU0NDRw8+bNSvf/559/4tatWwpfeBkWFiaXv7LgpiITExMYGBhIVzIr79mzZ3jy5Em152UREdUWrgpFVRo3bhwMDAwU9licOHECL168wMCBA+Hl5SX3NXr0aOjp6VW5ItHo0aMxYcIEzJ8/X+mTtfddaWkp1q1bh5SUFLi5ucHR0VGa5urqCn19fRw9elRu+FB+fj7CwsKgr6+Pzp07S7f36NEDTk5OiI6OxsGDBxXuMyMjAzt27ADwepx7VlYWfH19FV6LIUOGwMLCotZWh+rXrx+sra2xd+9exMfHy6WnpqZi48aNMDExUWks/eDBg2FhYYGQkBC8fPmyVtpI/2NmZgZ7e3vExcXJDJMrKSlRe0Jz165d0aBBA/z8888Kh9YUFRWpNedIU1MTPj4+uHbtmsL3tgCQGW7Us2dPZGdnIzIyUiaPomVyDQwMYGpqisuXL8s8vc/MzERsbKxM3vr166Nbt26Ij4/HxYsX5eqSlJf8DqvYG3D79m25OoH/zcdQZViSpqYmunfvjps3b8r93P38888oKytDr169qqyHiOhNYI8FVcnY2BgjRoxQOMxJKBRCT08P3bp1U1hWkhYXF4fHjx+jUaNGCvO1bt1a6RwORQoKCnDs2DGFaTY2NjV6YhcfH6/wfQr6+vpyT9xTU1Ol+y//5u2srCx06dIF3333nUx+IyMjzJ49GytWrMDQoUPh7+8Pc3NzPHr0CBEREXj06BG++OILmbkUGhoaWLlyJebMmYOVK1fi2LFj6NGjB0xNTfH8+XOkpKTg119/haenJ4D/9ZRIvlfE09MTe/bsqZUVmPT19bFmzRrMmDEDs2fPhqenJ5ydnaGlpYVr167h2LFjqFu3LlavXq3SJG8dHR1MnjxZOhG5fv36arXvXavO5+ltmTVrFqZNm4Zx48Zh0KBBMDQ0xMmTJ6XLk1bnyXl5+vr6WLp0KYKCgjBw4ED07dsX1tbWeP78OdLS0hATE4NVq1YpfK+GqqZNm4YrV67giy++wOnTp9G+fXvo6OggKysL58+fR9u2baWrQo0cORJRUVH47rvvcOPGDbRq1QqJiYn4/fffFa4Y9+mnn2Lz5s2YOXMmevbsiSdPnuDw4cNo1aoVrl+/LpN3/vz5GDt2LGbOnAl/f3+0bdsWRUVFuHbtGpo0aYKZM2eiRYsWaNmyJXbt2oWioiI0a9YM6enpOHLkCGxsbHDjxg2ZOtu3b49ffvkFK1asgLu7O7S1teHg4KBwfovkXFy8eBFBQUEYNGgQrK2tkZSUhJMnT8LJyUn6MkwioreNgQWpJDAwEIcOHcKTJ0+k2+7cuYM//vgDHh4elY6X9vT0xJkzZxAREaFwiE5NPHr0SOlKOGPHjq1RYKEocAJeT5qteCMYHR2N6OhoaGpqQl9fH+bm5nBycoK3t7fSIGvgwIGwtLTEvn37cPDgQenkzXbt2uGrr75SOMTDxMQE27ZtQ0REBE6cOIE9e/ZIy7Vu3RpBQUEQCATIy8tDXFwc7OzsFL5lWkISWIhEolpZ2rVFixbYv3+/dMng8+fPo6ysDI0bN8aQIUMQGBioUlAh0adPH+zZswe3bt1Su23vWnU+T2+Ls7MzfvzxR2zcuBE7duxAvXr18PHHH8PHxwejR4+We9N4dXTt2hU7d+7Ezp07cfz4ceTk5MDIyAhWVlYYPnx4tR4cKGJoaIjt27djz549OHnyJH799VdoaWmhUaNGcHR0lFkFycjICNu2bcOaNWukDwCcnJwQEhKCKVOmyNU9atQo5Ofn49ixY0hMTESLFi3w1Vdf4caNG3KBhaWlJXbv3o1t27bh/PnziIyMhJGREVq3bi0dDqqlpYX/+7//w7p16xAREYEXL16gVatWWLJkCW7duiUXWHh7e+PmzZs4ceIETp8+jbKyMixevFhpYNGkSRP8/PPPCA4OxvHjx/H8+XOYm5tjzJgxGDduHN/UTUTvjIaYM7eIiP7VTp8+jQULFuC7776Dt7f3u24Ovcc0Vsu/fO9tEQcxYCJ63/0zB7MTEVG1icVimbfcA6/nWOzduxdaWloy7z4hIiKqLob/9EEqLCxEYWFhpXm0tLRqZdlVerM+xGtZWlqKnJycKvPVr18fOjo6tbbfly9fQiAQwMfHB82aNUNeXh5OnjyJP//8E6NGjarWsDUiIqKKGFjQB2n37t1VvsW5SZMmCA8Pf0stopr6EK/lo0eP0Ldv3yrzBQcHqzXhuSJtbW24ubkhLi5OOl+qWbNmWLBgAQYPHlxr+yEion8nzrGgD1JmZqbCt8+Wp6urK7MkLL2fPsRrWVxcjJSUlCrztW3bVuW3rhO9DZxjQUSVYWBBREREKmFgQUSV4eRtIiIiIiJSG8N/IiIiUkmI0XaMGTOmVhcVIKIPB3ssiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbRpisVj8rhtBRERE7z+N1SXvZL/iIO13sl8iqh72WBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBDRP5KLiwuWLFnyrptBNcBrp76HDx/CxcUFISEhNa5DIBBg4sSJtdgqIvq3q9bC0AkJCZg8eTIAYNGiRejfv79cHhcXF7i7u2PdunUK61i/fj127doFa2trHD16VGGe8PBwLF26FAAwa9YsjBgxQi5PamoqAgMDAQD+/v4yf6QEAgGysrKUHseyZcvg6+urNL2ikJAQbN26VWl6586dsWnTJgCy5wgANDU1YWBggIYNG6Jt27bw9vZG165doaGhoXAfwcHBcHFxkduHpN4JEyZg0qRJMmklJSWIjIxEdHQ0bt26hfz8fBgYGMDGxgYeHh7o168f9PT05Oo8dOgQVqxYAQMDA0RHR0vzlD//VXFycsKWLVuk7d+1axfs7e1l8uTn52P//v2IiYlBRkYGSktLYWFhAXd3dwQGBsLU1FQm/8OHD9G3b18AwJgxYzBt2jS5/QoEAujr6+OXX35RqZ0Vr0tlzM3NYWZmhjt37iA0NBTW1tZyeaKiovDll18iMDAQs2fPljtnGhoaqFu3LmxsbNC/f3/4+/tL06rzeVLVkydPsGfPHsTHx+Ovv/6ChoYGGjRoADs7O3z88cfw9PSsVn1Ue06dOoX//Oc/OHToEJo3b/6um0NERPTG1PiNM1u2bEGfPn0U3rAqI7kBtrKyQkZGBhITE+Hs7Kw0v66uLsLDwxUGFiKRCLq6uiguLlZY1tzcXOENKQB07NhR5TaXN3nyZFhYWMhtNzMzk9vm7e0NNzc3iMViFBYW4v79+4iNjUVkZCQ6d+6MlStXol69ejVqR3k5OTmYO3curl69CgcHBwwbNgxmZmZ4/vw5kpOTsXbtWqSkpGDFihVyZYVCIaysrJCZmYlTp05Jb347deqEZcuWyeTdvn070tLS5LY3aNCg0vbdv38fM2bMQFZWFjw8PBAQEABtbW1cvXoVoaGhEIlEWLt2LTp06KCwfGhoKIYMGaLwHFdHixYt5Np+9OhRJCcnY+7cuTA2NpZur1u3Lpo3b47hw4dj8eLF2LZtGzQ1/9e59+TJE6xatQotW7bElClTZOocOnQo7O3tUVZWhqysLISFhWHJkiV4/Pgxxo4dK5O3Op+nymRlZWHUqFEoKCiAj48PBg0aBADSn7Hw8HAGFu9QbGwsWrRowaCCalWTJk1w/vx5aGlpveumEBFJ1SiwsLe3x/Xr1xEaGooxY8aoXO7cuXPIzs7G5s2bsWjRIohEokoDi169eiE6Ohp//PEHHBwcpNtfvnyJ6OhoeHh4ICoqSmFZAwODavVKqKJbt25yT+OVsbOzk9v/nDlzsH79euzduxeLFi3C+vXr1WqPWCzGggULcPXqVQQFBWHo0KEy6YGBgUhPT8epU6fkyt66dQs3btzA0qVLsW/fPohEImlgYWVlBSsrK5n8YWFhSEtLq9Y5LSoqwpw5c/D48WOsXbsW7u7u0rQBAwZg8ODBmDp1KubNm4f9+/fL9VxIPmchISFYtGiRyvtVxNTUVK7tly5dQnJyMnr16qXwBn/atGlYs2YN9uzZg5EjR0q3f/fdd8jPz8ePP/4IXV1dmTKOjo7w8vKSfi8QCDBw4EDs3LkTI0eOhLb2/37kqvN5qszu3bvx9OlTrF69Gr169ZJLf/Lkidr7+LcoKCiAgYFBrdVXUlKCc+fOYfDgwbVWJylW29fufaehoSH3+4eI6F2rUWDh5eUFsViMnTt3on///jJPeysjFAphaWkJFxcX+Pj44MiRI/j8889haGioMH/37t1x8eJFhIeHywQWcXFxyMvLg0AgUBpYvI+0tLQwZ84cXLt2DfHx8UhJSYGjo2ON6zt79iySkpLw8ccfywUVEk2bNpV7Ug68vhZ169aFp6cnnj9/jtWrVyMjI0PhsJ+aCgsLQ3p6OkaMGCETVEjY29tj2rRpWLlyJXbv3o3Zs2fLpLdr1w7m5uYQiUQYPnz4W3/iO2zYMMTGxiI4OBju7u5o2bIlIiIicPbsWUyYMEGloKBx48Zo2bIlbty4gdzcXLV7XhTJyMgA8HoIlSKK9nn9+nVs374dycnJKCwsRJMmTeDn54dRo0bJBD+S+rdv346LFy/i6dOnMDY2hr29PSZMmIC2bdtK88XGxmLXrl24desWNDQ00Lp1a4wcOVIu2BEIBGjSpAkWLlyItWvXIjk5GRoaGnB1dcX8+fPl2nvnzh2sW7cOycnJqFOnDrp164a5c+cqPNaDBw8iNjYWd+/eRU5ODurXr4/OnTtjypQpcsGji4sL/P394evri5CQENy6dQtt27ZFz549sXbtWmzYsAFdunSRKfPy5Uv06dMHrVu3RnBwsMI2lHf58mXk5+crDPjKKysrw/79+yESifDw4UNoaGjA1NQUjo6OWLhwocw14bV789cuIiICv/zyC9LT01FSUgJTU1O0b98e8+bNg4mJCQBg4sSJyMrKwubNm7FmzRokJiYCAD766CPMnj1b7uGMWCzG4cOHERYWhnv37kFTU1N6LRQNfz19+jQOHDiAW7du4dWrVzA3N0fXrl0xe/Zs6OjoSIeMVhweW53zSERU22o0eVtDQwPTp09Hfn4+tm/frlKZJ0+eID4+Hn5+ftDQ0IBAIEBRURFOnDihtIy2tjb69OmDEydOyAx5EolEaNOmDdq0aaO0bFlZGXJzcxV+icVi1Q+2nPz8fIX1FRUVVauegIAAAK97cNRx+vRpAK+f/lfHy5cvERUVhd69e0NfXx8+Pj7Q1taGSCRSqz0VnTlzpsr2CQQCaGtrS/NWJBnOtnHjxlptmyo0NDSwePFiaGtrY/HixcjKysIPP/wAOzs7jBs3TqU6Xr58ib/++gtaWlpyAXRtfZ4kNzBHjx5V6bN97tw5jBs3Dunp6QgMDERQUBA6dOigsGfo+vXrCAwMxIkTJ9CrVy98/vnnGDJkCF69eoUrV65I8x08eBBBQUF49uwZxo8fj3HjxuHZs2cICgrCkSNH5Nrw999/Y9KkSWjcuDFmzpwJHx8fxMTEYPHixTL5Hjx4gAkTJiA5ORmffvopJk2ahNzcXMyYMUPhse3ZswfGxsYYMmQIFixYgI8//hgxMTEYO3YscnNz5fJfv34dQUFBaNeuHebOnYs+ffrAz88PderUUfjzEBMTg7y8PPTr16/K8yzJb25uXmUQun37dqxZswZNmjTBjBkzMHPmTHh4eODq1at4+fKlNB+vnezxvYlrFxkZiSVLlkBXVxeTJ0/GvHnz0KdPH9y/fx9Pnz6VyfvixQtMmjQJOjo6mD59Ovr27Yvz589j3Lhxcj2FX3/9Nf773//C2toaM2fOxKRJk5Cfn49p06YhLi5OJu/GjRuxYMEC5Obm4rPPPsO8efPQq1cvnD9/vsrfD9U9j0REtanGcyxcXV3h6uqKQ4cOYdiwYWjSpEml+SMiIlBWVgY/Pz8AQOvWrWFrawuhUFjpjWdAQABCQ0MRExMDHx8fPHr0CBcvXsS8efMq3V9aWprMkJTyTp06pXIvS3lTp05VuF3ZBHNlWrduDeD1/AN13LlzBwBga2tbrXKxsbHIy8uTXgtjY2O4u7sjIiICkydPrrUxu3fu3IGBgUGlvSB6enpo3rw5bt++jcLCQtStW1cmvXnz5ujbty+OHj2Kq1evon379rXSNlVZWlpizpw5+O677zBixAgUFxdjyZIlck+GJQoLC5GbmyudY7F9+3bk5OTgk08+kZuPVFufp+HDh+PYsWNYu3Yt9u3bh06dOsHe3h6dOnWSeSoNAMXFxfjmm2/g4OCAzZs3S49j4MCBaN26NdauXYuEhAS4uLhALBZjyZIlePXqFXbu3Cn93AKvJ9WXlZUBAJ49e4b169fDysoKP//8szSAGjRoEIYPH45169bh448/lplTlJGRgeXLl+Pjjz+WbtPU1MTBgweRlpYm7Z3atGkTnj17JrOowaefforPP/8cN2/elDsX+/fvh76+vsy2Hj16YOrUqRAKhRg1apRM2t27d7Fx40a4urrKbPfw8JDeiNavX1+6XSgUwsjICB4eHpVckdfEYjHi4uLg6ekpt1hDRTExMWjRogXWrl0rs738TTiv3du5drGxsTAwMJA5xwAULv6Qm5uLYcOGyfw9cnJywueff44tW7Zg4cKFAF5f3+PHj2PhwoUyf++GDh2KMWPG4IcffkCPHj2goaGBP/74Azt27ICLiwv+7//+T2a4k7KgrLzqnkciotqk1nKzM2bMwKtXr7B58+Yq84pEInTq1AmWlpbSbQKBANeuXZPeICtiY2MDe3t76ROoiIgIaU9GZSwsLLBx40aFX8qGXlVlwYIFCusr/wdWFZJxwAUFBTVqh4SkfHXHFQuFQlhYWMjMb/H398fff/+N3377Ta02lZefn6/SuZa0Pz8/X2H6xIkToaenp/aclJrq378/unTpgtzcXEyYMAE2NjZK8y5btgxeXl745JNPMGrUKJw/fx7+/v748ssv5fLW1ufJysoKoaGh0nH8UVFRWLNmDUaMGIGhQ4fixo0b0rwXL15EdnY2BAKBXI+Jm5ubNA8A3Lx5E3fv3oVAIJC5MZWQTGi/ePEiXrx4gaFDh8pcb0NDQwwdOhSFhYXSOiUaNmwod5ySm0/J0K6ysjKcPXsW9vb2MkNFNDQ0ZOa8lCe5oSorK5Men62tLQwNDfHHH3/I5be1tZW7MQVeX/OXL1/i+PHj0m0PHz7E5cuX4ePjo9LY9qtXryI7O7vKYVDA63P1+PFjpKSkKM3DayfrTV07Q0NDFBUV4dy5cyr1AFa8Uffw8ECzZs1keiGOHTsGAwMD9OrVS+a65efno3v37nj48CHS09MBQDq8d/r06XJt1dDQqDJIre55JCKqTTXusQBeT1D29vZGVFQURowYofAPGAAkJycjPT0dvr6+0j88AODg4ABNTU0IhUKl426B1wHIqlWrkJWVhYiICPTs2RNGRkaVduvq6ekp/KOjjnbt2tXKZNuaBgQAZP6oSMoXFhbCyMhIpfJZWVm4fPkyAgICkJmZKd3erFkzGBgYQCgUKpwPUROGhoZKg4XyJOdDWRDSsGFDDBs2DDt27MCvv/6KHj161Er7qqN9+/a4cOFClT0mEyZMgKOjIzQ1NaWrSym7zrX1eQJeB9ILFizAggUL8OTJE6SkpCAyMhJnz57F7Nmz8csvv6B+/fq4d+8eAMitkFVednY2gP/dJFY25BB4PeQFAFq2bCmXJtkmySNR/gGDhOTpcl5eHgDg6dOnKCwsRLNmzZTWW9Hly5exdetWXLt2TW7FuOfPn8vlb9q0qcJ6XFxc0LRpU4hEIun8pfDwcIjF4moNgzIyMqp0gQqJadOmISgoCOPHj0fDhg3h7OwMd3d39O7dGzo6OgDAa1fBm7p2Y8aMQVJSEoKCglC/fn04OTnBzc0NH3/8sdzPcr169RTOYWrRogViY2Px4sUL6OvrIy0tDQUFBfjkk0+U7vfp06do1qwZ0tPTpfNcaqK655GIqDapFVgAwJQpU3D69Gn8+OOPSp8oC4VCAEBwcLDCSXPHjx/HzJkzlQ4v8fHxwbp16/Dtt98iIyMD8+fPV7fZ79Sff/4JADKTkSVPppSNn5VsL/8Eq1WrVkhNTcXNmzfx0UcfqbRvkUiEsrIyHD16VOF7RM6ePYucnBzpBEV1tGrVCklJSZVOCi8qKkJaWhosLCzkhkGVN2rUKBw5cgQbN26stcDnTWjVqlWtB7TVZWZmBi8vL3h5eeHLL79EVFQUzp8/D19fX+kT2FmzZikdQtewYcM33sbyy/dWVNM5UNeuXcP06dNhZWWF6dOnw8LCArq6utDQ0MDChQulw3/Kq2y57P79++P//u//cOPGDbRp0wbh4eGwt7dXeehhbGws3NzclP5eK69Dhw4ICwvDb7/9hoSEBCQmJiIqKgo//fQTtm3bhvr16/PaVfCmrl3Tpk1x8OBBXLp0CZcvX0ZSUhK+/fZb6ftnKk7KVoVYLIaJiQm+/fZbpXlatWol/b8qPROK1OQ8EhHVJrUDC0tLSwwaNAihoaFISEiQSy8oKMDp06fh6uqq8IV6t2/fxrZt2xAXF4fevXsr3Ee9evWkS8+am5u/8xs3dUkCLcnwBeB/TwHT0tIU3jhLnlaWf1ro6emJyMhIhIWFqRRYiMViREREwNbWVuFKUdnZ2Vi1ahUiIyOlLx9Uh4eHB5KSkhAWFqZ0bHBERARKSkqqHPdsaGiIcePGYc2aNYiIiFC7bf8WDg4OiIqKwuPHjwH87ymvvr5+lT9Hkry3bt2qNJ/kRuvu3btyK1Mp+tyqysTEBHXr1lU4F+nu3bty26KiolBaWor169fL7O/Fixc1elIrEAiwadMmCIVC9OzZE3/99RdGjx6tUtnbt28jIyNDpTHxEnXr1kXv3r2lvwcPHjyIlStXQigUYuTIkbx21aDOtQOAOnXqwN3dXfq7+Ny5c5g9ezb27t2LBQsWSPM9f/4cT548keu1uHfvHho0aCAdlmRtbY309HS0b9++0gcowOve4/j4eNy6dUtmNURV1PZ5JCKqLrXmWEiMGzcOBgYGCnssTpw4gRcvXmDgwIHSp6jlv0aPHg09Pb0qVyQaPXo0JkyYgPnz51f6xOx9VlpainXr1iElJQVubm4yS826urpCX18fR48elRs+lJ+fj7CwMOjr68v88e/RowecnJwQHR2NgwcPKtxnRkYGduzYAeD1eOqsrCz4+voqvBZDhgyBhYVFra0O1a9fP1hbW2Pv3r2Ij4+XS09NTcXGjRthYmKi0mTlwYMHw8LCAiEhITIr5fzbJSQkKOzpkoxzB/43/KRr165o0KABfv75Z+mwlfKKioqkQ9NsbW3RsmVLiEQihfOgJE+nJZ/dAwcOyMwbKigowIEDB1C3bl25pT9VoaWlBXd3d1y/fl3moYVYLMauXbsU5i/fLont27fX6EmtsbExevXqhaioKPzyyy/Q09ODj4+PSmVjY2Ohq6uLbt26qZRf0bBOOzs7AK8nWAO8dtWhzrWr7FooOu87d+6U+T4mJgb3799Hz549pdv8/PxQVlaGDRs2KNynZAgb8PrlqsDrye+vXr2Sy1tZr1Btn0cioupSu8cCeP1LfMSIEQqHOQmFQujp6Sn9AytJi4uLw+PHj9GoUSOF+Vq3bl2tMacFBQU4duyYwjQbG5tqr6QEAPHx8UhLS5Pbrq+vL/fEPTU1Vbr/8m/ezsrKQpcuXfDdd9/J5DcyMsLs2bOxYsUKDB06FP7+/jA3N8ejR48QERGBR48e4YsvvpCZS6GhoYGVK1dizpw5WLlyJY4dO4YePXrA1NQUz58/R0pKCn799VfpW5clPSWVvYXZ09MTe/bsqZUVmPT19bFmzRrMmDEDs2fPhqenJ5ydnaGlpYVr167h2LFjqFu3LlavXq3S+x10dHQwefJkfP311wAgs+LLP1F1Pk+V2bNnD65cuYLu3bvDzs4OhoaGyM7OxpkzZ3Djxg24uLhIn7zq6+tj6dKlCAoKwsCBA9G3b19YW1vj+fPnSEtLQ0xMDFatWgUXFxfpcrtTp07FqFGjEBAQgFatWuH58+dISkpC165dMXToUNSrVw8zZ87EypUrMXr0aOmLFiMiIpCRkYGFCxfWeMGEqVOnIj4+HrNnz8aQIUPQqFEj6XC9inr16oV9+/Zh1qxZ6N+/P3R0dHDx4kXcvn27RqvAAa+H1Jw8eRJnz56Fv7+/yscRExMDV1fXSofrlDdo0CC0b98e7dq1Q8OGDfHkyRMcPXoUOjo60nH5vHbVU9NrN23aNNSrVw+dOnWCubk5nj9/jvDwcGhoaMi9ZNPY2BhnzpzB33//DWdnZ6Snp+PQoUMwNTWVebeEl5cXBAIBfvnlF6SmpqJ79+4wNjbG48eP8fvvvyMzM1P6+9nBwQGjRo3Czp07MXz4cHzyyScwNTXFw4cPcfr0aezcuVNmla43fR6JiKqjVgIL4PVbng8dOiSzdvedO3fwxx9/wMPDo9I/sJ6enjhz5gwiIiIUDtGpiUePHklvQCsaO3ZsjQILZS9VatSokdyNYHR0NKKjo6GpqQl9fX2Ym5vDyckJ3t7eSoOsgQMHwtLSEvv27cPBgwelqyq1a9cOX331lcLhDyYmJti2bRsiIiJw4sQJ7NmzR1qudevWCAoKgkAgQF5eHuLi4mBnZ1fpS5IkgYVIJKqVpV1btGiB/fv3S5cMPn/+PMrKytC4cWMMGTIEgYGB1XppXJ8+fbBnz54qh3j8E1Tn81SZcePG4dSpU0hOTsaFCxeQl5cHfX19tGjRArNnz8ann34q08vXtWtX7Ny5Ezt37sTx48eRk5MDIyMjWFlZYfjw4TIBfLt27bBz50789NNPOHXqFA4fPgxjY2O0a9dOpsdt8ODBMDMzw+7du7F161YAr5+aK3sbuKqsrKywbds2rF27FgcOHJC+ZG3ZsmVyE2EdHR3x3//+F9u2bUNwcDB0dXXRuXNnbNmyBRMmTKjR/j/66CNYW1sjIyND+v6ZqmRlZeHmzZtKX1qpSGBgIM6fP48DBw4gPz8fDRo0gIODA8aMGSPzu4rXTnU1uXbA6yDv5MmTOHLkiHTJ2jZt2mD+/PlyL7LT19eXviBvw4YNEIvF6Nq1K+bMmSP3e23x4sVwcXHB0aNH8fPPP+PVq1cwNTWFnZ2d9H09EjNmzEDr1q3xyy+/YNeuXSgrK4O5uTnc3Nwq/Vv6Js4jEVF1aIhrOtuOiOhf4NNPP0VpaSkOHz6sUv7Q0FCsW7cO0dHRfEr8jlX32lWH5M3b4eHhtV73+0xjdck72a84qNaegxLRG/TPnKxARPQWXL58GXfv3lW48IQyZmZmCAoKYlDxjtXk2hERkXr+tY8ACgsLUVhYWGkeLS2tWll2ld6sD/FalpaWKhyLXlH9+vWl7zmg2nP58mVkZmbi559/homJicrvrgBQ7RccUu1S59oREZF6/rWBRfnxxMo0adLkX9fN/U/0IV7LR48eoW/fvlXmCw4Olhv3TerbunUrrly5ghYtWmDJkiU1nsBMbx+vHRHRu/OvnWORmZkp90bZinR1dWUmOdL76UO8lsXFxUhJSakyX9u2bVV+6zoRkbo4x4KIKvOvDSyIiIioehhYEFFlOHmbiIiIiIjUxsCCiIiIiIjUxr5FIiIiUkmI0XaMGTOGq9ERkULssSAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrVpiMVi8btuBBEREb3/NFaXvNX9iYO03+r+iEg97LEgIiIiIiK1MbAgIiIiIiK1MbAgIiIiIiK1MbAgIiIiIiK1MbAgIiIiIiK1MbAgIiIiIiK1MbAgIiIiIiK1MbAgIiIiIiK18c0zRET/cAkJCZg8ebLS9B07dqB9+/ZwcXGBu7s71q1bp3Ldhw4dwooVK2BgYIDo6Gjo6ekpzZuZmYkDBw7g4sWLePToEYqLi2FsbAxbW1v06NEDfn5+0NfXr86hSf3555/Ys2cPEhMTkZ2dDX19fbRu3Rp+fn7w8/ODlpaWNO+PP/6InTt3YuPGjXB1dZWp5+eff8aGDRvQsWNH/PTTTzJpJSUl8PT0RJMmTXDgwAEAwMSJE5GUlARLS0scOnQIOjo6MmVCQkKwdetW7Nq1C/b29tU+rpKSEkRGRiI6Ohq3bt1Cfn4+DAwMYGNjAw8PD/Tr10/hOVfluij6XOjr66Np06bw9fXFkCFDoK3N2wAiqj38jUJE9IHw9vaGm5ub3HZra+sa1ykUCmFlZYXMzEycOnUK/v7+CvOFh4dj+fLl0NLSgpeXFwYOHAg9PT1kZ2cjOTkZ//3vfxEbG4sNGzZUuw2HDh3CqlWrUK9ePQgEAjRr1gzPnz/HmTNnsGzZMkRHR2P16tXSoMXFxQU7d+5EYmKiXGCRkJAALS0tXL9+HUVFRTI35NevX0dhYSFcXFzk2vDgwQMcOnQIw4YNq3b7lcnJycHcuXNx9epVODg4YNiwYTAzM8Pz58+RnJyMtWvXIiUlBStWrJArq+p1Af73uRCLxcjOzkZkZCTWrl2LtLQ0LFq0qNaOh4iIgQUR0QfCzs4Ovr6+tVbfrVu3cOPGDSxduhT79u2DSCRSeAN76dIlfPPNN2jVqhX+7//+D40aNZLLk5mZiZMnT1a7DRcuXMDKlSthY2ODzZs3w9jYWJo2YsQIbNq0Cdu3b8fy5cuxbNkyAICjoyO0tbWRmJgoU1dJSQmuXLkCX19fhIeH48qVKzKBhyS/s7OzTDldXV1YWlrip59+Qt++fWFgYFDt46hILBZjwYIFuHr1KoKCgjB06FCZ9MDAQKSnp+PUqVNyZVW9LhIVPxeDBw/GoEGDEBYWhqlTp8LExETt4yEiAjjHgoiIlBAKhahbty48PT0hEAiQlJSEjIwMuXzr168HACxfvlxhUAEAVlZWGDNmTLXbIOnh+Pbbb2WCCokpU6bAwcEBx44dw+3btwG8Hu5jb2+Pa9euoaioSJr3+vXrePHiBQYMGABTU1MkJCTI1JWYmAgNDQ04OTnJbNfU1MS0adOQm5uLXbt2VfsYFDl79iySkpLw8ccfywUVEk2bNsXYsWPltqt6XZTR19eHg4MDxGIxMjMza3wMREQVMbAgIvpAFBUVITc3V+aroKCgRnW9fPkSUVFR6N27N/T19eHj4wNtbW2IRCKZfA8ePEBqaiocHR3RvHnzWjgK+bo7dOiAVq1aKcyjoaGBgIAAAMCZM2ek211cXFBSUoKUlBTptsTERNStWxdt27aFk5OTTI+GpDejdevWCgOYnj17wtHREfv27cOTJ0/UPrbTp08DAAYMGFCtcqpel6pIAgojI6NqlSMiqgwDCyKiD0RISAi8vLxkvr799tsa1RUbG4u8vDz4+fkBAIyNjeHu7o6IiAiUlpZK8925cwcAYGtrK1eHokBHLBar3AZJ3XZ2dpXma9u2LQBIeywASOdJlA8eEhMT0bFjR2hra8PZ2VnagwH8rzej4jCo8mbMmIEXL15gy5YtKh+DMpWdt8qoel3Kk1yHnJwc3L59GytXrsTNmzfRrl07NGvWTL0DISIqh3MsiIg+EP3794eXl5fMNlNT0xrVJRQKYWFhIXOj7e/vj9jYWPz2229wd3cHAGmPiKJ5B8HBwdizZ4/MtlOnTinsEVBEUrehoWGl+ST7zs/Pl27r0KEDdHR0pIGFpEdCMrTIyclJuq1Lly5K51eU17FjR/Tq1QtCoRDDhw9X66a8svNWGVWvS3khISEICQmR2ebh4YEFCxbUoOVERMoxsCAi+kA0bdpUbhWkmsjKysLly5cREBAgMwa/WbNmMDAwgFAolN7ASm6MFQ25GjBgALp27QoA2L17Ny5cuFCtdigKGBRRFIDo6emhffv2uHLlCl68eIE///wTL168kM6faNmyJUxMTJCQkCANLDQ1NeXmV1Q0ffp0nD17Fhs2bMCqVauqdTyKjq2wsFDl4UjVuS7lSQLOkpIS3L59G7t27cLjx4+hq6tb4/YTESnCwIKIiGSIRCKUlZXh6NGjOHr0qFz62bNnkZOTAxMTE+nch1u3bsnla9q0KZo2bQoAOH78eLXbIak7NTW10nySdBsbG5ntzs7OSEpKQkpKClJTU6Gnp4d27dpJ0zt16oTExESZ+RVV3eQ3b94cAoEAYWFh+OOPP6p9TBKtWrVCamoqbt68iY8++kilMtW5LuWVDzjd3Nzg6OiI8ePH4/vvv8fy5ctrfAxERBUxsCAiIimxWIyIiAjY2toqXJEoOzsbq1atQmRkJAIDA2FpaQk7OzukpKQgLS2tVidwW1pawtbWFr///jvu3buHFi1aKGyvUCgE8Hp4T3kuLi7YunUrEhIScPPmTXTo0EHmhXBOTk5Yu3YtEhIS8OLFC4Xvr1Bk0qRJiIqKwvr16ysdOlUZT09PREZGIiwsTKXAorrXpTIdO3aEr68vIiMjMXToUHTs2LFGx0BEVBEnbxMRkdTFixeRlZUFX19fuYngXl5eGDJkCCwsLGRWIZoxYwYA4IsvvsDff/+tsN7qTNoub/r06QCAL7/8Erm5uXLpW7ZswdWrV+Hr64vWrVvLpLVv3x66urq4ePEirly5IjfMydnZGaWlpdi+fbv0e1U0bNgQw4YNQ1JSEs6fP1+DowJ69OgBJycnREdH4+DBgwrzZGRkYMeOHQBqdl0qM378eGhpacnNvSAiUgd7LIiI/kUyMjKwbds2hWnDhw+XPv339PRUWoenpyf27NmDq1evon379nB1dcVXX32F77//HgMGDICXlxfs7Oygp6eHp0+fIjk5GRcuXICZmRnq1KlTrfZ269YNQUFB+OGHHzB48GC5N2///vvvcHV1xRdffCFXtk6dOujQoQMuX74MAHKBhY2NDerXr4+kpCRoaWlVOb+ivFGjRuHIkSO4fv16tY5HQkNDAytXrsScOXOwcuVKHDt2DD169ICpqSmeP3+OlJQU/Prrr9LrUJPrUhlra2t88sknOH78OJKTk9GpU6caHQcRUXkMLIiI/kXu37+P4OBghWkBAQGIi4uDnZ0dLCwslNYhuYEViUTSG1iBQIBOnTph//79uHTpEk6dOoVXr17B2NgYtra2mD9/Pvz8/KCvr1/tNg8ZMgQdO3bE3r17ER0djezsbOjr66N169b4+uuv4efnBy0tLYVlnZ2dcfnyZejq6sLBwUEmTUNDA46OjoiLi4OtrW2Vq0+VZ2hoiLFjx2Lt2rXVPh4JExMTbNu2DREREThx4gT27NmD/Px8GBoaonXr1ggKCoJAIEBeXl6Nr0tlxo4di+joaAQHB7PngohqhYa4pv3TRERE9K+isbrkre5PHMTnn0T/JJxjQUREREREauOjACIieqvy8/NRVFRUaR4dHR3Ur1//LbWodpSWliInJ6fKfPXr14eOjs5baBER0dvFwIKIiN6q1atXIyIiotI8Tk5O2LJly1tqUe149OgR+vbtW2W+4OBglZe2JSL6J+EcCyIieqvu3r2rdFlaCSMjI7Rt2/Yttah2FBcXIyUlpcp8bdu2Vflt2+8bzrEgosowsCAiIiKVMLAgospw8jYREREREamNjwKIiIhIJSFG2zFmzBhOPicihdhjQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREatMQi8Xid90IIiIiev9prC55K/sRB2m/lf0QUe1ijwUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNC0UT0T9WQkICJk+eDABYtGgR+vfvL5fHxcUF7u7uWLdunVza+vXrsWvXLlhbW+Po0aMK9xEeHo6lS5cCAGbNmoURI0bI5UlNTUVgYCAAwN/fH0uWLJGmCQQCZGVlKT2GZcuWwdfXV2m6Mo8fP0ZoaCh+++03PHz4EK9evYKZmRkcHR0hEAjQuXNnmfxlZWU4duwYIiIi8Oeff6KwsBANGjSAk5MTAgMD0aZNG7l9SNresWNH/PTTT3LpS5YsQUREBE6dOoXCwkL07dtX5fYnJCTIXD8JfX19NG3aFL6+vhgyZAi0tRX/mTp//jxmzZoFTU1NiEQiNG7cWOm+VDlXEydORFJSkkptX7x4MQQCQaV5QkJCsHXrVpXq69y5M65fvw5zc3Ps2bMHOjo6cnm+++47HD16FGvXrkX37t2l515CU1MT9evXh4ODA0aPHo2OHTtK06o6tsmTJ2P8+PEqtZWIqDIMLIjog7Blyxb06dMHenp6KuUvKSlBZGQkrKyskJGRgcTERDg7OyvNr6uri/DwcIWBhUgkgq6uLoqLixWWNTc3x7Rp0xSmlb8BVNW5c+ewaNEivHz5El5eXujfvz90dXWRlZWF2NhYTJ06FevWrYO7uzsA4MWLFwgKCsLFixfh4OCAUaNGwcjICOnp6QgPD8eJEyfw+eefY9CgQQr3d+XKFcTGxqJXr15K22RiYoJly5bJbIuJiUFMTAzGjBmDFi1aKC3r7e0NNzc3iMViZGdnIzIyEmvXrkVaWhoWLVqksIxQKIS5uTmePn0KkUiEiRMnqnWuxo4di379+knL5ebmYs2aNejUqZNcwNqhQwelxyLh6ekJa2trmW1r1qwBAMydO1dmu5WVFdLT07FkyRIEBwdjxowZMum//fYbjh49CoFAgO7du8uk/ec//0HdunXx8uVL3LlzB0ePHkV8fDw2bdok83muU6cOvvzyS4VttbW1rfJ4iIhUwcCCiP7x7O3tcf36dYSGhmLMmDEqlTl37hyys7OxefNmLFq0CCKRqNLAolevXoiOjsYff/wBBwcH6faXL18iOjoaHh4eiIqKUljWwMCgRr0Sity5cwcLFixA/fr18fPPP8vdsE+ePBnHjx+Hrq6udNv333+PixcvYsyYMXIBzsiRIzFlyhSsXLkS1tbWcHV1lUlv0qQJioqKsGnTJnTv3h1aWloK26Wvry93jBkZGYiJiYGrqytcXFyUHpOdnZ1M2cGDB2PQoEEICwvD1KlTYWJiIpM/JycHv/76K8aPH4+bN28iIiICEyZMgIaGRo3P1UcffSST9vDhQ6xZswaWlpY1unatW7dG69atZbZt3rwZABTW16FDB8TExGDPnj3o1asX2rdvDwDIz8/Ht99+i8aNG2PevHly5by8vGBsbCz93tHREQsWLMCuXbtkPs9aWlq19hkkIlKGcyyI6B/Py8sLbdu2xc6dO5Gbm6tSGaFQCEtLS7i4uMDHxwenT59Gfn6+0vzdu3eHsbExwsPDZbbHxcUhLy+vyqExtSU4OBjFxcX48ssvFfYCaGhowNfXV3qj/Oeff+L48eNwcHDA1KlT5fIbGxvj22+/BQBs2LBBLl1fXx/jxo3D3bt35Y79TdHX14eDgwPEYjEyMzPl0iMjI1FaWgpfX1/4+/vj4cOHuHTpkly+6p6rd23RokWoV68eFi9ejKKiIgDADz/8gMePH2Px4sUwNDSsso6uXbsCeB3UERG9bQwsiOgfT0NDA9OnT0d+fj62b99eZf4nT54gPj4efn5+0NDQgEAgQFFREU6cOKG0jLa2Nvr06YMTJ07IDHkSiURo06aNwjkKEmVlZcjNzVX4JRaLVT7O4uJinD9/Hubm5ujWrZtKZc6cOQMA6Nevn9wTfYlWrVqhffv2uHHjhsL5IAMHDoSlpSW2bNkiveF90yQBhZGRkVyaSCSCk5MTLCws4ObmhgYNGkAkEsnkqcm5etcaNGiA//znP0hPT8eGDRtw7tw5hIeHY/DgwSoHP+np6QAg04shoewzWFJSUpuHQUT/YgwsiOiD4OrqCldXVxw6dKjSydIAEBERgbKyMvj5+QF4PWzF1tYWQqGw0nIBAQF4/vw5YmJiAACPHj3CxYsXq5y0nJaWBi8vL4VfeXl5Kh9jRkYGXr58Wa0x8bdv3wbwerhRZdq2bSuTvzwdHR1MmTIFjx8/xv79+1Xet6qKioqQm5uLnJwc3L59GytXrsTNmzfRrl07NGvWTCbvH3/8gbt378Lf3x/A64DP29sbsbGxePbsmTRfTc7V+8DLyws+Pj44cOAAFi9ejKZNm2LmzJlK8+fl5SE3Nxd///034uPj8fXXXwOA9LMt8eLFC6WfwVu3br3RYyKifw/OsSCiD8aMGTMwYsQIbN68WW4icXkikQidOnWCpaWldJtAIMAPP/yAO3fuoFWrVgrL2djYwN7eHiKRCD4+PoiIiJD2ZJSVlSndn4WFhdJJyKoMb5GQDNWqTpmCggKVyhgYGMjsoyJvb2/s2bMHO3fuRP/+/VG/fn2V21CVkJAQhISEyGzz8PDAggUL5PIKhULo6+ujd+/e0m0CgQChoaGIiorCp59+KnMc1TlX74v58+fj8uXLyM7Oxtq1aytdkGDgwIEy39erVw/Tp0+X266rqyudPF5RxeCNiKimGFgQ0QfDzs4O3t7eiIqKwogRI+QmzwJAcnIy0tPT4evrKzMO3cHBAZqamhAKhXKr9pQnEAiwatUqZGVlISIiAj179oSRkVGlczv09PTkJkXXhOQmWRIsqKKqgEGiqgBEMtxs+vTp2L59O+bMmaNyG6rSv39/eHl5oaSkBLdv38auXbvw+PFjmQnowOun7idOnICzszOys7ORnZ0N4PWcDGtrawiFQmlgUZNz9b4wMjJCs2bNkJ2dXeUKVP/9739hYGAALS0t1K9fHy1atFC4RK+mpmatfAaJiCrDwIKIPihTpkzB6dOn8eOPP2L9+vVy6ZLhTsHBwQgODpZLP378OGbOnKn0/Qk+Pj5Yt24dvv32W2RkZGD+/Pm1ewCVsLa2Rp06dao1dMXGxgYxMTFITU2tdDhUamqqNL8yXbp0QefOnXHw4EEMGzZM9YZXoWnTptKbXjc3Nzg6OmL8+PH4/vvvsXz5cmm+U6dOoaCgAOfOncO5c+cU1nXz5k20adOmRufqn8jJyUnhfAoioneBgQURfVAsLS0xaNAghIaGIiEhQSatoKAAp0+fhqurq8KX6d2+fRvbtm1DXFyczFCb8urVqyddetbc3PytPgXW1dWFm5sbYmJicOHCBXTp0qXKMh4eHti6dSuEQiECAgIUTuC+e/cufv/9d9jZ2aFJkyaV1jdz5kzpcDNlk8HV1bFjR/j6+iIyMhJDhw6VvutDJBKhYcOGCpddLSkpweLFiyEUCjF//vwanSsiIlIPJ28T0Qdn3LhxMDAwkOuxOHHiBF68eIGBAwcqnMQ6evRo6Onpya0wVNHo0aMxYcIEzJ8/H5qab/fX6KRJk6Crq4tvvvkGaWlpCvNERUXh8uXLAF6//Mzb2xtXr17Fli1b5PLm5eXhq6++AgBMnz69yv3b2dnhk08+wfHjxxVO9K4t48ePh5aWlnTuxf3795GcnAxPT0+F187HxweOjo6Ijo7Gy5cvAVT/XBERkXrYY0FEHxxjY2OMGDFCbqiTUCiEnp6e0uVHJWlxcXF4/PgxGjVqpDCfopefVaagoADHjh1TmGZjY1OtlYtsbGywcuVKLFq0CJ999hm8vLzg4OAAXV1d/PXXX4iLi8OtW7dkgqqFCxfi6dOn2Lp1Ky5evAgPDw+ZN2/n5uZiwYIFKj/VnzJlCs6cOSMdPvUmWFtbSwOY5ORk6dAnT09PpWU8PT2RmJiImJgYeHt71+hcfahKS0uVfgYtLS1r9AZ4IqKKGFgQ0QcpMDAQhw4dwpMnTwC8fgvzH3/8AQ8Pj0pX2fH09MSZM2cQERGBsWPH1kpbHj16JF0GtKKxY8dWe0lUd3d3HDx4EKGhoYiPj0dMTAxKSkrQsGFDdOzYEXPnzpV507WBgQE2bNiAyMhIREREYMeOHSgsLISpqSlcXV0RGBhY6Xs4KrKyssLAgQPfyNKz5Y0dOxbR0dEIDg7G/fv3YWJigk6dOinN7+HhgdWrV0MkEsHb2xtA9c/Vh+rly5dKP4N9+vRhYEFEtUJDXJ23MxEREdG/lsbqt/MyPXEQn3sS/RNxjgUREREREamNjwSIiN6xwsJCFBYWVppHS0sLJiYmb6lFVJm8vDy8evWq0jx6enr/yJfzERGpg4EFEdE7tnv3bmzdurXSPE2aNEF4ePhbahFV5vPPP0dSUlKlefz9/bFkyZK30yAiovcEAwsionfMz88Pjo6Oleap+BZqenfmzJmDZ8+eVZqnYcOGb6k1RETvD07eJiIiIpVw8jYRVYaTt4mIiIiISG0MLIiIiIiISG3sayQiIiKVhBhtx5gxY6Cjo/Oum0JE7yH2WBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdo0xGKx+F03goiIiN5/GqtL3vg+xEHab3wfRPRmsMeCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxrfQEBFVIiEhAZMnT5Z+r6mpCQMDAzRs2BBt27aFt7c3unbtCg0NDYXl169fj127dsHa2hpHjx6Vbk9NTcXo0aPh4uKCDRs2KCw7ffp0JCQk4Oeff4adnR1KS0sRFRWFI0eOIDMzE8+fP4exsTGsra3RqVMnjB07FnXq1KnxsQGAvr4+mjZtCl9fXwwZMgTa2rJ/JiZOnIikpCSldU6ePBnjx4+X2fbkyRMcOHAAv/32GzIzM/HixQsYGRnBxsYG3bp1g0AggLGxsTT/kiVLEBERgVOnTslsv3XrFn7++Wdcv34djx8/hr6+Pho2bIj27dtj4MCBsLOzq7J95S1evBgCgQACgQBZWVnS7dra2jAzM0Pnzp0xceJENG7cWGH50tJS+Pv74++//5Y77op1ViY4OBguLi5wcXGBu7s71q1bJ5cnKSkJBw4cwJUrV5Cbm4t69eqhbdu2GDBgAHr16iWXX3IODQwMIBQKZc4jAISHh2Pp0qVYsWIFvLy8VGonEVFVGFgQEanA29sbbm5uEIvFKCwsxP379xEbG4vIyEh07twZK1euRL169WTKlJSUIDIyElZWVsjIyEBiYiKcnZ0BAHZ2dhg7diy2bNmCQ4cOYdCgQTJlDx8+jAsXLmDSpEmws7MDAHz55Zc4efIkOnbsiOHDh8PIyAiPHj1Camoqdu3ahaFDh1YrsFB0bNnZ2YiMjMTatWuRlpaGRYsWyeWvU6cOvvzyS4V12draynwfHx+PhQsXoqioCB4eHvD19YWhoSFyc3Nx9epVbNq0CUePHsWRI0cqbePZs2cRFBQEY2Nj+Pn5wdraGs+fP0d6ejrOnz+Ppk2bSs9pv379pOVyc3OxZs0adOrUCf3795eps0OHDtL/m5ubY9q0aQCAwsJCpKSkIDw8HPHx8di/f7/cjbnk2P7++29YWVkhPDwc48aNkwaY8+bNQ2FhoTTvvXv3sGPHDnh4eMDDw0OmnhYtWlR67Bs3bsSOHTvQpEkTBAQEwMLCAtnZ2YiKikJQUBB8fX2xePFiaGlpyZUtKCjATz/9hHnz5lW6DyKi2sDAgohIBXZ2dvD19ZXZNmfOHKxfvx579+7FokWLsH79epn0c+fOITs7G5s3b8aiRYsgEomkgQUAjB07FmfPnsX69evRtWtXWFpaAgCysrKwfv162NvbY8yYMQCAGzdu4OTJk/Dw8MCqVavk2pebmwtDQ8NaObbBgwdj0KBBCAsLw9SpU2FiYiKTX0tLS+5cKHLnzh3Mnz8f9evXx44dOxTeQGdnZ2P//v1V1rVhwwbo6upi165dMDc3l0krKytDXl4eAKBLly4yaQ8fPsSaNWtgaWlZaZsNDAxk0gcNGoQGDRpg3759iIiIQGBgoFwZoVAIKysrzJkzB/PmzUNiYiJcXFwAQK4XISEhATt27ICNjY1K504iLCwMO3bsQOfOnbFmzRro6elJ00aOHIlvvvkGkZGRsLCwkOt9AgB7e3scPnwYn332GZo0aaLyfomIaoJzLIiIakhLSwtz5syBo6Mj4uPjkZKSIpMuFAphaWkJFxcX+Pj44PTp08jPz5ema2trY+nSpSgpKcHSpUshFoshFouxbNky6TbJUKT09HQAkN64VmRsbCw3bKmm9PX14eDgALFYjMzMzBrXExwcjKKiInz11VdKn8qbmppKewoqk5GRgWbNmskFFcDr4WkVg5/a0LlzZwD/O/flZWdn4+zZs/Dz84ObmxsaNGgAoVBYq/t/9eoVNm/ejLp16+Lbb7+VCSqA15+fhQsXonHjxti9ezdycnLk6pg2bRpevXqFTZs21WrbiIgUYWBBRKSmgIAAAK97KCSePHmC+Ph4+Pn5QUNDAwKBAEVFRThx4oRM2ZYtW2LKlClISkrCvn37cPDgQVy+fBlTpkyRuRm3srICAJw+fRrPnj1748ckCSiMjIwUpufm5ir8KikpAQAUFxfj/PnzaNKkiVwvQk1YWVnh7t27uHLlitp1qUpyDurXry+XFhkZibKyMvj5+UFbWxs+Pj44c+aMTOCoritXriA7Oxs9e/ZEgwYNFObR1dVFnz59pOe7ojZt2sDHxwdRUVG4detWrbWNiEgRDoUiIlJT69atAQD379+XbouIiJDeeEry2NraQigUYsCAATLlhw8fjri4OGzatAmampro1KkTPvvsM5k87dq1Q/fu3XH27Fn4+vqiQ4cOcHBwgIODAzp37iz3NLs6ioqKkJubK51jcfjwYdy8eRPt2rVDs2bN5PK/ePFC6YTfXbt2wd7eHhkZGXj58qX03JRXXFyMFy9eyGwzNDSstMdl4sSJ+OKLLzBu3DjY2NigQ4cOaNeuHT766CNYWFhU84jllZWVITc3F8D/5lhs2bIFWlpa+OSTT+Tyi0QidOrUSbpvf39/7Nu3D1FRUXLzZWrq9u3bAF4HB5Vp27atTP6KpkyZglOnTuHHH3/Ejz/+WCttIyJShIEFEZGaDAwMALyeKCshufGUzJsAXq8U9MMPP+DOnTto1aqVdLumpiaWLFmCIUOGoKysDIsXL4ampnyH8qpVq3D48GEcO3YMiYmJuHTpknT/EyZMUDgPQBUhISEICQmR2ebh4YEFCxYozK+rq4s1a9YoTJMEIpIn95JzU15YWJjcPBFJQKKMl5cXzMzMEBoaikuXLuHIkSPSCd89evTAV199pdZwqLS0NLlgydraGsuWLZMLjq5cuYK0tDSMHDlSus3W1ha2trYQiUS1FlhIPk9VzZ2RnGNlvSUWFhYYNGgQQkNDcfnyZXz00Ue10j4ioooYWBARqUlyAyi5wUtOTkZ6ejp8fX2RkZEhzefg4ABNTU0IhULMnTtXpg4rKyvpcBfJsKeKtLW1MWTIEAwZMgRFRUVITU3F+fPnceDAAaxbtw5mZmbw8fGpdvv79+8PLy8vlJSU4Pbt29i1axceP34MXV1dhfk1NTXh6upaaZ2Sm+HywZZEr1690Lx5cwCvhxQdO3ZMpXY6OjrC0dERYrEY6enpSEhIwKFDh/Drr7/iq6++UrpsryosLCykK2BlZ2fj0KFDuH37tsJeFKFQCG1tbbRp00bm+nbt2hU7d+7En3/+qbCnprqqChgkVAlAxo0bB5FIhB9//BE7d+5Uu21ERIowsCAiUtOff/4JANKbZckk3uDgYAQHB8vlP378OGbOnKnWZGs9PT3pjbazszOmT58OkUhUo8CiadOm0kDBzc0Njo6OGD9+PL7//nssX768Ru2ztrZGnTp1pOemPHNzc+kk7IoT3lWhoaGBZs2aoVmzZvD398enn36KCxcu4NGjRwond6tCT09PJljq3bs3xowZgy+++AIHDx6EmZkZgNfDpE6dOoWSkhIMHz5cYV0ikahWlne1sbEBANy8ebPSfKmpqTL5FTE2NsbIkSOxefNmnDx5Uu22EREpwsCCiEhNkkDCzc0NBQUFOH36NFxdXeXemwC8Hge/bds2xMXFoXfv3rWy//bt2wMAHj9+XCv1dezYEb6+voiMjMTQoUPRsWPHatehq6sLNzc3xMTE4MKFC7UygVvZfmxtbfHgwQP8/fffNQ4sFNU7d+5cTJ48GSEhIdLejJMnT6KwsBDTpk2DtbW1XLkDBw7g2LFjmDlzJnR0dNRqQ4cOHWBqaoq4uDjk5uYqfJdGcXExjh8/Dl1dXXTr1q3S+oYPH46DBw9i8+bNMsO4iIhqC1eFIiKqodLSUqxbtw4pKSnSJ/0nTpzAixcvMHDgQHh5ecl9jR49Gnp6ehCJRNXaV3p6usywm/JiY2MBVP2iteoYP348tLS05OZeVMfkyZOhp6eHb775Bvfu3VOrPfHx8RCLxXLbc3Jy8Pvvv0NLS0vhjb46XFxc4OTkhPDwcDx48ADA6yCyfv36GDFihMLrGxAQgLy8PMTFxam9/zp16mDSpEkoLCzEV199haKiIpn00tJSrFixAllZWRgxYoTSlaMk9PT0MHHiRGRkZMi8BZ6IqLawx4KISAWpqanSuQDl37ydlZWFLl264LvvvgPw+sZTT09P6dNjSVpcXBweP36MRo0aqbT/W7duYeHChXBycoKzszMaNWqEFy9e4Nq1azh58qR0Andtsba2xieffILjx48jOTkZnTp1kqaVlpYqnRdhaWkp7eFo1aoV/vvf/2LhwoUYNmwYPDw80KFDBxgYGCAnJwfXr19HXFwcDA0NlS5r90YjQQAANtVJREFUK7FgwQI0aNAA7u7uaNGiBbS1tfHgwQMcO3YM2dnZmDBhgsJlYdU1btw4TJs2DT/99BNGjhyJ33//HQKBQOkwth49ekBbWxtCoVDpylnVMWDAAGRkZGD37t349NNP4efnhyZNmiA7OxvR0dG4ffs2+vTpo/K1DwgIwN69e3H9+nW120ZEVBEDCyIiFURHRyM6OhqamprQ19eHubk5nJyc4O3tLQ0i7ty5gz/++AMeHh6VLv/q6emJM2fOICIiAmPHjlVp/05OTpg5cyYuXboEkUiEp0+fQiwWw9zcHAKBACNHjqz1J/Zjx45FdHQ0goODZXouXr58ia+//lphmT59+sgMnerWrRsOHTqEAwcOID4+HvHx8SgqKoKRkRFatWqFadOmQSAQKBzmU97ixYtx/vx5XL58GceOHUNhYSHq168POzs7zJ07t9aGlVXk6uqK9u3bIzIyUjpJ2sPDQ2l+IyMjuLi44OLFi/jrr7/QuHFjtdswa9YsuLm54cCBAzhy5Ajy8vJgaGgIe3t7TJo0qdL2VKSlpYXp06fj888/V7tdREQVaYgV9S0TERERVaCxuuSN70McxGeeRP9UnGNBRERERERq42MBIqIPyKtXr5CXl1dlPhMTE2hpab2FFhER0b8FAwsiog/IlStXMHny5CrziUQiWFhYvIUWERHRvwUDCyKiD4itrS02btxYZT5TU9O30BoiIvo3YWBBRPQBMTIyknmDNBER0dvCydtERERERKQ29lgQERGRSkKMtmPMmDHQ0dF5100hovcQeyyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtGmKxWPyuG0FERETvP43VJW98H+Ig7Te+DyJ6M9hjQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREVMsmTpwIgUDwrptBRPRWcbFoovdcQkICJk+eDABYtGgR+vfvL5fHxcUF7u7uWLdunVza+vXrsWvXLlhbW+Po0aMK9xEeHo6lS5cCAGbNmoURI0bI5UlNTUVgYCAAwN/fH0uWLJGmCQQCZGVlKT2GZcuWwdfXV2l6RSEhIdi6dSt27doFe3t7AOqfh+vXr+OXX35BcnIynjx5Ag0NDVhYWMDV1RUDBw5E8+bNZfLn5+dj//79iImJQUZGBkpLS2FhYQF3d3cEBgbC1NRUJv/Dhw/Rt29fAFDahpKSEvj4+CA3NxdNmjRBeHi4NG3JkiWIiIhQek4CAgLw1VdfKU2veB5U5eHhgZiYGHz77bfw8fGRS8/IyMCwYcNgY2ODn376CY8ePZIep4Suri4sLS3h5eWFkSNHQk9PD4DsNVNES0sLFy9eVLmtgPxnTVtbGw0bNkTnzp0xYcIENG7cuFr1ERFR7WFgQfQPsmXLFvTp00d641aVkpISREZGwsrKChkZGUhMTISzs7PS/Lq6uggPD1cYWIhEIujq6qK4uFhhWXNzc0ybNk1hWseOHVVqr6qqex62bNmCrVu3wtjYGD4+PmjRogXKyspw9+5dnDhxAr/88gvOnDkDAwMDAMD9+/cxY8YMZGVlwcPDAwEBAdDW1sbVq1cRGhoKkUiEtWvXokOHDnL70tXVxW+//YYnT57AzMxMJi0uLg65ubnQ1dVV2tb//Oc/qFu3rtx2a2trlY4VeB3IlZecnIyjR4+if//+6NSpk0yah4cHRo4ciVWrVsHFxUWmzWVlZViyZAnEYjGWLFkCLS0taZqrqyv8/PwAADk5OTh58iS2bNmC33//HRs2bJDZh7e3N9z+v737jorievsA/l16L+qqYAMFxIIVhSgRsYAVu8YG2JJgi4qaRI2x688aEktsWBATG4pdgxo9Gk0EeyGJCraACFJEUdp9//Dsviy7CwuLEOL3c44neufO7DN3ZjfzzL1zp21bpTh1dErWaZ7/XHv9+jWio6Nx8OBBXLhwAT///DOsrKxKtN3StGbNGvD9s0T0oWFiQVRBNGzYEHfu3MFPP/2EESNGaLTO+fPnkZycjHXr1mHmzJk4ePBgoYlF+/btceLECdy6dQuNGzeWl2dlZeHEiRPw8vLC8ePHVa5ramparF6JkipuO0RERGDDhg1wdXXF8uXLYWZmprB84sSJ2Lhxo/wi8M2bN5g8eTISExOxatUqeHh4yOv27dsXAwYMwNixYxEUFISff/5ZqefCw8MDv/76K44cOQJ/f3+FZQcPHoSjoyNyc3ORmZmpMt5OnTppfWFc8Djk5uZi//79aNKkicpjNHfuXIwYMQILFixQ6GnZuXMnrl+/jqCgIKUendq1aytsa9CgQfDz88OlS5dw+/ZtNGrUSL7M2dm5VM+Nguda//79YW1tjd27d+PgwYPw8/Mrtc8qKX19/fIOQWNCCGRmZqpMaImIioPPWBBVEJ06dUKDBg2wbds2pKamarROREQEatSoAVdXV3Tp0gWnTp1CRkaG2voff/wxrKysFIboAO/utKelpf0rxowXpx2ys7Oxdu1amJiYYPHixUpJBQAYGRlhwoQJ8mUHDhzAo0ePMHjwYIWkQqZhw4YYN24cUlJSEBoaqrS8UqVKaNu2rVIbJiUl4dKlS/+KNiyoYcOGGDFiBM6fP48DBw4AAOLi4rBu3Tq0bNkSn3zySZHb0NPTQ+vWrQG8Gz5V1j766COlz3706BG++eYb+Pj4wN3dHT179kRwcLBSUjdnzhy4uroiIyMDixcvRufOndGmTRuMHDkSt27dUqibl5eHnTt34pNPPkG7du3g6emJvn37Yt68ecjJyZHXU/eMxZUrVzB27Fh4enqibdu2GDp0qLzN85Ot//z5c8yYMQNeXl5o27Ytxo8fj4cPHyrVz8rKQkhICAYOHIg2bdqgffv2mDx5MmJiYhTqRUVFwdXVFYcOHcLu3bsxYMAAtGnTRuW5TERUXEwsiCoIiUSC8ePHIyMjAyEhIUXWT0pKwm+//Ybu3btDIpGgZ8+eePPmDU6ePKl2HT09PXTt2hUnT55UGPJ08OBB1K9fH/Xr11e7bl5eHlJTU1X+Kc0hIcVph+vXryM5ORnt27eHtbW1Rts/ffo0gHe9E+r07NkTenp68roF+fr6Ii4uDjdu3JCXHT58GDo6OkXeuU9LS1PZhtnZ2RrFX1KjR49G/fr1sWrVKjx58gRz586Fnp4evv32W0gkEo228ejRIwBQ6nF58+aNyn0qLMktroKffffuXQwfPhxXr15F37598eWXX8LDwwM///wzxo0bp5AEyIwfPx6JiYkYPXo0AgICcP/+fXzxxRd49eqVvE5ISAhWrlwJGxsbTJgwARMnToSXlxdu3ryJrKysQmM8d+4cAgMDERcXh2HDhmHs2LHQ09PDggULsGbNGqX6mZmZGDNmDHR1dTFu3DgMHDgQ0dHRCAoKQm5urrxeTk4OJkyYgI0bN8LFxQVTpkxBQEAAHjx4gFGjRuHOnTtK2/7pp5+wbds2eHt7Y9q0aQo9lEREJcWhUEQViJubG9zc3LB3714MHjwYNjY2ausePnwYeXl58nHwjo6OcHJyQkRERKEXzb169cJPP/2EM2fOoEuXLnj27Bl+//13BAUFFRpbXFwcOnXqpHJZZGRkqY5717Qd7t27BwBwcnLSeNv379+Hqalpoc80GBkZwc7ODvfu3cPr16+VhpB4eHigcuXKOHTokPw5jIMHD8p7hArTr18/leVLlixR276lQU9PD3PnzoWfnx8CAgKQmpqKWbNmwdbWVmX9rKwseY9RSkoKjh07hnPnzsHW1hYtWrRQqLt+/XqsX79eaRvqHnIviiyJBYBXr14hOjoaGzduhK6uLnx8fAC8e86kSpUq2L59u/zZGQBo3bo1pk2bhmPHjin1KDg7O+Orr76S/7tu3br46quvcPz4cflxOXPmDOzt7bFq1SqFdSdMmFBozLm5uVi6dCmMjY2xbds2SKVSAMDAgQPx2WefYdu2bejZsydq164tXyc1NRXDhw9XGFJnbW2N77//Hn/88Ye8l2bXrl2Ijo7GDz/8IC8D3g0RGzRoEL777jts2LBBIZ6EhATs3bsXlSpVKjRuIqLiYGJBVMFMmDABw4cPx7p165Qe0s3v4MGDaN68OWrUqCEv69mzJ1asWIH79++jXr16KtdzcHBAw4YNcfDgQXTp0gWHDx+W92Tk5eWp/TxbW1vMnDlT5TJVQ5C0pUk7yO40F+fzMzIylB66VkV2sZqRkaGUWOjp6aFbt24IDw9HUFAQYmJi8OjRI0yZMqXI7S5dulThQljG0dFRwz0oOQcHB4wZMwZr1qyBu7s7evfurbZuREQEIiIiFMpatGiBWbNmwcDAQKG8T58+KpMiTXuRClKVxNasWRMLFiyAg4MD7t27h7///hufffYZsrOzFYbMNWvWDMbGxiqHpQ0ZMkTh37LZtfIPrzIzM0NMTAyuXbuGZs2aaRzz3bt3kZCQgCFDhsiTCuDdsxh+fn6YOnUqzp49qzBxgo6OjtIwtFatWgF410MjSyKOHTsGOzs7NGjQQGl4oJubG44cOYI3b94oTHbQvXt3JhVEVOqYWBBVMM7OzvDx8cHx48cxfPhwlRecV69exaNHj9CtWzeFi6LGjRtDR0cHERERhV7k9uzZE8uWLUN8fDwOHz4MT09PWFhYFPpMg5GREdzc3LTat+LQpB1kF+j5h7IUxczMTKMhOkUlLT179kRoaChOnz6NqKgoSKVShbvJ6rRo0aJcZzVycXFR+K86np6eGDhwICQSCQwMDFCrVi2lB9llateuXarnRv4kVl9fH1KpVKGHKTY2FoD6nhIAePHihVJZ/iQc+P9hVWlpafKycePGYerUqRg9ejSkUilatmwJDw8PdOzYsdAHtv/55x8A73pBCpIl+U+fPlUol0qlSjOIWVpaKsUUGxuLt2/fFtqjlZqaqjAVb/6eESKi0sLEgqgCCgwMxKlTp/DDDz/g+++/V1ouu5P8448/4scff1RafuzYMUycOBF6eqp/Arp06YLvvvsOCxYswOPHjzF9+vTS3YFSUlQ7ODg4AAD+/PNPjbdZr149XLlyBY8fP1Y7HOrNmzeIi4uDra2t2pl06tati8aNG2PPnj24f/8+Bg4cqDBda0VXtWrVMk0k8ysqiZU90zNs2DC1yZyFhYVSmbrjk/8ZoSZNmuDAgQO4ePEioqKiEB0djePHj2Pz5s3YtGmT/MK/NBQ2HW/B55YcHBwwefJktfUL9g5pOlUzEVFxMLEgqoBq1KiB/v3746effkJUVJTCslevXuHUqVNwc3NT+RK5e/fuYdOmTTh79iw6duyocvvm5ubyqWerVatWbheQRSmsHYB378+oXLmy/P0RmvQEeHl54cqVKzhw4IDacfOHDx9GTk4OvLy8Ct2Wr68vFi1aJP87lQ3Z3XgdHZ33cu6amJigY8eO8u/Pnj178L///Q8RERFqp7qV9YY8ePBAaZmsrGCPiaZq1aqFlJQUtGrVqsTvBiEiKg38BSKqoEaNGgVTU1OlO/UnT55EZmYm+vXrh06dOin9CQgIgJGREQ4ePFjo9gMCAjBmzBhMnz79X32xoq4dgHfDZMaOHYtXr15hxowZKodEvX37FmvWrJEPf+rduzdq1aqFsLAw/Pbbb0r1Y2JisGbNGlhbW6t8kWB+3t7eGDNmDKZOncqhJ2Wofv36qFevHvbt24cnT54oLc/JyVEYSlQcqoYDOjs7AwDS09PVrufs7Izq1avj0KFDSEpKUoglNDQUEokEnp6eJYqpe/fuSE5ORlhYmMrlycnJJdouEVFxsceCqIKysrLC8OHDlYY6RUREwMjICG3atFG5nmzZ2bNnkZiYiKpVq6qs5+joWKwHhl+9eoWjR4+qXObg4FCsmZmKQ107yPTq1QvPnj3Dxo0b0adPH/j4+KBu3brIy8tDXFwcIiMj8eLFCwQEBAAAjI2NsXLlSkyYMAGTJk1Chw4d0LJlS+jq6uL27ds4evQoTExMsHz58iIf8jYzM8Nnn31WrP2JjIxUObyqUqVKcHd3L9a2/i1iYmLUnhvt27cv9RezSSQSzJs3D4GBgRg8eDB8fX1Rt25dvHnzBk+ePMHp06cxfvz4Er1TpH///nBxcUGjRo0glUqRlJSE/fv3Q19fH97e3mrX09XVxfTp0zFt2jT4+/ujT58+MDExwS+//IKbN29ixIgRJU4+Bw8ejN9//x3BwcG4fPkyWrVqBVNTUyQkJODy5cswMDBQ+6wJEVFpYmJBVIENGzYMe/fuld8BvX//Pm7dugUvL69Cx1B36NABp0+fxuHDhzFy5MhSieXZs2eYPXu2ymUjR458b4kFoNwOBX366afw8PDArl27cPbsWezbtw8SiQQ1a9ZE586d0b9/f4WZmOzt7fHzzz/Lp929cOEC8vLyUL16dQwaNAjDhg3TaOaokliyZInK8qZNm1bYxOLEiRM4ceKEymX79+9/L298rl+/PsLCwrBlyxacO3cO+/btg6mpKWxsbNCzZ0/57ErFNWzYMFy4cAG7du1CRkYGKlWqhMaNG2PEiBFFnuPt2rXD2rVrsXnzZoSGhiI7Oxt2dnaYNWtWoTNwFUVPTw/fffcd9u7di6NHj8qTCKlUikaNGqFHjx4l3jYRUXFIRGm+uYqIiIj+syTLlV8sWNrEVN7zJKqo/r0Dp4mIiIiIqMLgbQEiKhOvX7/G69evC62jq6tb4pemfQiys7M1eujY2tq6Qk1tm5KSgtzc3ELrmJiYvJchU0REVHqYWBBRmQgNDcXGjRsLrWNjY4NDhw6VUUQVz/Xr1/H5558XWe/gwYOwtbUtg4hKh5+fH+Lj4wutM2bMmGI/CE9ERGWLz1gQUZl48uSJ0puFCzI0NESzZs3KJqAKKD09HXfv3i2yXrNmzZTe2Pxvdu3aNbx9+7bQOjVq1EDNmjXLKCJSh89YEFFhmFgQERGRRphYEFFh+PA2ERERERFpjYkFERERERFpjf2NREREpJH1FiEYMWIE9PX1yzsUIvoXYo8FERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpTa+8AyAiIqJ/PyEEMjMzkZ6eDn19/fIOh4jKmLm5OSQSSaF1JEIIUUbxEBERUQWVlJQEqVRa3mEQUTlJS0uDhYVFoXXYY0FERERFMjQ0RLNmzXDkyBGYmZmVdzj/GhkZGejevTvbpQC2i3oVtW3Mzc2LrMPEgoiIiIokkUigq6sLCwuLCnUx9L7p6OiwXVRgu6j3X24bPrxNRERERERaY2JBRERERERaY2JBRERERTIwMMCYMWNgYGBQ3qH8q7BdVGO7qPdfbhvOCkVERERERFpjjwUREREREWmNiQUREREREWmN080SERF94OLi4rB06VLcuHEDpqam6NatG8aOHVvkG7aFENi2bRv27NmD1NRUODk5YcqUKXBxcSmjyN+vkrbLnj17cOHCBdy6dQupqalYsmQJOnXqVEZRv38laZekpCSEhYXh999/x5MnT2BmZobmzZtj/PjxsLGxKcPo35+Sni/ffPMNbt26hefPn0NfXx8ODg4YNWoU3N3dyyjy0sMeCyIiog9Yeno6Pv/8c+Tk5GDZsmUYO3Ys9u/fj5UrVxa57rZt27B+/XoMGTIEq1atQpUqVTB+/Hg8efKkDCJ/v7RplyNHjiA1NRVt27Ytg0jLVknb5e7duzhz5gw6deqEFStWYPLkybh37x78/f2RkpJSRtG/P9qcL9nZ2Rg6dChWrFiBefPmwdLSEl988QWuXr1aBpGXMkFEREQfrJCQEOHh4SFSU1PlZfv27ROtW7cWiYmJatd78+aNaNeunVi9erW8LCsrS/To0UMsXrz4vcZcFkraLkIIkZubK4QQ4unTp6Jly5bil19+ea+xlqWStkt6errIzs5WKEtISBCurq4iNDT0vcVbVrQ5XwrKyckR3bp1EwsWLCjtMN879lgQERF9wH777Te0bt0alpaW8rLOnTsjLy8Ply5dUrvejRs38OrVK4UhPvr6+vDy8sKFCxfea8xloaTtArx7s/J/VUnbxdzcHHp6iiPwq1WrBmtrazx//vy9xVtWtDlfCtLV1YW5uTmys7NLO8z37r975hMREVGR4uLiYGdnp1Bmbm6OKlWqIC4urtD1ACita29vj4SEBLx586Z0Ay1jJW2X/7rSbJeHDx/ixYsXsLe3L70Ay4m27SKEQE5ODlJTUxEaGorHjx+jb9++7yfY94gPbxMREX3A0tPTYW5urlRubm6O9PT0QtczMDCAoaGh0npCCLx8+RJGRkalHm9ZKWm7/NeVVrsIIbB8+XJIpVL4+PiUZojlQtt2iYiIwIIFCwAAJiYmWLRoEZo0aVLqcb5vTCyIiIiIqExt2LABf/zxB3744QcYGxuXdzjlrn379nByckJqaioiIyPx9ddfY9myZRVuAgAmFkRERB8wCwsLZGRkKJW/fPkSFhYWha6XlZWFt2/fKvRavHz5EhKJROXd24qkpO3yX1ca7bJ//35s3LgR33zzDVq3bl3aIZYLbdvFysoKVlZWAIA2bdogPT0dwcHBFS6x4DMWREREHzA7OzulMeAZGRlISkpSGjNecD3g3Tj5/OLi4lC9evUKPQwKKHm7/Ndp2y5nzpzBkiVL8Pnnn6NXr17vJ8hyUNrni7Ozc4WctpmJBRER0QesTZs2+OOPP/Dy5Ut5WWRkJHR0dAp9QVeTJk1gamqKyMhIeVlOTg7OnDlT4e6yqlLSdvmv06ZdoqKiMHPmTPTu3RujR49+36GWqdI+X65fv44aNWqUZohlgkOhiIiIPmD9+vXDrl27EBQUhJEjRyIxMRHBwcHo27cvpFKpvF5gYCDi4+Nx4MABAIChoSFGjBiBDRs2wNraGg4ODtizZw/S0tIwbNiwctqb0lPSdgGAO3fu4J9//kFqaioA4NatWwAAa2trtGzZsix3o9SVtF1iY2MxdepU1KpVC926dcPNmzflda2trVGzZs2y3pVSVdJ2OX/+PI4cOQIPDw9Uq1YN6enpOH78OC5evIiFCxeW096UHBMLIiKiD5iFhQXWrVuHZcuWISgoCKampujduzfGjh2rUC83Nxe5ubkKZf7+/hBCYMeOHUhJSYGTkxN++OGHCn+RCGjXLrt378bhw4fl/96xYwcAoEWLFtiwYcP7D/49Kmm73Lp1CxkZGcjIyMCoUaMU6vbo0QNz5swpi/Dfm5K2S82aNZGVlYXVq1cjNTUVVlZWcHR0xPr16ytkEioRQojyDoKIiIiIiCo2PmNBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRESlLjExEZaWlti4caNCeUBAAOzs7MonqP+IOXPmQCKRIC4urkw+b+vWrUqfl5mZCVtbW8ydO7fY21N3blDJyY7Rr7/+Wt6hUDnT9vdB23OJiQUREZW6WbNmQSqVYsSIERrVT0hIwNSpU9G4cWOYm5vDwsICjo6O+OSTTxAeHq5Qt3379jAzM1O7Ldn/WKOiolQuT0lJgbGxMSQSCUJDQ9Vux87ODhKJRP7HwMAAdnZ2GD16NB4/fqzRfv1XGRsb46uvvsKyZcsQHx9frHWLe27Qh+3atWuYM2dOmSXSpB0mFkREVKqePHmCkJAQTJgwAXp6ekXWf/jwIZo2bYo1a9bA3d0dS5YsweLFi9GjRw/ExMRgy5YtpRpfWFgY3r59C3t7e4SEhBRat2bNmggNDUVoaCiCg4Ph5uaGkJAQuLm5ISkpqVTjqmhGjRoFiUSClStXarxOcc8N0szw4cORmZmJdu3alXcope7atWuYO3cuE4sKgt9qIiIqVevXr4dEIsHgwYM1qr98+XIkJibiwIED6NWrl9LyhISEUo1v8+bN8PLyQq9evTBp0iQ8ePAAdevWVVnX0tISw4YNk/87MDAQVatWxerVq7FlyxZMmzatVGOrSExNTdG3b19s3boVCxYsgKGhYZHrFPfcKG+5ubl4+/YtTExMyjuUQunq6kJXV7e8wyBijwURUXmTjWk9deoU5s2bhzp16sDY2Bhubm64dOkSAODs2bPw8PCAqakpbGxsMH/+fJXbioqKQp8+fVClShUYGhqifv36WLhwIXJychTq/fHHHwgICICTkxNMTExgbm6Otm3bYv/+/UrbDAgIgEQiQVpamvzC2sjICG3btsXvv/+uVH/Pnj1wdXVF1apVNdr/v//+GwDQsWNHlcurV6+u0XY0ceXKFVy7dg3+/v4YMmQI9PT0iuy1KMjHxwcAcO/ePbV1jh07BolEgu+//17l8o8++ghSqRTZ2dkAinc8VJEdI1UkEgkCAgKUynft2gUPDw+Ym5vDxMQEbm5u2Lt3r0afJ9O1a1ckJSXhzJkzGtVXd27k5eVh4cKFaNeuHapXrw4DAwPUrl0bgYGBSE5OltdLTU2FkZER+vbtq3L7X3/9NSQSCa5duyYvS0tLw5dffgkHBwcYGhpCKpVi8ODBePDggcK6su9hZGQk5s+fj3r16sHIyAi7d+8GAJw8eRKDBg1C3bp1YWxsDCsrK3h7e+Ps2bMqY9m3bx+aNm0KIyMj1K5dG3PnzkVkZCQkEgm2bt2qUPft27dYtGgRGjVqBCMjI1hZWaFnz564evWqRu2qalx8af2u2NnZoX379rhy5Qo6dOgAMzMzVKpUCf7+/khMTFSo+/LlS8yaNQtubm7y3yAHBwd89dVXeP36tdK2hRDYuHEj3NzcYGZmBjMzM7i4uGD27NkA3g1rlA2Z8/Lykg9LVHU+F3Tjxg306dMHlStXhpGRERo2bIilS5ciNzdXoV5xf99UkQ2/vHPnDiZNmgQbGxuYmJigY8eO+PPPPwEA4eHhaNGiBYyNjWFnZ4cNGzao3NamTZvk9SwtLeHt7Y3z588r1cvLy8PixYthb28PIyMjNG7cGGFhYWpjjI+PR2BgIGrXrg0DAwPY2tri008/VTqGxVWwndljQUT0L/HVV18hNzcXX3zxBbKysrBixQp4e3tj+/btGDVqFD799FMMHToUu3fvxuzZs2Fvb69wN/3IkSPo27cvHBwcEBQUhEqVKuHixYuYPXs2rl27hj179sjr7t+/HzExMRg4cCDq1KmD5ORkbNu2DX379kVYWBiGDBmiFJ+Pjw+kUilmz56N5ORkrFy5Et27d0dsbCzMzc0BAM+ePcOff/6JiRMnarzf9erVAwBs3LgRkyZNUnuBXJC6oUiqLmBkNm/eDDMzM/Tr1w+mpqbo0aMHtm3bhnnz5kFHR7N7bbJEqEqVKmrreHt7o3r16ti+fbtSW/z999+4dOkSJk6cCH19fQAlOx7amDVrFhYuXIguXbpg/vz50NHRwf79+zFgwACsXr0a48aN02g7H330EQDg119/RZcuXQqtW9i5kZWVhWXLlqFfv37o1asXTE1NcfnyZWzevBnnz59HdHQ0DAwMYGVlBV9fX0RERODFixeoVKmSfBt5eXkICwtDkyZN0KxZMwDvkoo2bdrg0aNHGDlyJBo1aoT4+HisXbsWbm5uiIqKQp06dRRimTp1KrKzszFmzBhYWFigfv36AN5dqL948QJ+fn6oWbMmnj59ik2bNqFjx444c+YMPv74Y/k2du3ahcGDB6NevXr49ttvoaenh23btuHQoUNK+56dnY0uXbrgt99+w/DhwzF+/HikpaVh48aNaNu2Lc6dOwdXV1eNjocq2v6uAO+GsHXs2BH9+vVD//79ceXKFYSEhCAqKgqXL1+W9+jI2qRfv37yxP3s2bNYunQprl69ihMnTihsd/jw4QgLC4ObmxtmzpwJKysrxMTEYO/evZg3bx769u2L+Ph4bNiwATNmzECDBg0A/P9vhjpRUVHw9PSEvr4+xo0bh+rVq+PQoUP48ssvcf36dZUX4Jr8vhXF398fZmZmmDFjBp4/f44VK1bAx8cH8+fPx/Tp0xEYGIiRI0di8+bN+Oyzz9CwYUN4eHjI1//yyy+xdOlStG7dGosWLcLLly+xYcMGeHl5ISIiAt26dZPXnTJlCoKDg9GuXTtMnjwZiYmJGDdunMre10ePHuGjjz5CVlYWRo0ahXr16uHevXtYt24dzpw5g6ioKFhaWmq0j0W1MwQREZWrLVu2CACiefPm4u3bt/LyiIgIAUDo6emJy5cvy8vfvn0rqlevLtzd3eVlmZmZolq1auLjjz8W2dnZCttfuXKlACDOnDkjL8vIyFCK49WrV8LJyUk0aNBAodzf318AEIGBgQrlu3fvFgDEjz/+KC87ffq0ACCCg4NV7qu/v7+oU6eOQtn9+/eFhYWFACBq1aolhgwZIlatWiWioqJUbsPT01MAKPJP/jaTtZGVlZXw9/eXlx04cEAAEEePHlX6nDp16ghnZ2fx/Plz8fz5c/HgwQMREhIiLC0thZ6enrh586bK+GSmTp0qAIjbt28rlM+aNUsAENHR0fKy4hyPb7/9VgAQsbGx8jLZMVIFgMI+R0dHCwDi66+/Vqrbq1cvYW5uLtLT0+VlsvMz/+flp6enJ3r06KFyWX6FnRt5eXni9evXSuWbNm0SAMSuXbvkZYcPHxYAxJo1axTqRkZGCgBixYoV8rKJEycKIyMjce3aNYW6cXFxwtzcXKFdZPvp5OQkXr16pRSLqmOUkJAgKleuLLp27Sovy87OFra2tqJq1arixYsX8vKXL18Ke3t7AUBs2bJFXi77fh4/flxh22lpaaJWrVrC09NT6XMLksWe/zteGr8rQrz7HgAQq1atUiiXxb148WKFbWRlZSnFJzvnf//9d3nZrl27BAAxbNgwkZubq1A//79V7VtR2rRpI3R1dcX169flZXl5eWLAgAECgIiMjJSXF+f3TR3Zd7JHjx4iLy9PXh4cHCwACHNzc/Ho0SN5eWJiojA0NBSffPKJvCwmJkZIJBLRtm1bheP19OlTYWlpKerUqSNycnIU6nbo0EFeJsS777ZEIlH6vvr6+gqpVCoeP36sEPfly5eFrq6u+Pbbb+VlxWlvVe3MoVBERP8SgYGBMDAwkP9bdgfUzc1N4Y6lgYEBWrduLb9zDgC//PILnj17hhEjRiA1NRVJSUnyP7K7XCdPnpTXNzU1lf/99evXSE5OxuvXr9GhQwfcvXsX6enpSvFNnjxZ4d8dOnQAAIU4nj9/DgAKd5KLUrduXVy/fl1+l3znzp2YPHkyXF1d0aRJE0RHRyutY2RkhF9++UXln+HDh6v8nPDwcKSmpsLf319e1q1bN0ilUrXDoWJiYiCVSiGVSlG3bl2MHDkSVapUQUREBBo3blzofsk+Z/v27fIyIQR27NiBxo0bo0WLFvLykhyPkgoLC4NEIoG/v7/CeZKUlARfX1+8fPkSFy9e1Hh7lSpV0mg4RWHnhkQigbGxMYB3zzXIzmHZOZZ/SIqPjw+qVaum0K7Au3bW09PD0KFDAbxr67CwMLRr1w41atRQ2E9TU1O4u7srfCdkAgMDVT5Tkf8YZWRkIDk5Gbq6unBzc1OILzo6Gv/88w8CAgJgbW0tLzczM8Pnn3+utN0dO3bA2dkZLVu2VIgxKysLnTt3xvnz55GZmamiRTWjze+KjIWFBcaOHatQNnbsWFhYWCgM1zMwMJD3wuXk5CAlJQVJSUno1KkTAMXjKOs1WL58uVJvoaa9h6okJibit99+g6+vL5o0aSIvl0gkmDlzJgCoHGKoye9bUSZOnKjQ4ypra19fX9SqVUteLpVKUb9+fYVtR0REQAiB6dOnKxwvW1tbjBgxAg8fPpQPjZPVnTJlisKzNS1atEDnzp0VYkpLS8Phw4fh6+sLIyMjhXPMzs4ODg4OKr8HRVHXzhwKRUT0L1GwC1t2UWJvb69U19raWmHs+d27dwEAI0eOVLv9Z8+eyf+emJiIWbNmISIiQuVFYWpqKiwsLAqNr3LlygCgEIfsf6pCCLVxqGJnZ4fVq1dj9erViI+Px/nz5xEaGopDhw6hR48euH37tsIFqa6urvxipSBV45GBd8OgpFIpatasqfB8hLe3N/bs2YOkpCSl4U12dnby9y3IxiU7ODhotE+y5CEsLAyLFi2Cjo4Ozp07h7i4OCxdulShbkmOR0ndvXsXQgg4OzurrZP/XCmKEEKj4WtFnRu7d+/GihUrcPXqVfmzJzIpKSnyv8uSh5UrV+Kvv/6Ck5MTXr16hfDwcHh7e6NatWoA3iUyycnJOHnyJKRSqcrPVHUB6+TkpLLu/fv3MXPmTJw4cQKpqakq9w0AYmNjAUA+hCo/VWV3795FZmam2hiBd8P+8l+YFoc2vyv5t5H/YhcADA0NUbduXaVnVdauXYsff/wRt2/fRl5ensKy/Mfx77//ho2Njfx4lRZZ+zdq1EhpWYMGDaCjo6MUM6DZ71tRitvWDx8+1ChuWdmDBw/g6uoqj1/Vd7hhw4YKicKff/6JvLw8bN68GZs3b9Yobk2oi5eJBRHRv4S6WV00me1FdrG2bNky+fjygmxtbeV1vb29cffuXXzxxRdwdXWFpaUldHV1sWXLFuzcuVPpgqCwOPJfKMoujl68eFFkzOrY2NhgwIABGDBgAIYOHYqdO3fi6NGjSuO+iyM2NhZnzpyBEELtheOOHTswadIkhTJTU1O1CYwm/Pz8MGnSJJw+fRqdOnXC9u3boaurq7AvJT0e+am7sC/40L7s8yQSCY4dO6b2mKq6uFEnJSWl0ItimcLOjfDwcAwaNAitW7dGcHAwatWqBSMjI+Tm5qJLly5K++/n54eVK1di+/btWLBgAcLDw5GRkaHQGyU7Lzt16oQvv/xS4/1R1VuRkZGBdu3a4dWrV5g0aRJcXFxgbm4OHR0dLF68GKdPn9Z4+wUJIeDi4lLotL2atK862vyuFNfKlSsRFBQEb29vTJw4Eba2tjAwMMDTp08REBBQ5HlcnjT5fSvpNkpj2yUl+4xhw4YpfD/yk/UWlgYmFkRE/wGOjo4ANLsQvnHjBq5fv47Zs2crvTl506ZNWsUhuyAtzvCBwri7u2Pnzp14+vSpVtvZsmWLfAYaKysrpeWzZs1CSEiIUmKhrSFDhmDatGnYvn072rZti71796Jz586wsbGR1ymN4yHrzSn4QLOqO7OOjo44fvw4ateuLX8YtqTi4uKQk5NT5LAwoPBzIzQ0FEZGRjhz5ozChX1MTIzKbTVt2hRNmzbFjh07MH/+fGzfvl3+YLeMVCqFlZUV0tPTtUoOAeDUqVP4559/EBISovRiv1mzZin8W/ZmedlsQPmpKnN0dMTz58/RoUMHrYYAvU8PHjxAVlaWQq/F27dv8eDBA4W75qGhobCzs8OxY8cU9uX48eNK23RyckJERASePXtWaK+FppM5yMh6B27fvq20LCYmBnl5eSW6Q/++yWK6ffu20sPpd+7cUagj+29MTIzaujIODg6QSCTIysrS+nuQn7p2/neewUREVCw+Pj6oWrUqlixZovKOcGZmJl6+fAng/++eFbxbduvWLY2nN1VHKpWiUaNG8uksNfHrr7+qHEOel5cnn0WnYcOGJY4pLy8PW7duhYuLC0aPHo3+/fsr/Rk8eDBu3ryJy5cvl/hzVJFKpejatSvCw8MRFhaG9PR0pbuGpXE8ZL0wkZGRCuUrVqxQqit7BmXGjBlKU28CxRsGJTvOnp6eRdYt7NzQ1dWFRCJRuKMthMCCBQvUbs/f3x8PHz7Ezp07cfr0aQwaNAhGRkby5To6Ohg6dCj++OMPtdPoajrVprpjdPLkSaUpSV1dXWFjY4OtW7cqDP3JyMjAjz/+qLRtPz8/JCQkqO2xKM7xeF/S09Oxdu1ahbK1a9ciPT0dvXv3lpfJjmP+dsrJycGSJUuUtil7Fmb69OlKPRn51zczMwOgeS9o1apV0aZNGxw6dAi3bt1S2ObixYsBAH369NFoW2XJ19cXEokEy5YtUxgKGB8fjy1btqBOnTpo3ry5Qt2VK1cqfIevXLmi9BtQuXJldOvWDeHh4Sq/e0II+fNPxaGundljQUT0H2Bqaort27ejd+/eqF+/PkaOHAkHBwekpqYiJiYG4eHh2L9/P9q3b48GDRqgUaNGWLp0KV6/fo369evjr7/+wvr16+Hi4qLyYeniGDBgAObPn4/4+HiFO/PqLF++HBcuXEDPnj3RokULWFpaIiEhAfv27UN0dDS8vLzQvXv3Esdz8uRJPH78GKNGjVJbp1+/fpgzZw42b96MVq1alfizVPH398fBgwcRFBQES0tLhQsxAKVyPAYPHowZM2bg008/RUxMDCpVqoTjx4+rnJK3VatWmDNnDubMmYNmzZphwIABsLW1RXx8PKKjo3H06FFkZWVptG9Hjx5FlSpV4OXlpVF9dedG//79sW/fPnTo0AF+fn7Izs7GgQMHCp06eOjQoZg+fTrGjh2LvLw8lcM8Fi5ciAsXLmDgwIEYOHAg3N3dYWBggIcPH+Lo0aNo2bKl0jslVPHw8ED16tURFBSEuLg41KxZE9euXUNoaChcXFxw8+ZNeV09PT0sX74cQ4cORevWrTFq1Cjo6elh69atqFy5MmJjYxXuwn/xxRf45ZdfMG3aNJw+fRodOnSAhYUFHj16hFOnTsl7cspTvXr1MHfuXNy6dQstW7ZEdHQ0QkJC4OzsrDB9cP/+/fH111+ja9eu6Nu3L9LT07Fz5075A935DRgwAIMGDcL27dvx999/w9fXF9bW1vjrr79w4sQJ+cVqq1atoKOjg4ULFyIlJQWmpqawt7eHm5ub2niDg4Ph6emJjz/+WD4N6uHDh3HixAkMGTJE7TtzylP9+vUxbdo0LF26FO3atcOgQYPk081mZGQgLCxMnuA6Oztj3LhxWL16NTp06IB+/fohMTERq1evRtOmTZXef7Ju3Tp4eHigXbt28PPzQ/PmzZGXl4cHDx4gIiICfn5+mDNnTrFjVtXOnG6WiKicFTa9HwpMFSqjbnrRmzdviqFDhwpbW1uhr68vqlatKj766CMxb948kZycLK8XFxcn+vfvL6pUqSKMjY1Fq1atRHh4uNZTmQrxbnpEPT09sXz5cpVxF5xu9uLFi2LKlCnC1dVVVK1aVejp6QlLS0vh7u4uVqxYId68eaNQ39PTU5iamqqMR4j/n/pRNpVm//79BQBx48YNtesIIYSTk5OwtLSUT3tap04d0ahRo0LX0cTbt29FpUqVBAAxevRolXWKczxUlQkhxKVLl0SbNm2EoaGhqFy5shgzZoxISUlRew4dPnxYeHt7C2tra2FgYCBq1qwpunTpItatW6dQT910sxkZGcLU1FRMnTpV47Yo7NzYsGGDaNCggTA0NBTVq1cXY8aMEcnJyWrjF0KIHj16CADC0dFR7We+evVKzJs3TzRu3FgYGRkJMzMz4ezsLEaPHi0uXbqktJ/qptm8fv268PHxEVZWVsLMzEx4enqKc+fOqf1+7N69W7i4uAgDAwNRq1YtMWfOHBEeHq40fa4Q76aoDQ4OFq6ursLExESYmJgIBwcHMWTIEHHixAm1+1ZY7KX1u1KnTh3h6ekpoqOjhZeXlzAxMRFWVlZi2LBhIiEhQaFuTk6OWLRokahXr54wMDAQtWvXFtOmTRN37twRABSmNRXi3bSyq1evFs2bNxfGxsbCzMxMuLi4iDlz5ijU27p1q2jQoIHQ19cv9HzI79q1a6JXr17y89vZ2Vn873//U5ieVd0+F9VOBan7TsbGxqrcbyHe/Y4V/C0U4t33oFmzZsLQ0FCYm5uLTp06iXPnzinVy83NFQsWLBC1a9cWBgYGolGjRmLHjh1qY3n+/LmYOnWqcHR0FIaGhsLS0lI0btxYTJw4UWFK7OJO71uwnSVClMGTI0RE9EH5/PPPcfLkSfz5558KdysDAgLw66+/Ii4urvyCo2LZunUrRowYgdjYWPnzA8C7u5UzZ86Uz+6jKXXnxodgxYoVmDp1Ki5evAh3d/fyDkcjdnZ2sLOzU3irN5E6fMaCiIhK3bx585CcnIwtW7aUdyj0HmRmZmLJkiWYNm1asZIK4MM4N7KyspSeX8nIyMCaNWtQuXJlhXeYEP2X8BkLIiIqdVWrVkVaWlp5h0HvibGxMeLj40u07odwbjx48ABdu3bFJ598Ant7e8THx2Pbtm2IjY3FunXrlN4JQfRfwcSCiIiIqBRJpVK4u7sjLCwMiYmJ0NPTg4uLC5YsWYKBAweWd3hE7w2fsSAiIiIiIq3xGQsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItLa/wFGCgAT9KITYgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "shap.summary_plot(shap_values, shap_df['Feature'], plot_type=\"bar\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0cf0144f", - "metadata": {}, - "outputs": [], - "source": [ - "#!pip freeze > requirements.txt" - ] - }, - { - "cell_type": "markdown", - "id": "e6a30730", - "metadata": {}, - "source": [ - "## Filter not useful features" - ] - }, - { - "cell_type": "code", - "execution_count": 178, - "id": "49198917", + "execution_count": 162, + "id": "89a45ac4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "(76, 2)\n" - ] - }, - { - "data": { - "text/plain": [ - "115" - ] - }, - "execution_count": 178, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Displaying the sorted DataFrame\n", - "SHAP_feature_important_001 = shap_df[abs(shap_df['SHAP Value'])>0.001]['Feature'].tolist()\n", - "len(SHAP_feature_important)" - ] - }, - { - "cell_type": "markdown", - "id": "2c288254", - "metadata": {}, - "source": [ - "Retrain" - ] - }, - { - "cell_type": "code", - "execution_count": 175, - "id": "5ded83c7", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "76" - ] - }, - "execution_count": 175, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(SHAP_feature_unimportant)" - ] - }, - { - "cell_type": "code", - "execution_count": 184, - "id": "6551c804", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "115" - ] - }, - "execution_count": 184, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(SHAP_feature_important)" - ] + "\n", + " SHAP Values:\n", + " Feature SHAP Value\n", + "9 DAYS_BIRTH -0.333566\n", + "48 BASEMENTAREA_MODE -0.041073\n", + "18 FLAG_PHONE -0.025144\n", + "38 ELEVATORS_AVG -0.019287\n", + "106 AMT_REQ_CREDIT_BUREAU_YEAR -0.017173\n", + "16 FLAG_WORK_PHONE -0.017127\n", + "58 LIVINGAREA_MODE -0.016472\n", + "71 LIVINGAPARTMENTS_MEDI -0.015468\n", + "80 DAYS_LAST_PHONE_CHANGE -0.013490\n", + "12 DAYS_ID_PUBLISH -0.013208\n", + "43 LIVINGAPARTMENTS_AVG -0.012375\n", + "6 AMT_ANNUITY -0.012227\n", + "36 YEARS_BUILD_AVG -0.009523\n", + "27 REG_CITY_NOT_LIVE_CITY -0.009221\n", + "46 NONLIVINGAREA_AVG -0.008989\n", + "23 HOUR_APPR_PROCESS_START -0.007654\n", + "78 OBS_60_CNT_SOCIAL_CIRCLE -0.006926\n", + "206 ORGANIZATION_TYPE_Self-employed -0.006335\n", + "162 WEEKDAY_APPR_PROCESS_START_TUESDAY -0.005671\n", + "238 DAYS_EMPLOYED_ANOM -0.005632\n", + "128 NAME_FAMILY_STATUS_Civil marriage -0.004966\n", + "50 YEARS_BUILD_MODE -0.004278\n", + "236 EMERGENCYSTATE_MODE_No -0.003562\n", + "4 AMT_INCOME_TOTAL -0.003251\n", + "135 NAME_HOUSING_TYPE_Municipal apartment -0.002952\n", + "45 NONLIVINGAPARTMENTS_AVG -0.002776\n", + "19 FLAG_EMAIL -0.002630\n", + "88 FLAG_DOCUMENT_9 -0.002361\n", + "85 FLAG_DOCUMENT_6 -0.001893\n", + "126 NAME_EDUCATION_TYPE_Lower secondary -0.001813\n", + "21 REGION_RATING_CLIENT -0.001731\n", + "171 ORGANIZATION_TYPE_Construction -0.001649\n", + "64 YEARS_BUILD_MEDI -0.001611\n", + "211 ORGANIZATION_TYPE_Trade: type 3 -0.001562\n", + "76 OBS_30_CNT_SOCIAL_CIRCLE -0.001455\n", + "180 ORGANIZATION_TYPE_Industry: type 11 -0.001432\n", + "41 FLOORSMIN_AVG -0.001393\n", + "215 ORGANIZATION_TYPE_Trade: type 7 -0.001144\n", + "155 OCCUPATION_TYPE_Security staff -0.001071\n", + "192 ORGANIZATION_TYPE_Kindergarten -0.001046\n", + "204 ORGANIZATION_TYPE_Security -0.000984\n", + "230 WALLSMATERIAL_MODE_Mixed -0.000983\n", + "54 FLOORSMAX_MODE -0.000953\n", + "199 ORGANIZATION_TYPE_Postal -0.000951\n", + "132 NAME_FAMILY_STATUS_Widow -0.000859\n", + "143 OCCUPATION_TYPE_Drivers -0.000756\n", + "73 NONLIVINGAPARTMENTS_MEDI -0.000582\n", + "156 OCCUPATION_TYPE_Waiters/barmen staff -0.000567\n", + "59 NONLIVINGAPARTMENTS_MODE -0.000488\n", + "203 ORGANIZATION_TYPE_School -0.000458\n", + "161 WEEKDAY_APPR_PROCESS_START_THURSDAY -0.000426\n", + "140 OCCUPATION_TYPE_Cleaning staff -0.000415\n", + "153 OCCUPATION_TYPE_Sales staff -0.000409\n", + "137 NAME_HOUSING_TYPE_Rented apartment -0.000408\n", + "190 ORGANIZATION_TYPE_Industry: type 9 -0.000383\n", + "184 ORGANIZATION_TYPE_Industry: type 3 -0.000375\n", + "217 ORGANIZATION_TYPE_Transport: type 2 -0.000365\n", + "235 WALLSMATERIAL_MODE_Wooden -0.000354\n", + "197 ORGANIZATION_TYPE_Other -0.000326\n", + "110 NAME_TYPE_SUITE_Family -0.000318\n", + "60 NONLIVINGAREA_MODE -0.000295\n", + "165 ORGANIZATION_TYPE_Agriculture -0.000260\n", + "168 ORGANIZATION_TYPE_Business Entity Type 2 -0.000211\n", + "229 WALLSMATERIAL_MODE_Block -0.000199\n", + "151 OCCUPATION_TYPE_Private service staff -0.000037\n", + "219 ORGANIZATION_TYPE_Transport: type 4 -0.000016\n", + "237 EMERGENCYSTATE_MODE_Yes 0.000000\n", + "116 NAME_INCOME_TYPE_Businessman 0.000000\n", + "185 ORGANIZATION_TYPE_Industry: type 4 0.000000\n", + "141 OCCUPATION_TYPE_Cooking staff 0.000000\n", + "113 NAME_TYPE_SUITE_Other_B 0.000000\n", + "112 NAME_TYPE_SUITE_Other_A 0.000000\n", + "120 NAME_INCOME_TYPE_Student 0.000000\n", + "109 NAME_TYPE_SUITE_Children 0.000000\n", + "186 ORGANIZATION_TYPE_Industry: type 5 0.000000\n", + "187 ORGANIZATION_TYPE_Industry: type 6 0.000000\n", + "154 OCCUPATION_TYPE_Secretaries 0.000000\n", + "188 ORGANIZATION_TYPE_Industry: type 7 0.000000\n", + "189 ORGANIZATION_TYPE_Industry: type 8 0.000000\n", + "175 ORGANIZATION_TYPE_Government 0.000000\n", + "111 NAME_TYPE_SUITE_Group of people 0.000000\n", + "183 ORGANIZATION_TYPE_Industry: type 2 0.000000\n", + "152 OCCUPATION_TYPE_Realty agents 0.000000\n", + "139 OCCUPATION_TYPE_Accountants 0.000000\n", + "178 ORGANIZATION_TYPE_Industry: type 1 0.000000\n", + "174 ORGANIZATION_TYPE_Emergency 0.000000\n", + "167 ORGANIZATION_TYPE_Business Entity Type 1 0.000000\n", + "144 OCCUPATION_TYPE_HR staff 0.000000\n", + "133 NAME_HOUSING_TYPE_Co-op apartment 0.000000\n", + "177 ORGANIZATION_TYPE_Housing 0.000000\n", + "121 NAME_INCOME_TYPE_Unemployed 0.000000\n", + "179 ORGANIZATION_TYPE_Industry: type 10 0.000000\n", + "170 ORGANIZATION_TYPE_Cleaning 0.000000\n", + "164 ORGANIZATION_TYPE_Advertising 0.000000\n", + "176 ORGANIZATION_TYPE_Hotel 0.000000\n", + "148 OCCUPATION_TYPE_Low-skill Laborers 0.000000\n", + "182 ORGANIZATION_TYPE_Industry: type 13 0.000000\n", + "123 NAME_EDUCATION_TYPE_Academic degree 0.000000\n", + "102 AMT_REQ_CREDIT_BUREAU_DAY 0.000000\n", + "146 OCCUPATION_TYPE_IT staff 0.000000\n", + "101 AMT_REQ_CREDIT_BUREAU_HOUR 0.000000\n", + "86 FLAG_DOCUMENT_7 0.000000\n", + "99 FLAG_DOCUMENT_20 0.000000\n", + "201 ORGANIZATION_TYPE_Religion 0.000000\n", + "202 ORGANIZATION_TYPE_Restaurant 0.000000\n", + "100 FLAG_DOCUMENT_21 0.000000\n", + "205 ORGANIZATION_TYPE_Security Ministries 0.000000\n", + "207 ORGANIZATION_TYPE_Services 0.000000\n", + "208 ORGANIZATION_TYPE_Telecom 0.000000\n", + "209 ORGANIZATION_TYPE_Trade: type 1 0.000000\n", + "210 ORGANIZATION_TYPE_Trade: type 2 0.000000\n", + "212 ORGANIZATION_TYPE_Trade: type 4 0.000000\n", + "213 ORGANIZATION_TYPE_Trade: type 5 0.000000\n", + "214 ORGANIZATION_TYPE_Trade: type 6 0.000000\n", + "216 ORGANIZATION_TYPE_Transport: type 1 0.000000\n", + "218 ORGANIZATION_TYPE_Transport: type 3 0.000000\n", + "222 FONDKAPREMONT_MODE_not specified 0.000000\n", + "24 REG_REGION_NOT_LIVE_REGION 0.000000\n", + "17 FLAG_CONT_MOBILE 0.000000\n", + "14 FLAG_MOBIL 0.000000\n", + "227 HOUSETYPE_MODE_specific housing 0.000000\n", + "228 HOUSETYPE_MODE_terraced house 0.000000\n", + "231 WALLSMATERIAL_MODE_Monolithic 0.000000\n", + "232 WALLSMATERIAL_MODE_Others 0.000000\n", + "200 ORGANIZATION_TYPE_Realtor 0.000000\n", + "198 ORGANIZATION_TYPE_Police 0.000000\n", + "173 ORGANIZATION_TYPE_Electricity 0.000000\n", + "172 ORGANIZATION_TYPE_Culture 0.000000\n", + "83 FLAG_DOCUMENT_4 0.000000\n", + "81 FLAG_DOCUMENT_2 0.000000\n", + "96 FLAG_DOCUMENT_17 0.000000\n", + "191 ORGANIZATION_TYPE_Insurance 0.000000\n", + "89 FLAG_DOCUMENT_10 0.000000\n", + "84 FLAG_DOCUMENT_5 0.000000\n", + "97 FLAG_DOCUMENT_18 0.000000\n", + "193 ORGANIZATION_TYPE_Legal Services 0.000000\n", + "98 FLAG_DOCUMENT_19 0.000000\n", + "92 FLAG_DOCUMENT_13 0.000000\n", + "95 FLAG_DOCUMENT_16 0.000000\n", + "196 ORGANIZATION_TYPE_Mobile 0.000000\n", + "91 FLAG_DOCUMENT_12 0.000000\n", + "94 FLAG_DOCUMENT_15 0.000000\n", + "114 NAME_TYPE_SUITE_Spouse, partner 0.000009\n", + "25 REG_REGION_NOT_WORK_REGION 0.000020\n", + "150 OCCUPATION_TYPE_Medicine staff 0.000042\n", + "225 FONDKAPREMONT_MODE_reg oper spec account 0.000116\n", + "66 ELEVATORS_MEDI 0.000406\n", + "233 WALLSMATERIAL_MODE_Panel 0.000439\n", + "136 NAME_HOUSING_TYPE_Office apartment 0.000455\n", + "223 FONDKAPREMONT_MODE_org spec account 0.000460\n", + "138 NAME_HOUSING_TYPE_With parents 0.000465\n", + "93 FLAG_DOCUMENT_14 0.000479\n", + "125 NAME_EDUCATION_TYPE_Incomplete higher 0.000557\n", + "87 FLAG_DOCUMENT_8 0.000633\n", + "157 WEEKDAY_APPR_PROCESS_START_FRIDAY 0.000658\n", + "90 FLAG_DOCUMENT_11 0.000740\n", + "220 ORGANIZATION_TYPE_University 0.000749\n", + "103 AMT_REQ_CREDIT_BUREAU_WEEK 0.000751\n", + "149 OCCUPATION_TYPE_Managers 0.000761\n", + "166 ORGANIZATION_TYPE_Bank 0.000906\n", + "159 WEEKDAY_APPR_PROCESS_START_SATURDAY 0.000915\n", + "134 NAME_HOUSING_TYPE_House / apartment 0.000915\n", + "181 ORGANIZATION_TYPE_Industry: type 12 0.000935\n", + "226 HOUSETYPE_MODE_block of flats 0.000965\n", + "194 ORGANIZATION_TYPE_Medicine 0.001087\n", + "53 ENTRANCES_MODE 0.001118\n", + "55 FLOORSMIN_MODE 0.001554\n", + "130 NAME_FAMILY_STATUS_Separated 0.001619\n", + "158 WEEKDAY_APPR_PROCESS_START_MONDAY 0.001801\n", + "117 NAME_INCOME_TYPE_Commercial associate 0.001803\n", + "160 WEEKDAY_APPR_PROCESS_START_SUNDAY 0.001827\n", + "56 LANDAREA_MODE 0.002134\n", + "65 COMMONAREA_MEDI 0.002257\n", + "22 REGION_RATING_CLIENT_W_CITY 0.002608\n", + "119 NAME_INCOME_TYPE_State servant 0.002691\n", + "26 LIVE_REGION_NOT_WORK_REGION 0.002923\n", + "37 COMMONAREA_AVG 0.003138\n", + "52 ELEVATORS_MODE 0.003202\n", + "195 ORGANIZATION_TYPE_Military 0.003906\n", + "28 REG_CITY_NOT_WORK_CITY 0.004175\n", + "68 FLOORSMAX_MEDI 0.004421\n", + "29 LIVE_CITY_NOT_WORK_CITY 0.004517\n", + "69 FLOORSMIN_MEDI 0.004927\n", + "145 OCCUPATION_TYPE_High skill tech staff 0.004946\n", + "35 YEARS_BEGINEXPLUATATION_AVG 0.005053\n", + "39 ENTRANCES_AVG 0.005671\n", + "15 FLAG_EMP_PHONE 0.005734\n", + "44 LIVINGAREA_AVG 0.005972\n", + "74 NONLIVINGAREA_MEDI 0.006069\n", + "115 NAME_TYPE_SUITE_Unaccompanied 0.006625\n", + "72 LIVINGAREA_MEDI 0.006882\n", + "221 ORGANIZATION_TYPE_XNA 0.006898\n", + "47 APARTMENTS_MODE 0.007571\n", + "42 LANDAREA_AVG 0.007700\n", + "61 APARTMENTS_MEDI 0.007719\n", + "62 BASEMENTAREA_MEDI 0.007879\n", + "147 OCCUPATION_TYPE_Laborers 0.008165\n", + "234 WALLSMATERIAL_MODE_Stone, brick 0.008277\n", + "70 LANDAREA_MEDI 0.010861\n", + "51 COMMONAREA_MODE 0.011357\n", + "57 LIVINGAPARTMENTS_MODE 0.012132\n", + "67 ENTRANCES_MEDI 0.012134\n", + "142 OCCUPATION_TYPE_Core staff 0.012199\n", + "224 FONDKAPREMONT_MODE_reg oper account 0.012278\n", + "49 YEARS_BEGINEXPLUATATION_MODE 0.012613\n", + "104 AMT_REQ_CREDIT_BUREAU_MON 0.012872\n", + "33 APARTMENTS_AVG 0.014762\n", + "105 AMT_REQ_CREDIT_BUREAU_QRT 0.015237\n", + "20 CNT_FAM_MEMBERS 0.015664\n", + "63 YEARS_BEGINEXPLUATATION_MEDI 0.015961\n", + "3 CNT_CHILDREN 0.016433\n", + "2 FLAG_OWN_REALTY 0.020668\n", + "122 NAME_INCOME_TYPE_Working 0.020815\n", + "129 NAME_FAMILY_STATUS_Married 0.022137\n", + "8 REGION_POPULATION_RELATIVE 0.025300\n", + "124 NAME_EDUCATION_TYPE_Higher education 0.025362\n", + "82 FLAG_DOCUMENT_3 0.025981\n", + "40 FLOORSMAX_AVG 0.027632\n", + "169 ORGANIZATION_TYPE_Business Entity Type 3 0.030975\n", + "11 DAYS_REGISTRATION 0.031003\n", + "118 NAME_INCOME_TYPE_Pensioner 0.031810\n", + "163 WEEKDAY_APPR_PROCESS_START_WEDNESDAY 0.038489\n", + "131 NAME_FAMILY_STATUS_Single / not married 0.038651\n", + "0 NAME_CONTRACT_TYPE 0.038782\n", + "1 FLAG_OWN_CAR 0.038820\n", + "34 BASEMENTAREA_AVG 0.043547\n", + "127 NAME_EDUCATION_TYPE_Secondary / secondary special 0.045926\n", + "75 TOTALAREA_MODE 0.046424\n", + "10 DAYS_EMPLOYED 0.074603\n", + "13 OWN_CAR_AGE 0.086452\n", + "107 CODE_GENDER_F 0.090225\n", + "108 CODE_GENDER_M 0.104537\n", + "5 AMT_CREDIT 0.131086\n", + "79 DEF_60_CNT_SOCIAL_CIRCLE 0.142805\n", + "7 AMT_GOODS_PRICE 0.200348\n", + "77 DEF_30_CNT_SOCIAL_CIRCLE 0.217025\n", + "31 EXT_SOURCE_2 0.395599\n", + "30 EXT_SOURCE_1 0.433461\n", + "32 EXT_SOURCE_3 1.119356\n" + ] + } + ], + "source": [ + "pd.set_option('display.max_rows', None) # Show all rows\n", + "shap_df = pd.DataFrame({'Feature': feature_names['0'].tolist(), 'SHAP Value': shap_values[0]})\n", + "print(\"\\n SHAP Values:\")\n", + "# Sort shap_df by the 'SHAP Value' column in ascending order\n", + "sorted_shap_df = shap_df.sort_values(by='SHAP Value')\n", + "\n", + "# Print the sorted DataFrame\n", + "print(sorted_shap_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "id": "e50cfcb3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAOsCAYAAADX7yC0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVhV1f4G8Jd5OMigCMrkhISCikiggQNKl0lETQNzuGIOGOYEXc0RvXV/pqZcyxQtLXHOiUHEERVBMDCsSDKcAMUBEBQQEDi/P3g41+M54IENYvl+nofnxt5rrf3dm57uec9ea28lsVgsBhERERERkQDKrV0AERERERH99TFYEBERERGRYAwWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQnGYEFERERERIIxWBAREZFCtmzZgmfPnrV2GUT0mmKwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMCWxWCxu7SKIiIjo9ae0tqq1SyCiZiAOUW2RcXnHgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKsZd6OQUREr5XU1FQEBgbWu19FRQUpKSlITk7GrFmz4OXlhZUrV8q027RpE7777jssXrwYx44dw+XLlxU6/vLly+Hj46NQ2+rqasTFxeHQoUPIzc3FkydPoK+vD3Nzc/Tt2xdTpkyBurq6VJ/CwkJEREQgMTERd+/ehbKyMszMzODq6opx48ZBR0dHqn10dDRWrFhRb113797FiBEjMHz4cISGhkq2Ozg4SLVTU1ODsbExBg4ciA8//BD6+voyYz1+/Bj79u1DQkICsrOzUV5ejrZt28LGxgaenp5wdXWFkpISAMDHxwd5eXn1XpuVK1fCy8vrZZdQ4sKFCzh48CCysrJQWFgIdXV1mJiYwNvbG++99x40NDQUHouI6GUYLIiI3iDu7u5wdnaW2a6sXHsDu3///hg1ahQOHz6MYcOGYfDgwZI2GRkZ+P777zFgwACMGjUKHTt2xMiRIyX7i4qKsG7dOvTt2xejRo2SGr93794K17hkyRKcPHkSffr0wfjx46Grq4v79+8jMzMTO3bsgL+/v1Sw+OWXXzBv3jyUlpbC09MTfn5+qKmpQWpqKrZs2YLo6Gh89dVX6NSpk8I1NMTKygoTJkwAUBsaUlJSsGfPHqSkpGDXrl1QU1OTtP3tt98QHByMR48eYdCgQfDw8IBIJMLDhw+RmJiIf/3rX1iwYAHGjh0r6WNsbIygoCC5x+7Tp0+jas3KyoKKigp8fX1haGiI8vJypKenY926dbhw4QI2btwoCTVEREIxWBARvUGsra1f+o333LlzkZycjP/85z+ws7ODnp4eKioqEBoaCm1tbSxduhRAbQh53t27d7Fu3TqYmpo26lv15129ehUnT56Eq6sr1qxZI7O/qKhI6u5Dfn4+goODUV1dje+++w42NjaSfWPHjsWFCxcQEhKC+fPnY9euXdDU1GxSXc8zMjKSOj9/f3+EhITg7NmzOH/+PIYNGyapbf78+aioqMCWLVtgZ2cnNc7UqVNx8eJFPH78WGq7SCRq8vV70eTJk2W2+fv744svvsCPP/6IjIwM2NraNsuxiIi4xoKIiKSIRCIsXboUhYWFWL16NQDgm2++wc2bNxEcHAwjI6MWO3Z2djYA2SlHdfT19aGq+r/vxCIiIvDo0SMEBQVJhYo6Li4uGDduHG7fvo3IyMiWKRqAo6MjACAnJ0eqtsLCQnz88ccyoaLOgAED4O7u3mJ11adDhw4AgCdPnrzyYxPR3xfvWBARvUHKy8tRVFQks11VVVXqToCjoyPGjBmDH3/8EUZGRtizZw8GDRqE4cOHt2h9ZmZmAIDTp0/D09MTurq6DbY/c+YM1NTUGly/MWrUKERERODMmTPw8/Nr1nrr5ObmAoBUvXW1Nfaa1dTUyP0bAYCenl6Tpi6Vlpbi2bNnKCkpwZUrV7Bjxw7o6enxbgURNSsGCyKiN0h4eDjCw8Nltru4uCAsLExq2+zZs5GUlISIiAjo6elh0aJFLV6fjY0NBg4ciISEBHh5eaF3796wtbWFra0tHB0dpaYylZaWIi8vD5aWlg1OcbKwsIBIJEJWVlaz1FhVVSX54P/kyRNcvHgRP/74I7S1tTFkyJBG1SbPrVu34ObmJnffqVOn5C4Qf5kVK1bgzJkzkt9tbW2xYMECtGnTptFjERHVh8GCiOgNMmrUKLkfWg0MDGS2qampQSQSAQB69OgBQ0PDFq8PANasWYODBw8iNjYWaWlpuHTpEoDaKVrTpk2TLJwuLS0FAJknPskjEolQUFDQLPUlJyfLXENra2ssXLgQbdu2laqt7vo1homJCRYvXix3nyLnKs/06dPx3nvv4dGjR0hLS8Off/6J4uLiJo1FRFQfBgsiojeIhYUFnJycFGr73Xff4dq1a7CyskJycjLi4uLg4eHRwhXWTsvy8/ODn58fysvLkZmZicTEROzbtw9hYWEwNDSUPF0JAEpKSl46ZmlpaZM+lMubdmRra4uZM2dCLBbj3r172L17Nx48eCC19qOutrKyskYfU1NTU+G/kaIsLS1haWkJAPDw8MDBgwcxe/ZsuYvKiYiaiou3iYhIRmZmJrZt24b+/ftj27ZtsLCwwJo1a5rtW39FaWpqws7ODkFBQZKF5FFRUQBqP7x36NABt2/fRnl5eb1j5OTkoLS0VPLBGoDk/Q319Xv69KlUu+fp6+vDyckJ/fv3x8iRI7F161aoqKhgwYIFkvFEIhE6duyIW7duNVhba6l76tTBgwdbuRIi+jthsCAiIimVlZVYtmwZtLS0sGTJEmhqamLZsmV48uQJVq1a1Wp19erVCwDw4MEDyTZXV1c8e/YMMTEx9fY7cuSIpG0dExMTAMDNmzfl9qnbXteuIXp6epg5cybu3LmD3bt3y9QWGxv70jFetWfPnqGmpkbmUbdEREIwWBARkZTw8HDcuHED8+bNkzyW1M7ODn5+foiPj0dcXFyLHTs7O1vqka3PO3v2LACgS5cukm2TJk2Cnp4eNm7ciMzMTJk+Fy9exK5du2BhYSH1Mj9ra2sYGxvjxIkTePjwoVSfZ8+eYf/+/VBSUsKgQYMUqtvLywumpqbYuXOnZGrWpEmTYGBggA0bNuCXX36R2y85ORnHjx9X6BhNkZ+fL3f73r17AfwvrBERNQeusSAieoNkZmbW+w36kCFDcP36dezcuRPOzs7w9fWV2h8UFITExESsWbMGb7/9Ntq1a9fs9V27dg2LFi2Cvb09+vXrByMjIzx9+hQZGRk4efKkZAF3nfbt2+PLL79EcHAwAgIC4OHhgV69eqGmpgZpaWk4ffo0OnTogHXr1kk9nUlVVRWffvopQkJC4O/vD19fX5iZmaGwsBAnTpzAjRs3EBAQgM6dOytUt6qqKgICAvDZZ59h7969mDp1KgwNDbF+/XoEBwdj6tSpGDx4MOzt7SVv3r548SLS09OxcOFCqbFKS0vr/RtZWlrCyspK4evp5+cHOzs7WFtbo3379igqKsKlS5dw6dIlWFpaYty4cQqPRUT0MkpisVjc2kUQEVHLSk1NRWBgYINt9u7diwULFqCwsBD79+9H+/btZdqkp6dj+vTpGDx4sMybse/evYsRI0Zg+PDhCA0NbVKdhYWFiI2NxaVLl3Dz5k0UFhZCLBbD2NgYDg4OmDRpEszNzWX65efnY+fOnbhw4QLy8vKgrKwMc3NzDBkyBB988EG9C7czMjKwY8cOpKeno6ioCFpaWnjrrbcwZswYvPvuuzLtHRwc5D6aF6h9DO3IkSNRWlqK6OhoyTGLi4uxb98+JCQkIDs7GxUVFWjbti1sbW3h7e2NwYMHS8bw8fFBXl5evddnypQp+Oijj152GSW+/fZbJCcnIzs7G8XFxdDU1ESnTp3g6uoKf39/aGlpKTwWACitrWpUeyJ6PYlDWubeAoMFERERKYTBgujvoaWCBddYEBERERGRYFxjQURELa64uBjPnj1rsI2mpmaTXwD3JikrK3vp+zFUVFTkvvSQiKglMVgQEVGL++STT3D58uUG2whZm/EmiYiIwNatWxts07FjR0RHR7+iioiIajFYEBFRi5s3b95L35kgb7E4yfL29n7p27LlvdiPiKilcfE2ERERKYSLt4n+Hrh4m4iIiIiIXlucCkVEREQKCdfdhoCAAKipqbV2KUT0GuIdCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsGUxGKxuLWLICIiotef0tqq1i6B6C9HHKLa2iW8MrxjQUREREREgjFYEBERERGRYAwWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQn25ryxg4joDZaamorAwMB696uoqCAlJQXJycmYNWsWvLy8sHLlSpl2mzZtwnfffYfFixfj2LFjuHz5skLHX758OXx8fBRqW11djbi4OBw6dAi5ubl48uQJ9PX1YW5ujr59+2LKlClQV1eX6lNYWIiIiAgkJibi7t27UFZWhpmZGVxdXTFu3Djo6OhItY+OjsaKFSvqrevu3bsYMWIEhg8fjtDQUMl2BwcHqXZqamowNjbGwIED8eGHH0JfX19mrMePH2Pfvn1ISEhAdnY2ysvL0bZtW9jY2MDT0xOurq5QUlICAPj4+CAvL6/ea7Ny5Up4eXm97BJKpKWl4dSpU7h8+TLu3bsHNTU1WFhY4P3334e7u7vkuEREzYHBgojoDeLu7g5nZ2eZ7crKtTew+/fvj1GjRuHw4cMYNmwYBg8eLGmTkZGB77//HgMGDMCoUaPQsWNHjBw5UrK/qKgI69atQ9++fTFq1Cip8Xv37q1wjUuWLMHJkyfRp08fjB8/Hrq6urh//z4yMzOxY8cO+Pv7SwWLX375BfPmzUNpaSk8PT3h5+eHmpoapKamYsuWLYiOjsZXX32FTp06KVxDQ6ysrDBhwgQAtaEhJSUFe/bsQUpKCnbt2gU1NTVJ299++w3BwcF49OgRBg0aBA8PD4hEIjx8+BCJiYn417/+hQULFmDs2LGSPsbGxggKCpJ77D59+jSq1q+++goPHjzAkCFDYGlpiadPn+LkyZNYsmQJUlNTsWTJkiZcASIi+RgsiIjeINbW1i/9xnvu3LlITk7Gf/7zH9jZ2UFPTw8VFRUIDQ2FtrY2li5dCqA2hDzv7t27WLduHUxNTRv1rfrzrl69ipMnT8LV1RVr1qyR2V9UVCR19yE/Px/BwcGorq7Gd999BxsbG8m+sWPH4sKFCwgJCcH8+fOxa9cuaGpqNqmu5xkZGUmdn7+/P0JCQnD27FmcP38ew4YNk9Q2f/58VFRUYMuWLbCzs5MaZ+rUqbh48SIeP34stV0kEjX5+r3o448/hp2dHVRUVCTbxo0bh8DAQBw5cgT+/v6wtLRslmMREXGNBRERSRGJRFi6dCkKCwuxevVqAMA333yDmzdvIjg4GEZGRi127OzsbACyU47q6OvrQ1X1f9+JRURE4NGjRwgKCpIKFXVcXFwwbtw43L59G5GRkS1TNABHR0cAQE5OjlRthYWFkg/38gwYMADu7u4tVle/fv2kQgVQe3dq6NChAIDr16+32LGJ6M3DYEFE9AYpLy9HUVGRzE9JSYlUO0dHR4wZMwbHjx/Hf//7X+zZsweDBg3C8OHDW7Q+MzMzAMDp06dlvsmX58yZM1BTU2tw/UbdtKwzZ840T5Fy5ObmAgB0dXVlamvsNaupqZH7NyoqKoJYLG6Weh88eAAAaNeuXbOMR0QEcCoUEdEbJTw8HOHh4TLbXVxcEBYWJrVt9uzZSEpKQkREBPT09LBo0aIWr8/GxgYDBw5EQkICvLy80Lt3b9ja2sLW1haOjo5SU5lKS0uRl5cHS0vLBqc4WVhYQCQSISsrq1lqrKqqQlFREQDgyZMnuHjxIn788Udoa2tjyJAhjapNnlu3bsHNzU3uvlOnTsldIN4YDx8+xOHDh2FqalrvnRQioqZgsCAieoOMGjVK7odWAwMDmW1qamoQiUQAgB49esDQ0LDF6wOANWvW4ODBg4iNjUVaWhouXboEoHaK1rRp0yQLp0tLSwFA5olP8ohEIhQUFDRLfcnJyTLX0NraGgsXLkTbtm2laqu7fo1hYmKCxYsXy92nyLk2pLy8HCEhISgrK8O6deukppUREQnF/6IQEb1BLCws4OTkpFDb7777DteuXYOVlRWSk5MRFxcHDw+PFq4QUFVVhZ+fH/z8/FBeXo7MzEwkJiZi3759CAsLg6GhoeTpSgBkpnHJU1pa2qQP5fIex2pra4uZM2dCLBbj3r172L17Nx48eCD1Ib2utrKyskYfU1NTU+G/UWNUVFQgODgYV69eRWhoKPr27dvsxyCiNxvXWBARkYzMzExs27YN/fv3x7Zt22BhYYE1a9Y027f+itLU1ISdnR2CgoIkC8mjoqIA1H5479ChA27fvo3y8vJ6x8jJyUFpaanU0480NDQAoN5+T58+lWr3PH19fTg5OaF///4YOXIktm7dChUVFSxYsEAynkgkQseOHXHr1q0Ga3tVKioqEBISgkuXLmHJkiXN9tQpIqLnMVgQEZGUyspKLFu2DFpaWliyZAk0NTWxbNkyPHnyBKtWrWq1unr16gXgfwuPAcDV1RXPnj1DTExMvf2OHDkiaVvHxMQEAHDz5k25feq217VriJ6eHmbOnIk7d+5g9+7dMrXFxsa+dIyWVBcqkpOTsXjxYowYMaJV6yGivy8GCyIikhIeHo4bN25g3rx56NChAwDAzs4Ofn5+iI+PR1xcXIsdOzs7W+qRrc87e/YsAKBLly6SbZMmTYKenh42btyIzMxMmT4XL17Erl27YGFhIfUyP2traxgbG+PEiRN4+PChVJ9nz55h//79UFJSwqBBgxSq28vLC6ampti5c6dkatakSZNgYGCADRs24JdffpHbLzk5GcePH1foGE1RWVmJTz75BMnJyfj000+lrgERUXPjGgsiojdIZmZmvd+gDxkyBNevX8fOnTvh7OwMX19fqf1BQUFITEzEmjVr8Pbbb7fIo0qvXbuGRYsWwd7eHv369YORkRGePn2KjIwMnDx5UrKAu0779u3x5ZdfIjg4GAEBAfDw8ECvXr1QU1ODtLQ0nD59Gh06dMC6deukns6kqqqKTz/9FCEhIfD394evry/MzMxQWFiIEydO4MaNGwgICEDnzp0VqltVVRUBAQH47LPPsHfvXkydOhWGhoZYv349goODMXXqVAwePBj29vaSN29fvHgR6enpWLhwodRYpaWl9f6NLC0tYWVlpfD1XLJkCZKSkiRP1Hpx3O7du6N79+4Kj0dE1BAlcXM9FJuIiF5bqampCAwMbLDN3r17sWDBAhQWFmL//v1o3769TJv09HRMnz4dgwcPlnkz9t27dzFixAgMHz4coaGhTaqzsLAQsbGxuHTpEm7evInCwkKIxWIYGxvDwcEBkyZNgrm5uUy//Px87Ny5ExcuXEBeXh6UlZVhbm6OIUOG4IMPPqh34XZGRgZ27NiB9PR0FBUVQUtLC2+99RbGjBmDd999V6a9g4OD3EfzArWPoR05ciRKS0sRHR0tOWZxcTH27duHhIQEZGdno6KiAm3btoWtrS28vb0xePBgyRg+Pj7Iy8ur9/pMmTIFH3300csuo8LjTZs2DTNmzFB4PKW1VQq3JaJa4pA353t8BgsiIiJSCIMFUeO9ScGCayyIiIiIiEiwNydCERFRqykuLsazZ88abKOpqSn4BXBvgrKyspe+H0NFRUXuSw+JiFoSgwUREbW4Tz75BJcvX26wjZC1GW+SiIgIbN26tcE2HTt2RHR09CuqiIioFoMFERG1uHnz5uHx48cNtpG3WJxkeXt7w87OrsE28l7sR0TU0rh4m4iIiBTCxdtEjcfF20RERERERI3AYEFERERERIK9OfdmiIiISJBw3W0ICAiAmppaa5dCRK8h3rEgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISTEksFotbuwgiIiJ6/SmtrWrtEqgZiENUW7sE+pviHQsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIML4hhYjoDZCamorAwMB696uoqCAlJQXJycmYNWsWvLy8sHLlSpl2mzZtwnfffYfFixfj2LFjuHz5skLHX758OXx8fBRqW11djbi4OBw6dAi5ubl48uQJ9PX1YW5ujr59+2LKlClQV1eX6lNYWIiIiAgkJibi7t27UFZWhpmZGVxdXTFu3Djo6OhItY+OjsaKFSvqrevu3bsYMWIEhg8fjtDQUMl2BwcHqXZqamowNjbGwIED8eGHH0JfX19mrMePH2Pfvn1ISEhAdnY2ysvL0bZtW9jY2MDT0xOurq5QUlICAPj4+CAvL6/ea7Ny5Up4eXm97BJK5OfnY9++fcjMzMTVq1dRVFQkc05ERM2FwYKI6A3i7u4OZ2dnme3KyrU3sPv3749Ro0bh8OHDGDZsGAYPHixpk5GRge+//x4DBgzAqFGj0LFjR4wcOVKyv6ioCOvWrUPfvn0xatQoqfF79+6tcI1LlizByZMn0adPH4wfPx66urq4f/8+MjMzsWPHDvj7+0sFi19++QXz5s1DaWkpPD094efnh5qaGqSmpmLLli2Ijo7GV199hU6dOilcQ0OsrKwwYcIEALWhISUlBXv27EFKSgp27doFNTU1SdvffvsNwcHBePToEQYNGgQPDw+IRCI8fPgQiYmJ+Ne//oUFCxZg7Nixkj7GxsYICgqSe+w+ffo0qtZbt25h+/btMDY2Rs+ePZGUlNSEMyYiUgyDBRHRG8Ta2vql33jPnTsXycnJ+M9//gM7Ozvo6emhoqICoaGh0NbWxtKlSwHUhpDn3b17F+vWrYOpqWmjvlV/3tWrV3Hy5Em4urpizZo1MvuLioqk7j7k5+cjODgY1dXV+O6772BjYyPZN3bsWFy4cAEhISGYP38+du3aBU1NzSbV9TwjIyOp8/P390dISAjOnj2L8+fPY9iwYZLa5s+fj4qKCmzZsgV2dnZS40ydOhUXL17E48ePpbaLRKImX78X9ejRAydPnoSBgQGKiorg5ubWLOMSEcnDNRZERCRFJBJh6dKlKCwsxOrVqwEA33zzDW7evIng4GAYGRm12LGzs7MByE45qqOvrw9V1f99JxYREYFHjx4hKChIKlTUcXFxwbhx43D79m1ERka2TNEAHB0dAQA5OTlStRUWFuLjjz+WCRV1BgwYAHd39xarSyQSwcDAoMXGJyJ6HoMFEdEbpLy8HEVFRTI/JSUlUu0cHR0xZswYHD9+HP/973+xZ88eDBo0CMOHD2/R+szMzAAAp0+flvkmX54zZ85ATU2twfUbddOyzpw50zxFypGbmwsA0NXVlamtsdespqZG7t+oqKgIYrG4WesmImpOnApFRPQGCQ8PR3h4uMx2FxcXhIWFSW2bPXs2kpKSEBERAT09PSxatKjF67OxscHAgQORkJAALy8v9O7dG7a2trC1tYWjo6PUVKbS0lLk5eXB0tKywSlOFhYWEIlEyMrKapYaq6qqUFRUBAB48uQJLl68iB9//BHa2toYMmRIo2qT59atW/VOWTp16pTcBeJERK8DBgsiojfIqFGj5H5olTddRk1NDSKRCEDtXH1DQ8MWrw8A1qxZg4MHDyI2NhZpaWm4dOkSgNppPdOmTZMsnC4tLQUAmSc+ySMSiVBQUNAs9SUnJ8tcQ2trayxcuBBt27aVqq3u+jWGiYkJFi9eLHefIudKRNRaGCyIiN4gFhYWcHJyUqjtd999h2vXrsHKygrJycmIi4uDh4dHC1cIqKqqws/PD35+figvL0dmZiYSExOxb98+hIWFwdDQUPJ0JQAy07jkKS0tbdKH8rrHwD7P1tYWM2fOhFgsxr1797B79248ePBAau1HXW1lZWWNPqampqbCfyMiotcJ11gQEZGMzMxMbNu2Df3798e2bdtgYWGBNWvWNNu3/orS1NSEnZ0dgoKCJAvJo6KiANR+eO/QoQNu376N8vLyesfIyclBaWkpLC0tJds0NDQAoN5+T58+lWr3PH19fTg5OaF///4YOXIktm7dChUVFSxYsEAynkgkQseOHXHr1q0GayMi+jthsCAiIimVlZVYtmwZtLS0sGTJEmhqamLZsmV48uQJVq1a1Wp19erVCwDw4MEDyTZXV1c8e/YMMTEx9fY7cuSIpG0dExMTAMDNmzfl9qnbXteuIXp6epg5cybu3LmD3bt3y9QWGxv70jGIiP4OGCyIiEhKeHg4bty4gXnz5qFDhw4AADs7O/j5+SE+Ph5xcXEtduzs7GypR7Y+7+zZswCALl26SLZNmjQJenp62LhxIzIzM2X6XLx4Ebt27YKFhYXUy/ysra1hbGyMEydO4OHDh1J9nj17hv3790NJSQmDBg1SqG4vLy+Ymppi586dkqlZkyZNgoGBATZs2IBffvlFbr/k5GQcP35coWMQEb3uuMaCiOgNkpmZWe836EOGDMH169exc+dOODs7w9fXV2p/UFAQEhMTsWbNGrz99tto165ds9d37do1LFq0CPb29ujXrx+MjIzw9OlTZGRk4OTJk5IF3HXat2+PL7/8EsHBwQgICICHhwd69eqFmpoapKWl4fTp0+jQoQPWrVsn9XQmVVVVfPrppwgJCYG/vz98fX1hZmaGwsJCnDhxAjdu3EBAQAA6d+6sUN2qqqoICAjAZ599hr1792Lq1KkwNDTE+vXrERwcjKlTp2Lw4MGwt7eXvHn74sWLSE9Px8KFC6XGKi0trfdvZGlpCSsrq0Zd02+//RYAUFFRAQD4888/Jdvs7e1hb2/fqPGIiOqjJOZDsYmI/vZSU1MRGBjYYJu9e/diwYIFKCwsxP79+9G+fXuZNunp6Zg+fToGDx4s82bsu3fvYsSIERg+fDhCQ0ObVGdhYSFiY2Nx6dIl3Lx5E4WFhRCLxTA2NoaDgwMmTZoEc3NzmX75+fnYuXMnLly4gLy8PCgrK8Pc3BxDhgzBBx98UO/C7YyMDOzYsQPp6ekoKiqClpYW3nrrLYwZMwbvvvuuTHsHBwe5j+YFah9DO3LkSJSWliI6OlpyzOLiYuzbtw8JCQnIzs5GRUUF2rZtC1tbW3h7e2Pw4MGSMXx8fJCXl1fv9ZkyZQo++uijl11GmZrrM23aNMyYMUPhsZTWVjXq2PR6Eofwe2VqGQwWREREpBAGi78HBgtqKVxjQUREREREgjGyEhFRiysuLsazZ88abKOpqckXwCmgrKzspe/HUFFRkfvSQyKilsRgQURELe6TTz7B5cuXG2wjZG3GmyQiIgJbt25tsE3Hjh0RHR39iioiIqrFYEFERC1u3rx5ePz4cYNt5C0WJ1ne3t6ws7NrsI28F/sREbU0Lt4mIiIihXDx9t8DF29TS+HibSIiIiIiEoyRlYiIiBQSrrsNAQEBUFNTa+1SiOg1xDsWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQnGYEFERERERIIxWBARERERkWAMFkREREREJBiDBRERERERCcZgQUREREREgjFYEBERERGRYEpisVjc2kUQERHR609pbVVrl/C3Jg5Rbe0SiAThHQsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwfjAZCIiajaPHz+Gp6cnKioqsGLFCnh7e8u08fHxQV5eHvT09HDs2DGoq6vLtJk/fz7Onz8PAIiKigIAjBgxQuE6UlNTG1V3VVUVjh49iuPHj+PatWsoKSmBSCSCpaUlXF1dMXLkSGhqagIAQkNDERMTI+mrrKwMPT092Nra4p///Cfs7Oykxr579+5Laz969CiMjY0B/O/61NHS0oKuri66deuGd955B97e3mjTpo3MGA4ODnBxcUFYWBjCw8OxdetWhc59+PDhCA0NVagtEVFDGCyIiKjZHDt2DJWVlTA1NUVUVJTcYAEAGhoaKC4uxvnz5+Hm5ia1r6CgAImJidDQ0EBFRQUAwMDAACtXrpRqFx8fj/j4eAQEBKBLly5NrvnRo0eYP38+fv31V9ja2mLcuHEwNDTEkydP8PPPP2P9+vVIT0/HqlWrpPotXLgQ2traePbsGW7cuIHDhw8jKSkJmzZtgr29vcxxnJyc6r0eenp6Ur8bGxsjKCgIAFBZWYmHDx8iLS0Na9euxbZt2/D555/j7bffrvechg4dCnNzc6lt69atA1Ab2p5nZmZW7zhERI3BYEFERM0mMjISDg4OGDx4ML788kvk5ubK/eBqamoKZWVlREVFyQSLo0ePAgAGDhyIU6dOAaj91t7Ly0uqXU5ODuLj4+Hk5AQHB4cm1SsWi7FgwQL8+uuvCAkJgb+/v9T+CRMmIDs7W1LH89zc3KCvry/53d7eHsHBwYiIiJAbLCwsLGTOoT4ikUim7bRp05CWlob58+cjODgYu3btkgkPdbp3747u3btLbdu0aRMAKFwDEVFjcY0FERE1i8zMTFy7dg3e3t7w8PCAioqKZBqTPD4+PkhJScHDhw+ltkdHR8PFxQUGBgYtXTISEhJw+fJlvPvuuzKhoo6FhQWmTJny0rEcHR0BANnZ2c1a4/P69euHefPmoaysDN9//32LHYeIqCkYLIiIqFlERkZCW1sbw4YNg76+PgYOHIijR4+ipqZGbnsvLy8oKSlJrVf49ddfcfPmzUatpxDi9OnTAIDRo0cLHis3NxeA7LSmOpWVlSgqKpL5efLkSaOO4+XlBXV1dSQmJgqumYioOXEqFBERCVZRUYG4uDgMHToUWlpaAABvb2/Ex8fj4sWLcHZ2luljYGCAgQMHIjo6GgEBAQBqF2q3a9cOzs7OSE5ObvG6r1+/DgCwsrJqdN/i4mIAkKyxCAsLAwB4enrKbR8ZGYnIyEiZ7V27dsX+/fsVPq66ujosLCyQlZWF0tJSiESiRtdORNQSGCyIiEiw+Ph4PHnyBMOHD5dsq5vOFBUVJTdYAICvry/mzp2L9PR0WFtb48SJExg9ejRUVV/N/z2VlpYCQJM+nL/33ntSv+vo6GDOnDkYO3as3PaDBw/G+++/L7NdW1u70ceuq5fBgoheJwwWREQkWGRkJAwMDGBkZIScnBzJ9v79++PUqVMoKiqSWuhcZ8CAATA0NER0dDTu3LmD0tLSVzYNCvjfB/SysjLo6uo2qu/q1ashEolQVlaGs2fP4tixY5KnWMljZGQEJycnQfXWERKIiIhaCoMFEREJcufOHaSmpkIsFte7ViE2NhYffPCBzHYVFRV4e3vjwIEDuHHjBnr16iXo0bGN1a1bN2RmZuKPP/5o8PGt8tjb20vCkqurKzQ0NLB582b06NGj3js0zaGyshLZ2dkwNDRksCCi1wqDBRERCRIdHQ2xWIwlS5ZAR0dHZv+mTZsQFRUlN1gAtS++++GHH/Drr79i8eLFLV2ulKFDh+Lo0aM4cuRIo4PFi2bNmoWTJ09i/fr16N+/P1RUVJqpSmmxsbGorKyEi4tLi4xPRNRUDBZERNRkNTU1iI6OhqWlJUaOHCm3zY0bN7BlyxZkZGTAxsZGZn+nTp0QEhKC4uJivPvuuy1csbRBgwbB3t4ex48fh52dndz1ETk5OTh16pRkgXl9dHV14e/vj61bt+L48eMt8r6ItLQ0rF+/HiKRCJMnT2728YmIhGCwICKiJktOTsb9+/fh6+tbb5uhQ4diy5YtiIyMlBssANT7DomWpqSkhC+++ALz5s3DF198gdjYWAwaNAjt2rXDkydPkJ6ejvPnz2Po0KEKjefv74/du3fj22+/hbu7u9Rdi+zsbMTGxsrt5+joCENDQ8nvpaWlkraVlZXIz89Hamoq0tLS0LZtW3z++ed8YzYRvXYYLIiIqMnqHp/a0AdvS0tLWFhY4MSJE5g/f/6rKk1hBgYG+PbbbxETE4MTJ05g586dKCkpgY6ODrp3746QkBD4+PgoNJaenh7Gjh2L77//HseOHZN6SlZKSgpSUlLk9tu4caNUsLh//z6WLVsGANDQ0IC+vj66deuG4OBgeHt7o02bNgLOmIioZSiJxWJxaxdBRERErz+ltVWtXcLfmjiE3/fSXxvfvE1ERERERIIxGhMR0d9KdXU1Hj169NJ2enp6UFNTewUVERG9GRgsiIjob+X+/fsKvWRv8+bNcHBweAUVERG9GRgsiIjob6Vdu3bYuHHjS9tZWVm9gmqIiN4cDBZERPS3oqGhAScnp9Yug4jojcPF20REREREJBiDBRERERERCcapUERERKSQcN1tCAgI4NO0iEgu3rEgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISTEksFotbuwgiIiJ6/SmtrWrtEv7WxCGqrV0CkSC8Y0FERERERIIxWBARERERkWAMFkREREREJBiDBRERERERCcZgQUREREREgjFYEBERERGRYAwWREREREQkGIMFEREREREJxjexEBG1gMePH8PT0xMVFRVYsWIFvL29Zdr4+PggLy8Penp6OHbsGNTV1WXazJ8/H+fPnwcAREVFAQBGjBihcB2pqamNqru6uhrHjx9HXFwc/vjjDxQXF0NdXR2mpqbo27cvvL29YWNjI9OvpKQEe/fuRXx8PHJyclBdXQ0TExO4uLhgwoQJaNeundzjVVZW4tChQzhx4gRu3LiByspKGBkZwcnJCRMnToSZmZlMHwcHB8k/KykpQUtLCwYGBujevTsGDRqEf/zjH9DU1JTpl5+fj507dyIpKQn37t2DkpIS2rZtC2tra7z77rsYOnRoo65VaGgoYmJiJL8rKytDT08Ptra2mDx5Mvr06SPZN336dFy+fFnyu4qKCgwMDNC3b198+OGHsLS0lBo7NTUVgYGBmDNnDiZOnCi1TywWIz4+HtHR0fj9999RXFwMTU1NdO3aFQMHDsTo0aOhp6cHAAgPD8fWrVvrPQdHR0d88803jTpvIqL6MFgQEbWAY8eOobKyEqampoiKipIbLABAQ0MDxcXFOH/+PNzc3KT2FRQUIDExERoaGqioqAAAGBgYYOXKlVLt4uPjER8fj4CAAHTp0qXJNRcVFSE4OBhXrlxBjx498N5778HY2BiVlZW4ceMGzp07h/3792Pbtm3o3bu3pN/t27fx8ccfIy8vD66urvD19YWqqip+/fVX7NmzB1FRUVi/fr1Un7rzmz17Nv744w84OTlh+vTp0NbWxrVr1xATE4OYmBh8/vnnGDJkiEytVlZWmDBhAgCgvLwc9+7dQ3JyMlauXIlt27Zh9erVsLKykrTPy8vDP//5T5SWlsLDwwNjxowBAOTk5CAtLQ3R0dGNDhZ1Fi5cCG1tbVRWVuL69es4fPgwkpKS8M0336Bfv36Sdurq6liyZAkAoKKiAlevXkV0dDQSExOxY8cOdO7c+aXHKi8vx6effoqEhAR07doVo0ePRocOHfD06VP8+uuv+PbbbxEfH48dO3ZI9QsMDISJiYnMeIaGhk06ZyIieRgsiIhaQGRkJBwcHDB48GB8+eWXyM3Nlfvtu6mpKZSVlREVFSUTLI4ePQoAGDhwIE6dOgUA0NLSgpeXl1S7nJwcxMfHw8nJSerb/MYQi8VYsGABrly5gk8++QR+fn4ybYKDgxEdHS11Z6W8vBzz5s3DgwcPsH79eri4uEj2jR49GmPHjsVHH32E4OBg7N27V3LnQiwWY+HChfjjjz+waNEijB49WupYH3zwAWbMmIHFixdjx44d6Natm9R+IyMjmevw0Ucf4dSpU1iyZAlmz56N/fv3Q1dXFwAQERGBwsJCrF27Vm5Qyc/Pb9wFe46bmxv09fUlv9vZ2WHBggXYsWOHVLBQUVGRqnnUqFHo2rUr1q5di/379+Nf//rXS4/1n//8BwkJCZg4cSI+/vhjKCv/b0azv78/8vPzsW/fPpl+77zzDnr27NnEMyQiUgzXWBARNbPMzExcu3YN3t7e8PDwgIqKimQakzw+Pj5ISUnBw4cPpbZHR0fDxcUFBgYGLV0yEhISkJaWBg8PD7mhAgBUVVUxatQoWFtbS7YdOXIE2dnZGDdunFSoqNOzZ08EBQXh0aNHiIiIkDrezz//DDc3N5lQAQBmZmb49NNPUVFRgfDwcIXPw83NDZMmTUJ+fj72798v2Z6TkwOgduqPPM35zf2AAQOkjtmQt99+W+G2f/75J2JjY9GrVy/Mnj1bKlTUMTQ0RFBQUCMrJiJqHgwWRETNLDIyEtra2hg2bBj09fUxcOBAHD16FDU1NXLbe3l5QUlJSWq+/q+//oqbN282aj2FEKdPnwYAjBw5slH9zpw5AwByw0EdHx8fqKqqSto+f7xRo0bV28/Z2RnGxsZITExEZWWlwjXVnUNiYqJkW93dosOHD0MsFis8VlNkZ2cDgNRdjPrk5uYCgOTOSkPqrt/IkSOhpKTUqJpKSkpQVFQk81NeXt6ocYiIGsKpUEREzaiiogJxcXEYOnQotLS0AADe3t6Ij4/HxYsX4ezsLNPHwMAAAwcORHR0NAICAgDULtRu164dnJ2dkZyc3OJ1X79+HQCk1iXUKSoqkvpdQ0NDcm7Xr1+HSCSCubl5vWNramqic+fOyMrKQllZGbS1tSXHe/7ux4uUlJRgZWWFhIQEZGdnyyxwro+JiQlEIpHkAz4AjB8/HrGxsVi/fj12796Nvn37omfPnujbty969Oih0Lj1KS4uBgA8e/YMf/75J8LCwgBA7rqaumtZXl6OzMxMfPnllwAAT0/Plx4nKysLAPDWW281usaPPvpI7nZ5i8OJiJqKwYKIqBnFx8fjyZMnGD58uGRb3XSmqKgoucECAHx9fTF37lykp6fD2toaJ06cwOjRo6Gq+mr+M11aWgoAEIlEUtvLyspk1n6MHTsWCxYsAFD7Tbgi04jqxi0pKYG2trbkeDo6Og32q9tfUlKiwFlIH6+goEDyu5mZGfbs2YOIiAicP38ecXFxiIuLAwBYWlpi+fLlTQ4Y7733ntTvbdq0waxZs2S2P336VOZaGhoaIjQ0VO40shfV9zdSxIIFC2BhYSGzvVOnTo0ei4ioPgwWRETNKDIyEgYGBjAyMpKaN9+/f3+cOnUKRUVFcqfIDBgwAIaGhoiOjsadO3dQWlr6yqZBAf/7sFpaWio1LUdDQwMbN24EABQWFmLp0qVS/XR0dBT60P9ikHg+aNQ9GlWeurFfFkDkHe/FPiYmJliwYAEWLFiA/Px8pKen4+jRo0hISMDcuXOxf//+Bmupz+rVqyESiaCiogI9PT106dJFbiDU0NDAunXrANQ+jvjo0aNISUlReGrW83+jxrKxseHibSJqcQwWRETN5M6dO0hNTYVYLK53zUFsbCw++OADme0qKirw9vbGgQMHcOPGDfTq1UvQo2Mbq1u3bpJF588/WUpFRQVOTk4AgLt378rtd/nyZeTk5NQ7Haq8vBy3bt2CiYkJtLW1pY6XmZkpGV+ea9euQUNDQ+637fW5e/cuSktLZR5v+zxDQ0O4ubnBzc0NS5YsQVxcHBITE2WeNKUIe3t7hdZTKCsrS53rsGHDMHfuXHz++eewtrZG9+7dG+xvaWmJ+Ph4/PHHHw1OISMiai1cvE1E1Eyio6MhFouxZMkSrFq1SuanU6dODT4dasSIESgtLcWvv/76Su9WALUfcoHapzw1hqur60v7xcTEoKqqStJW0X5JSUm4f/8+3nnnHbkvD6xP3Zj1TTt7ka2tLQDgwYMHCh+jOSgrKyMkJARisViyLqMhddcsMjKyxRegExE1BYMFEVEzqKmpQXR0NCwtLTFy5EjJt+HP/7i7uyMrKwsZGRlyx+jUqRNCQkIwbdo0vPvuu6+0/oEDB8Le3h5xcXFy34MAQO6H2ZEjR8Lc3By7du1CUlKSzP7MzExs3LgRBgYGUouEBw8ejD59+uDkyZOIjIyU6Xf37l385z//gYaGBmbMmKHweZw6dQo7duxA+/bt8f7770u2p6amyn0CUk1NDRISEgAAXbt2Vfg4zcXCwgIeHh5ISUlBenp6g22trKzg5eWFX375BV9//bXcv0d+fr5k6hoR0avGqVBERM0gOTkZ9+/fh6+vb71thg4dii1btiAyMhI2NjZy2/j7+7dUiQ1SUlLC6tWrERwcjDVr1iAmJgYDBw6EsbExysvLkZubK3lJ3/NvcNbS0sK6devw8ccfY+7cuRg6dCj69esHFRUVZGRkIDY2Ftra2li7dq3UIm8lJSV88cUXmD17Nv7973/j1KlTcHZ2hqamJrKyshAdHY2qqip8/vnncp8G9eDBA8TGxgKofRJX3Zu3MzIyYG5ujjVr1qBNmzaS9jt37sSVK1cwcOBAWFtbQ0dHBwUFBThz5gyuXr0KBwcHhRZQt4SAgAAcO3YM4eHh2LRpU4NtFy1ahCdPnuCHH37AhQsXMHToUHTs2BFlZWXIyMhAfHy83OuVlJSEW7duyWzX0tKSupNERCQEgwURUTOo+9Z96NCh9baxtLSEhYUFTpw4gfnz57+q0hSmr6+P8PBwHD9+HMePH8eBAwdQXFwMDQ0NmJiYYMiQIfDx8ZFZBNylSxfs3bsXe/bsQXx8PBITE1FTU4MOHTrAz88PEyZMkPvkKENDQ2zfvh0HDx7EiRMnsGnTJjx79gzt27eHu7s7Jk2aJPdt5UDt2otly5YBqP1wbGBggO7du2Pp0qVwd3eHpqamVPsPP/wQp06dws8//4zk5GQUFxdDS0sLXbp0wdy5c/H+++/LfeHcq9C5c2e4ubnhxIkTSEtLk3pb94s0NTWxbt06nDlzBtHR0Th06BCKioqgpaWFrl27YurUqTJPowKAzZs3yx3PyMiIwYKImo2SmBM1iYiISAFKa6tau4S/NXEIv++lvzausSAiIiIiIsEYjYmI/qaqq6vx6NGjl7bT09ODmpraK6jo9VdSUiJ3kffz1NTUmvS+CyKivzsGCyKiv6n79+8r9NjazZs3S7274k22du1axMTENNjG3t4eW7ZseUUVERH9dXCNBRHR31RFRcVLH2EKAD169JB62/ab7MaNG3j48GGDbXR1ddGjR49XVNHrhWssWhbXWNBfHYMFERERKYTBomUxWNBfHRdvExERERGRYIzGREREpJBw3W0ICAjgYn8ikot3LIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsGUxGKxuLWLICIiotef0tqq1i7hL0kcotraJRC9ErxjQUREREREgjFYEBERERGRYAwWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYH6xMRPQXkpqaisDAQMnvysrKEIlEaN++PXr06AF3d3cMGDAASkpKcvtv2LABO3bsgLm5OQ4fPizZnpmZicmTJ8PBwQFff/213L6zZs1Camoqvv/+e1hbW6O6uhpxcXE4dOgQcnNz8eTJE+jr68Pc3Bx9+/bFlClToK6u3uRze5GKigpSUlIkvzs4OAAAunbtiv3798vt88EHH+DatWuS8euEh4dj69atkt+VlJTQpk0bWFtbY9y4cRg4cKBkX2hoKGJiYnDq1Cno6+s3eA4lJSXYu3cv4uPjkZOTg+rqapiYmMDFxQUTJkxAu3btAADr16/Hrl278Nlnn8HDw0NmnJycHIwbNw6Wlpb47rvvcP/+fYwYMaLBYx89ehTGxsYAAB8fH+Tl5Un2aWlpQVdXF926dcM777wDb29vtGnTpsHxiIgai8GCiOgvyN3dHc7OzhCLxSgrK8Pt27dx9uxZHD16FI6Ojvjiiy9kPjhWVVXh6NGjMDMzQ05ODtLS0tCvXz8AgLW1NaZMmYItW7bgwIEDGDNmjFTfgwcPIjk5GTNmzIC1tTUAYMmSJTh58iT69OmD8ePHQ1dXF/fv30dmZiZ27NgBf3//RgWLF8/tRcrKsjfZNTQ0cOPGDWRkZMDGxkZq39WrV3Ht2jVoaGigoqJC7rECAwNhYmKC6upqZGdn49ChQ5g3b169H/gbcvv2bXz88cfIy8uDq6srfH19oaqqil9//RV79uxBVFQU1q9fj969e+Ojjz5CUlIS1qxZAwcHBxgaGkrGqampQWhoKMRiMUJDQ6GioiLZ5+TkBG9vb7nH19PTk/rd2NgYQUFBAIDKyko8fPgQaWlpWLt2LbZt24bPP/8cb7/9dqPOkYioIQwWRER/QdbW1vDy8pLaNm/ePGzYsAG7du3C4sWLsWHDBqn9Fy5cQEFBATZt2oTFixcjKipKEiwAYMqUKUhISMCGDRswYMAAmJqaAgDy8vKwYcMG9OzZEwEBAQBqP7SfPHkSrq6uWLNmjUx9RUVF0NHRabZzq4+dnR0yMzMRHR0tEyyioqKgr68Pa2trJCcny+3/zjvvoGfPnpLfhw4diokTJ2Lbtm2NChbl5eWYN28eHjx4gPXr18PFxUWyb/To0Rg7diw++ugjBAcHY+/evWjXrh1WrFiBgIAAfPbZZwgLC5O03717N65cuYLg4GB07txZ6jgWFhYKXxuRSCTTdtq0aUhLS8P8+fMRHByMXbt2wdzcXOHzJCJqCNdYEBH9TaioqGDevHmws7NDUlIS0tPTpfZHRkbC1NQUDg4O8PDwwOnTp1FSUiLZr6qqihUrVqCqqgorVqyAWCyGWCzGypUrJdtUVWu/j8rOzgbwv+lIL9LX15e0bUlqamrw9PTE8ePHpe5KVFZW4vjx4/D09GxUHT169ICenh5ycnIaVceRI0eQnZ2NcePGSYWKOj179kRQUBAePXqEiIgIybaAgABcuHABR44cAQDcunULmzZtQr9+/eDv79+oGhTVr18/zJs3D2VlZfj+++9b5BhE9GZisCAi+pvx9fUFUHuHok5+fj6SkpLg7e0NJSUl+Pj4oLy8HCdOnJDq27VrV8ycOROXL1/G7t278eOPP+Knn37CzJkz0aVLF0k7MzMzAMDp06fx+PHjZq2/vLwcRUVFMj/Ph6DnjRgxAk+ePEF8fLxkW3x8PB4/fvzSdQkvKioqkqwVaYwzZ84AqL07UR8fHx+oqqpK2gLA1KlT8dZbb2H9+vXIzc2VhLfly5fLXSdTWVkp99o8efKkUfV6eXlBXV0diYmJjepHRNQQToUiIvqb6d69O4DaOf91YmJiUFNTI5mf3717d1hZWSEyMlLmw/D48eNx7tw5fPPNN1BWVkbfvn3xwQcfSLWxsbHBwIEDkZCQAC8vL/Tu3Ru2trawtbWFo6MjNDU1m1x/eHg4wsPDZba7uLhITRmqY2VlBWtra0RHR0umL0VFRaFHjx6Sa1GfkpISFBUVoaqqCtnZ2di4caPUdVLU9evXIRKJGpxWpKmpic6dOyMrKwtlZWXQ1taW3CWaNGkSJk+ejKKiIixZsgQmJiZyx4iMjERkZKTM9oYWsMujrq4OCwsLZGVlobS0FCKRSOG+RET1YbAgIvqbqfuQWFpaKtkWFRWFvn37StZNALXfoH/55Ze4fv06unXrJtmurKyM0NBQ+Pn5oaamBsuXL5e7cHrNmjU4ePAgYmNjkZaWhkuXLkmOP23aNEyYMKFJ9Y8aNQpubm4y2w0MDOrtM2LECKxduxb37t0DAPz000/45JNPXnqsjz76SOp3TU1NjB8/vsGnU8lTUlIitQC7PnV/m5KSEmhrawMALC0tMW3aNGzcuBH9+/fHyJEj6+0/ePBgvP/++zLb68ZqjOf/PWGwIKLmwGBBRPQ3Uxco6j4s/vzzz8jOzoaXl5fU2gFbW1soKysjMjIS8+fPlxrDzMwMbdu2lfyzPKqqqvDz84Ofnx/Ky8uRmZmJxMRE7Nu3D2FhYTA0NGz0k5WA2gXKTk5Ojerj4eGBsLAwxMTEAKhde+Hu7v7SfgsWLICFhQWUlZXRpk0bdO7cuUl3W3R0dOqdqvW8ur/Niwvbe/XqJfW/9TEyMmr0tXlZLQwVRNRcGCyIiP5m/vzzTwCQPFGoburM5s2bsXnzZpn2x44dw+zZswUtttbU1ISdnR3s7OzQr18/zJo1C1FRUU0KFk2hq6uLwYMHIyYmBmKxGIMHD4auru5L+9nY2Eg9FaqpunXrhsuXLyMnJ6fe6VDl5eW4desWTExMmnSHoTlVVlYiOzsbhoaGDBZE1GwYLIiI/mbqgoSzszNKS0tx+vRpODk5YdSoUTJts7Ky8O233+LcuXMYNmxYsxy/7lv3Bw8eNMt4ivL19cXJkycBAJ9++ukrPbarqysuX76MI0eO4OOPP5bbJiYmBlVVVXB1dX2ltckTGxuLyspKuU+wIiJqKgYLIqK/ierqanz11VdIT0+Hs7Mz7OzscPjwYTx9+hTvvfcehg4dKtPHxcUFO3fuRFRUVKOCRXZ2NpSUlOR+O3/27FkAkHqK1Kvg6OiIwMBAKCkpwdHR8ZUee+TIkdi/fz927dqFfv364Z133pHan5mZiY0bN8LAwAATJ058pbW9KC0tDevXr4dIJMLkyZNbtRYi+nthsCAi+gvKzMxEbGwsAEi9eTsvLw/9+/fH559/DqD27oWmpqbMB906dfvOnTuHBw8ewMjISKHjX7t2DYsWLYK9vT369esHIyMjPH36FBkZGTh58qRkAbfQc3vRkCFD6p1GpKysjKlTpzbpmIrYtWsXNDQ0ZLa//fbb6NOnD9atW4ePP/4Yc+fOxdChQ9GvXz+oqKggIyMDsbGx0NbWxtq1axVa5F2f7Ozseq+No6Oj1NilpaWStpWVlcjPz0dqairS0tLQtm1bfP755/WunyEiagoGCyKiv6Djx4/j+PHjUFZWhpaWFoyNjWFvbw93d3dJiLh+/Tp+++03uLq6NrggeejQoThz5gxiYmIwZcoUhY5vb2+P2bNn49KlS4iKikJhYSHEYjGMjY3h4+ODSZMmNfmNznXnJs/hw4dbbX3C9u3b5W5XVVVFnz590KVLF+zduxd79uxBfHw8EhMTUVNTgw4dOsDPzw8TJkwQFCoAICUlBSkpKXL3bdy4UWr8+/fvY9myZQAADQ0N6Ovro1u3bggODoa3tzfatGkjqBYiohcpicVicWsXQURERK8/pbVVrV3CX5I4hN/j0puBb94mIiIiIiLBGKGJiKjFPHv2DMXFxS9tZ2BgABUVlVdQERERtRQGCyIiajFXrlxR6C3WUVFRMDExeQUVERFRS2GwICKiFmNlZYWNGze+tF27du1eQTVERNSSGCyIiKjF6OrqwsnJqbXLICKiV4CLt4mIiIiISDAGCyIiIiIiEoxToYiIiEgh4brbEBAQADU1tdYuhYheQ7xjQUREREREgjFYEBERERGRYAwWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQnGYEFERERERIIxWBARERERkWAMFkREREREJJiSWCwWt3YRRERE9PpTWlvV2iW0GHGIamuXQPSXxzsWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQnGYEFERERERIIxWBARERERkWB8GwwR0WsiNTUVgYGBkt+VlZUhEonQvn179OjRA+7u7hgwYACUlJTk9t+wYQN27NgBc3NzHD58WLI9MzMTkydPhoODA77++mu5fWfNmoXU1FR8//33sLa2RnV1NeLi4nDo0CHk5ubiyZMn0NfXh7m5Ofr27YspU6ZAXV290ec2Z84cTJw4UbLdwcFB8s9KSkrQ0tKCgYEBunfvjkGDBuEf//gHNDU1FT7O854fGwDU1dVhbGyMgQMH4sMPP4Senp5UbdOmTcOMGTPqHcve3h5btmyRbPPx8UFeXp5U/W3btkWnTp3w3nvvwd3dXWqM0NBQxMTE4NSpU9DX16+37vraXbt2Dd9//z1+//13PHjwAFpaWmjfvj169eqF9957D9bW1lL1uri4ICwsTO4xpk+fjqtXryIhIaHeOoiIGovBgojoNePu7g5nZ2eIxWKUlZXh9u3bOHv2LI4ePQpHR0d88cUXaNOmjVSfqqoqHD16FGZmZsjJyUFaWhr69esHALC2tsaUKVOwZcsWHDhwAGPGjJHqe/DgQSQnJ2PGjBmSD6dLlizByZMn0adPH4wfPx66urq4f/8+MjMzsWPHDvj7+zcqWDTEysoKEyZMAACUl5fj3r17SE5OxsqVK7Ft2zasXr0aVlZWgsd+/PgxEhMTsXv3bqSkpGDnzp1QU1MTVLuxsTGCgoIAADU1NXjw4AFiYmKwePFi5OfnY/z48YLGr5OQkICQkBDo6+vD29sb5ubmePLkCbKzs5GYmAgLCwupYEFE1BoYLIiIXjPW1tbw8vKS2jZv3jxs2LABu3btwuLFi7Fhwwap/RcuXEBBQQE2bdqExYsXIyoqShIsAGDKlClISEjAhg0bMGDAAJiamgIA8vLysGHDBvTs2RMBAQEAgKtXr+LkyZNwdXXFmjVrZOorKiqCjo5Os52vkZGRzPl+9NFHOHXqFJYsWYLZs2dj//790NXVFTy2v78/5s2bh4SEBJw7dw5ubm6CaheJRDK1jx49Gh4eHoiJiWm2YPH1119DQ0MDO3bsgLGxsdS+mpoaFBcXN8txiIiE4BoLIqK/ABUVFcybNw92dnZISkpCenq61P7IyEiYmprCwcEBHh4eOH36NEpKSiT7VVVVsWLFClRVVWHFihUQi8UQi8VYuXKlZJuqau13TdnZ2QBkpxLV0dfXl7RtSW5ubpg0aRLy8/Oxf//+Zhu3f//+AICcnJxmG/N5urq60NDQEHw35Hk5OTno1KmTTKgAaqfMGRgYNNuxiIiaisGCiOgvxNfXF0DtHYo6+fn5SEpKgre3N5SUlODj44Py8nKcOHFCqm/Xrl0xc+ZMXL58Gbt378aPP/6In376CTNnzkSXLl0k7czMzAAAp0+fxuPHj1/BWdVv5MiRAIDExMRmG7MuUDS0zkFRNTU1KCoqQlFREQoKCvDHH3/g3//+N0pLSzF69GjB49cxMzPDjRs3cOXKFYX7VFVVSWp78aeqqqrZaiMiqsOpUEREfyHdu3cHANy+fVuyLSYmBjU1NfD29pa0sbKyQmRkpMyH2/Hjx+PcuXP45ptvoKysjL59++KDDz6QamNjY4OBAwciISEBXl5e6N27N2xtbWFrawtHR8cmL6ZuChMTE4hEIsldlMaq+3AN1K6xSEhIwIEDB6Cjo4PBgwcLru/WrVsy06k0NDSwaNEiSShqDtOnT8enn36KDz/8EJaWlujduzdsbGzw9ttvw8TERG6f5OTkBqd6aWlpNVt9REQAgwUR0V+KSCQCAJSWlkq2RUVFoW/fvpJ1E0DtE4u+/PJLXL9+Hd26dZNsV1ZWRmhoKPz8/FBTU4Ply5dDWVn25vWaNWtw8OBBxMbGIi0tDZcuXZIcf9q0aZIF0a+CSCRCQUFBk/rK+3BtZWWFRYsWoW3btoJrMzExweLFiwEAYrEY+fn5iI6OxqpVq6CqqooRI0YIPgZQOy3M0NAQe/bswaVLl3Do0CEcOnQIADBo0CAsXbpUZjqUra0tZs6cKXe8sLAw5ObmNkttRER1GCyIiP5C6gJFXcD4+eefkZ2dDS8vL6k1A7a2tlBWVkZkZCTmz58vNYaZmZnkQ3XdtKcXqaqqws/PD35+figvL0dmZiYSExOxb98+hIWFwdDQEB4eHi1xijJKS0ubvFj8+Q/X6urq6NixIzp06NCkseQ95ldTUxNOTk5S2zw8PDB+/HisWbMGgwYNapYpVwBgZ2cHOzs7iMViZGdnIzU1FQcOHMD58+exdOlSmUcJ6+vry9RW58WnihERNQcGCyKiv5A///wTANC5c2cAtYu2AWDz5s3YvHmzTPtjx45h9uzZghZba2pqSj7U9uvXD7NmzUJUVNQrCRZ3795FaWkpevfu3aT+DX24rlM3tau8vFzu/qdPnwKoneKkCFVVVTg6OmLPnj347bff4OLi0oiKX05JSQmdOnVCp06dMHz4cLz//vtITk7G/fv35S7uJiJ6VRgsiIj+QuqChLOzM0pLS3H69Gk4OTlh1KhRMm2zsrLw7bff4ty5cxg2bFizHL9Xr14AgAcPHjTLeC9z5MgRALXn21Lq1ijcunVL7v6bN28CgNRUs5epWxxdVlYmrLiX0NDQgJWVFe7cuYOHDx8yWBBRq2KwICL6C6iursZXX32F9PR0ODs7w87ODocPH8bTp0/x3nvvYejQoTJ9XFxcsHPnTkRFRTUqWGRnZ0NJSQnm5uYy+86ePQsAUk+RaimnTp3Cjh070L59e7z//vstdpy2bduid+/eSE5ORlZWFiwtLSX7ampqsGfPHgBQeLF3RUUFkpKSAKDZXlqXlJQk963rjx49wi+//AIVFRW5fy8ioleJwYKI6DWTmZmJ2NhYAJB683ZeXh769++Pzz//HEDt3QtNTU288847csep23fu3Dk8ePAARkZGCh3/2rVrWLRoEezt7dGvXz8YGRnh6dOnyMjIwMmTJyULuJvLgwcPJOdbUVEhefN2RkYGzM3NsWbNmhZfE/Cvf/0L06dPx+TJkzFy5Eh07twZJSUlOH/+PH755Rd4eHhI3n/xvNLSUkntYrEYDx8+xLFjx3Dnzh2MGjUKFhYWMn127dold1rV22+/jT59+sitb8GCBWjbti1cXFzQpUsXqKqq4s6dO4iNjUVBQQGmTZsGPT09gVeBiEgYBgsiotfM8ePHcfz4cSgrK0NLSwvGxsawt7eHu7u7JERcv34dv/32G1xdXRt8/OvQoUNx5swZxMTEYMqUKQod397eHrNnz8alS5cQFRWFwsJCiMViGBsbw8fHB5MmTWrWb8evXbuGZcuWAah9BKqBgQG6d++OpUuXwt3d/ZU83tba2hoRERHYvn074uPjkZ+fDw0NDXTt2hULFy6s950U9+/fl9QO1Ia5l/XZvn273O2qqqr1Bovly5cjMTERP/30E2JjY1FWVgY9PT1YW1tj/vz5zTbVjYhICCWxWCxu7SKIiIjo9ae09u/7Yj1xCL9rJRKKb94mIiIiIiLBGM+JiKhJnj17huLi4pe2MzAwgIqKSrMcMz8//6VtdHR0XunbwYmIqBaDBRERNcmVK1cQGBj40nZRUVGSR7oKpci7M5YvXw4fH59mOR4RESmOayyIiKhJHj9+jKtXr760nZ2dncIvl3uZlJSUl7bp1q0bDA0Nm+V4JI1rLIioIQwWREREpBAGCyJqCBdvExERERGRYIznREREpJBw3W0ICAiAmppaa5dCRK8h3rEgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEUxKLxeLWLoKIiIhef0prq1q7hBYhDlFt7RKI/hZ4x4KIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMD64mYiIWkRqaioCAwMlvysrK0MkEqF9+/bo0aMH3N3dMWDAACgpKcntv2HDBuzYsQPm5uY4fPiwZHtmZiYmT54MBwcHfP3113L7zpo1C6mpqfj+++9hbW2N6upqxMXF4dChQ8jNzcWTJ0+gr68Pc3Nz9O3bF1OmTIG6unqTzw0A1NXV0b59e9jb22PSpEno0qWL1H4HBwe4uLggLCxMsm369Om4fPmy5HcVFRUYGBigb9+++PDDD2FpaSn3WPXp2LEjoqOjER0djRUrVmDVqlVwc3OTaXf37l2MGDECY8eOxYIFCxQ+byKihjBYEBFRi3J3d4ezszPEYjHKyspw+/ZtnD17FkePHoWjoyO++OILtGnTRqpPVVUVjh49CjMzM+Tk5CAtLQ39+vUDAFhbW2PKlCnYsmULDhw4gDFjxkj1PXjwIJKTkzFjxgxYW1sDAJYsWYKTJ0+iT58+GD9+PHR1dXH//n1kZmZix44d8Pf3b1SwePHcAKCiogJ//vknIiMjcebMGezduxcdO3Z86Rjq6upYsmSJZIyrV68iOjoaiYmJ2LFjB7p06YKVK1dK9Tl8+DB+/vlnzJ8/H/r6+pLt2trajT4HIqLmwmBBREQtytraGl5eXlLb5s2bhw0bNmDXrl1YvHgxNmzYILX/woULKCgowKZNm7B48WJERUVJggUATJkyBQkJCdiwYQMGDBgAU1NTAEBeXh42bNiAnj17IiAgAABw9epVnDx5Eq6urlizZo1MfUVFRdDR0Wm2c7OwsMDatWtx5swZjB8//qVjqKioSI0xatQodO3aFWvXrsX+/fvxr3/9S+YYly5dws8//4whQ4bAxMSkSbUTETU3rrEgIqJXTkVFBfPmzYOdnR2SkpKQnp4utT8yMhKmpqZwcHCAh4cHTp8+jZKSEsl+VVVVrFixAlVVVVixYgXEYjHEYjFWrlwp2aaqWvvdWXZ2NoDaqUjy6OvrS9o2B0NDQwCAmppak8d4++23AQA5OTnNUhMR0avAYEFERK3G19cXQO0dijr5+flISkqCt7c3lJSU4OPjg/Lycpw4cUKqb9euXTFz5kxcvnwZu3fvxo8//oiffvoJM2fOlFrfYGZmBgA4ffo0Hj9+3Kz1l5eXo6ioCEVFRbh37x4SExPxzTffQF9fH0OHDm3yuLm5uQAAXV1dQfWVlZVJ6nv+p7mvAxERwKlQRETUirp37w4AuH37tmRbTEwMampq4O3tLWljZWWFyMhIjB49Wqr/+PHjce7cOXzzzTdQVlZG37598cEHH0i1sbGxwcCBA5GQkAAvLy/07t0btra2sLW1haOjIzQ1NZtcf3h4OMLDw6W2de3aFd9++63kzoUiioqKANQGlczMTHz55ZcAAE9PzybXBkBmbQYRUUtisCAiolYjEokAAKWlpZJtUVFR6Nu3r2TdBAD4+Pjgyy+/xPXr19GtWzfJdmVlZYSGhsLPzw81NTVYvnw5lJVlb8avWbMGBw8eRGxsLNLS0nDp0iXJ8adNm4YJEyY0qf5Ro0ZJnrpUWVmJGzduYNeuXZgzZw42b96s0OLtp0+fyjy5ydDQEKGhoXBxcWlSXXWmTZsGOzs7me2FhYVYunSpoLGJiF7EYEFERK2mLlDUBYyff/4Z2dnZ8PLyklpfYGtrC2VlZURGRmL+/PlSY5iZmaFt27aSf5ZHVVUVfn5+8PPzk9wVSExMxL59+xAWFgZDQ0N4eHg0un4LCws4OTlJfh84cCD69euHyZMnY8OGDfi///u/l46hoaGBdevWAQAeP36Mo0ePIiUlBWKxuNH1vKhbt25S9dW5e/eu4LGJiF7EYEFERK3mzz//BAB07twZQO2ibQDYvHkzNm/eLNP+2LFjmD17tqDF1pqamrCzs4OdnR369euHWbNmISoqqknBQh5bW1vo6OggNTVVofbKyspSH/6HDRuGuXPn4vPPP4e1tbVkuhgR0euOwYKIiFpNXZBwdnZGaWkpTp8+DScnJ4waNUqmbVZWFr799lucO3cOw4YNa5bj9+rVCwDw4MGDZhmvTnV1NZ49e9akvsrKyggJCcHYsWMRFhaGjRs3NmttREQthcGCiIheuerqanz11VdIT0+Hs7Mz7OzscPjwYTx9+hTvvfee3Ccqubi4YOfOnYiKimpUsMjOzoaSkhLMzc1l9p09exYAZN6SLURycjKePn2KPn36NHkMCwsLeHh44OjRo0hPT5e7ToKI6HXDYEFERC0qMzMTsbGxACD15u28vDz0798fn3/+OYDauxeampp455135I5Tt+/cuXN48OABjIyMFDr+tWvXsGjRItjb26Nfv34wMjLC06dPkZGRgZMnT0oWcAs9t7rF24cPH4aqqipmzpzZpDHrBAQE4NixYwgPD8emTZsEjUVE9CowWBARUYs6fvw4jh8/DmVlZWhpacHY2Bj29vZwd3eXhIjr16/jt99+g6ura4OPfx06dCjOnDmDmJgYTJkyRaHj29vbY/bs2bh06RKioqJQWFgIsVgMY2Nj+Pj4YNKkSXLvZjTm3IDaKUx6enro378/Jk+eDBsbmyaNWadz585wc3PDiRMnkJaWJvXmcSKi15GSuDkeO0FERER/e0prq1q7hBYhDuH3rETNgW/eJiIiIiIiwRjRiYiIADx79gzFxcUvbWdgYAAVFZVXUBER0V8LgwURERGAK1euIDAw8KXtoqKiYGJi8goqIiL6a2GwICIiAmBlZaXQOyPatWv3CqohIvrrYbAgIiICoKurK/UGbCIiahwu3iYiIiIiIsEYLIiIiIiISDBOhSIiIiKFhOtuQ0BAANTU1Fq7FCJ6DfGOBRERERERCcZgQUREREREgjFYEBERERGRYAwWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQnGYEFERERERIIxWBARERERkWBKYrFY3NpFEBER0etPaW1Va5fQJOIQ1dYugeiNwDsWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQnGYEFERERERIIxWBARERERkWB8YwwREcn1+PFjeHp6oqKiAitWrIC3t7dMGx8fH+Tl5UFPTw/Hjh2Durq6TJv58+fj/PnzAICoqCgAwIgRIxSuIzU1tdG1V1dXY/jw4Xj48CECAwMxdepUue2mT5+Oy5cvw9TUFAcOHICamprU/vDwcGzduhU7duxAz549JfUEBgYCABYvXoxRo0bJjOvg4AAXFxeEhYVJtvn4+AAAoqOj5dYSGhqKmJgYREVFwcTERO7xHRwcFL4Grq6uiI+Px2effQYPDw+Z/Tk5ORg3bhwsLS3x3XffQUVFReGxiYjkYbAgIiK5jh07hsrKSpiamiIqKkpusAAADQ0NFBcX4/z583Bzc5PaV1BQgMTERGhoaKCiogIAYGBggJUrV0q1i4+PR3x8PAICAtClSxfBtSclJeHhw4cwMzNDdHQ0PvzwQygpKdXb/s6dOzhw4ADGjRvXqONs2bIFnp6e0NTUFFqyQl68bj///DMOHz6MUaNGoW/fvlL7XF1dMWnSJKxZswYODg4wNDSU7KupqUFoaCjEYjFCQ0MZKoioWTBYEBGRXJGRkXBwcMDgwYPx5ZdfIjc3F2ZmZjLtTE1NoaysjKioKJlgcfToUQDAwIEDcerUKQCAlpYWvLy8pNrl5OQgPj4eTk5OjfpWvqHazczMMG/ePAQHByMtLa3ecTU0NGBqaorvvvsOI0aMgEgkUugYPXv2xO+//449e/YgICBAcM2KePG6VVdX4/Dhw+jdu7fMPgBYsWIFAgIC8Nlnn0ndPdm9ezeuXLmC4OBgdO7cuYWrJqI3BddYEBGRjMzMTFy7dg3e3t7w8PCAioqKZBqTPD4+PkhJScHDhw+ltkdHR8PFxQUGBgYtXbJEQUEBEhIS4O3tDWdnZ7Rt2xaRkZH1tldWVkZQUBCKioqwY8cOhY/j5uaGHj164IcffkBRUVEzVN78evbsiYCAAFy4cAFHjhwBANy6dQubNm1Cv3794O/v37oFEtHfCoMFERHJiIyMhLa2NoYNGwZ9fX0MHDgQR48eRU1Njdz2Xl5eUFJSQkxMjGTbr7/+ips3bzZqPUVzqKvT29sbqqqq8PDwwJkzZ1BSUlJvn8GDB8POzg67d+9Gfn6+QsdRUlLCrFmzUFJSgm3btjVX+c1u6tSpeOutt7B+/Xrk5uZixYoVUFVVxfLlyxucHkZE1FgMFkREJKWiogJxcXEYOnQotLS0AADe3t64f/8+Ll68KLePgYEBBg4cKLUwOSoqCu3atYOzs/Mrqfv54/bt21eyAHr48OGSc2rIxx9/jKdPn2LLli0KH8vJyQlOTk44cOAA8vLyBNXdUlRVVbFixQo8e/YMkydPxq+//op58+ZJrg8RUXNhsCAiIinx8fF48uQJhg8fLtlWN52poelQvr6+yM7ORnp6OsrLy3HixAl4eXlBVfXVLee7cuUKbt26JVW7lZUVrKysGqwdAPr06YMhQ4YgMjISt2/fVviYH3/8MZ49e4ZNmzY1ue6WZmlpiWnTpqGoqAj9+/fHyJEjW7skIvobYrAgIiIpkZGRMDAwgJGREXJycpCTk4O8vDz0798f58+fr3c9wYABA2BoaIjo6GicPn0apaWlr3waVGRkJFRVVfHWW29Jas/JycGAAQPw+++/488//2yw/6xZswAAX3/9tcLHtLa2hru7O+Li4l46viJaanpSr169pP6XiKi58alQREQkcefOHaSmpkIsFmP06NFy28TGxuKDDz6Q2a6iogJvb28cOHAAN27cQK9evZrl0bGKKisrw6lTp1BVVYXx48fLbRMVFYXg4OB6x+jcuTN8fHxw5MgR/Pbbbwofe+bMmTh9+jS++uorbNiwQW6busfy1ufp06eSdkREf0UMFkREJBEdHQ2xWIwlS5ZAR0dHZv+mTZsQFRUlN1gAtS++++GHH/Drr79i8eLFLV2ulJMnT6KsrAxBQUEwNzeX2b9v3z7ExsZi9uzZMi/Ce96MGTMQFxeHDRs2oF+/fgod29TUFGPGjMGePXvqfaGfiYkJbt26haKiIujr68vsv3nzJkQikdx9RER/BQwWREQEoPaladHR0bC0tKx3Dv6NGzewZcsWZGRkwMbGRmZ/p06dEBISguLiYrz77rstXLG0yMhI6OnpYeLEiXLXdZSXlyM0NBTnzp2Ted/G89q3b49x48Zh+/btKC8vV/j4H374IaKiouq9YzFkyBAkJSVh165dCAoKktp38eJF3LhxAx4eHlBW5ixlIvprYrAgIiIAQHJyMu7fvw9fX9962wwdOhRbtmxBZGSk3GABoFXejXDr1i388ssv8PHxqXex+KBBg6CqqorIyMgGgwUA/POf/8ShQ4fw+++/K1yDvr4+Jk6ciM2bN8vdP2LECMTFxWH79u34448/8Pbbb0NDQwN//PEHYmJi0K5dO8kaDyKivyJ+LUJERAAgeYnc0KFD621jaWkJCwsLnDhxolHf5re0utpdXV3rbaOrqwsHBwekpKTg3r17DY6no6ODKVOmNLqOCRMmwNDQUO4+VVVVfP3115g1axby8/MRHh6O9evXIzU1FaNHj8auXbvQoUOHRh+TiOh1oSQWi8WtXQQRERG9/pTWVrV2CU0iDuEEDaJXgXcsiIiIiIhIMEZ4IiJ6bVVXV+PRo0cvbaenp9fgk56IiKjlMVgQEdFr6/79+wq9ZG/z5s1wcHB4BRUREVF9GCyIiOi11a5dO2zcuPGl7aysrF5BNURE1BAGCyIiem1paGjAycmptcsgIiIFcPE2EREREREJxjsWREREpJBw3W0ICAjgQnkikot3LIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBGOwICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsGUxGKxuLWLICIiotef0tqq1i6h0cQhqq1dAtEbg3csiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiATjw52JiF5z5eXlOHToEM6cOYMbN26gtLQUenp6sLa2xrvvvgtPT0+oqkr/5/zy5cvYt28frly5gqKiIrRp0wY9evTA6NGjMWTIEJljhIaGIiYmRvK7uro6dHR00KlTJ9jZ2cHX1xdmZmYy/aZPn47Lly/XW3tgYCCmTp3a6HMuKSnBgQMHcP78edy+fRslJSXQ0dFB586d4eTkBF9fXxgbG0vah4eHY+vWrfWO5+joiG+++QYAkJqaisDAQADA4sWLMWrUKJn2Dg4OcHFxQVhYmGTbi+eqoaGBNm3aoGvXrnBwcMCIESNgaGgoM5aPjw/y8vLqrW3lypXw8vICIPt3UFZWhp6eHmxtbfHPf/4TdnZ29Y7TEAcHh3r3zZo1C5MnT27SuEREz2OwICJ6jeXk5GDOnDnIzs6Go6MjJk+eDH19fRQWFuLSpUtYsWIFbty4gTlz5kj6bNy4Edu3b0fHjh3h6+sLExMTFBQUIC4uDiEhIfDy8sLy5cuhoqIic7yFCxdCW1sb1dXVKCoqQkZGBnbt2oWdO3ciKCgIEyZMkOmjrq6OJUuWyK3fysqq0ed89epVBAcH4+HDh3B2dsbkyZOhp6eHkpIS/P7779i5cye2b9+OixcvyvQNDAyEiYmJzHZ5H/gBYMuWLfD09ISmpqZCtT1/rs+ePUNhYSGuXLmC8PBw/PDDD1i0aBHc3d1l+hkbGyMoKEjumH369JHZVvd3ePbsGW7cuIHDhw8jKSkJmzZtgr29vUK1vsjKykru3++tt95q0nhERC9isCAiek2Vl5dj7ty5uHPnDlavXo2hQ4dK7Z88eTIyMjLw+++/S7YdOXIE27dvh6OjI9atWyf1gXnSpEn497//jaNHj8LExETyrf3z3NzcoK+vL7Xt3r17mDt3LsLCwmBkZIR//OMfUvtVVFQk37gLVVBQgLlz56KiogJbt26V+w19SUlJvXcn3nnnHfTs2VOhY/Xs2RO///479uzZg4CAAIX61HeuWVlZmDNnDpYtWwZjY2OZukUiUaOu0Yt/B3t7ewQHByMiIqLJwcLIyKjZ/k5ERPJwjQUR0WvqyJEjuH37NiZMmCATKurY2Nhg7NixAGq/Qd+0aRO0tbXx2WefyXwLr6qqikWLFqFDhw6IiIjAo0ePFKqjQ4cO+OKLL6CsrCyZTtRSduzYgYKCAsyZM6feaT86OjqYN2+e4GO5ubmhR48e+OGHH1BUVCRoLEtLSyxbtgzV1dXYsmWL4Npe5OjoCADIzs5u9rGJiJoLgwUR0WvqzJkzACB3DYA8V65cQUFBAQYPHoy2bdvKbaOhoQFPT09UVFQgMTFR4Vrq1lrk5ubi1q1bMvuLiork/lRVVSl8DKD2nNXV1Zv8zXpJSYncOsrLy2XaKikpYdasWSgpKcG2bduadLznOTk5oWPHjkhLS8PTp0+l9tXU1NR7jcRi8UvHzs3NBQDo6ek1ub6qqiqZYxcXFzd5PCKiF3EqFBHRa+r69esQiURyF03Lk5WVBeDlc+Z79Ogh1V5R3bt3x+XLl5GdnY3OnTtLtj99+hRubm5y++zYsUPhqUmlpaXIy8tD9+7doaGhIbWvqqoKJSUlUttEIhHU1NSktn300Udyx54zZw4mTpwos93JyQlOTk44cOAAxo0bh44dOypUa30sLS2Rl5eHO3fuwNLSUrL91q1b9V6jU6dOyUw/q/vAX7fGom4RuaenZ5NrS05OlqmhXbt2OH78eJPHJCJ6HoMFEdFrqqSkBO3atVO4fWlpKYDaqUINEYlEkvEbo65f3XHqaGhoYN26dXL7dOrUSeHx68atO87zLl68KDP9adWqVTIflBcsWAALC4tG1fHxxx9j4sSJ2LRpE1auXKlwvfLUXfsXr62JiQkWL17cYJ/nvffeezJt5syZI5n21hS2traYOXOm1DZ1dfUmj0dE9CIGCyKi15SOjo7Mh/iGKBoYFA0g9fV78YO/srIynJycGjWWPPUFFwDo1asXNm7cCKD2m/eIiAi5Y9jY2Ch8h6SOtbU13N3dERcXh4kTJ6J79+6NrPx/6q79i9dWU1OzUddo9erVEIlEKCsrw9mzZ3Hs2DFUVFQ0uS4A0NfXb5a/ExFRfRgsiIheU926dcPly5eRm5ur0HSouqk3f/zxR4PtMjMzpdor6s8//wTQuLsQjSESidChQwfcvn0bFRUVUtOhnv9Q/ODBg2Y/9syZM3H69Gl89dVX2LBhQ5PHycrKgqqqKkxNTQXVY29vL5ke5erqCg0NDWzevBk9evSAs7OzoLGJiFoKF28TEb2m6p4EFRkZqVD73r17o127djh37ly9TzmqqKjAsWPHoKGhgXfeeUfhWm7fvo309HRYWFi0WLAAgGHDhqGyshKxsbEtdgx5TE1NMWbMGCQlJSE1NbVJY6SkpCAvLw/29vbQ0tJq1vpmzZqFNm3aYP369aiurm7WsYmImguDBRHRa2rkyJHo1KkTIiIicPbsWbltrl69ih9//BFA7Xz5GTNmoKysDEuXLpV5ElJ1dTVWrVqFvLw8TJw4sd4nR73o3r17WLhwIWpqaupdHN1c6ur673//i/T0dLltFHmKUlN8+OGHEIlETbpjkZWVhZUrV0JFRUXu+0GE0tXVhb+/P27dusXF1kT02uJUKCKi15SmpibCwsIwZ84chISEoH///nBycoKenh4ePXqEtLQ0XLx4EZMmTZL0GT16NHJychAREYH3338f3t7e6NixIwoKCnD8+HFkZWXB09MT06ZNk3vMU6dOSd68XVxcjIyMDJw/fx41NTUIDg6W+2Sj6urqeu8wmJqayn2zdH0MDQ0RFhaG4OBgTJ8+Hc7OzrC3t4eenh4eP36MrKwsnD59GhoaGnLfpp2UlCT3cbhaWlpwdXVt8Nj6+vqYOHEiNm/eXG+b58+1qqpK8ubtpKQkaGpq4rPPPkPv3r1l+pWWltZ7jSwtLRV6Q7m/vz92796Nb7/9Fu7u7nLfnE5E1JoYLIiIXmPm5ubYvXs3Dh48iDNnzmDbtm0oKyuDnp4eevTogdDQUHh4eEj1mTNnDpydnbFv3z4cOnQIxcXF0NHRQc+ePTFjxowGP2CvWrUKAKCmpgYdHR106tQJ48ePx4gRI+pd51FZWYlly5bJ3efp6dmoYAHUvhF7//79OHDgAM6fPy8557p6Jk6cCF9fXxgbG8v0rS8UGBkZvTRYAMCECRNw4MAB5Ofny93//Lmqq6ujTZs26Nq1KwIDA+Hj4yM37ADA/fv3671GU6ZMUShY6OnpYezYsfj+++9x7NgxDB8+/KV9iIheJSVxS91TJiIior8VpbWNe+Hh60Acwu9QiV4VrrEgIiIiIiLBGOOJiKhFlZeXK/QyvvqmEZF89U3Xep6Ojg40NTVfQTVERAwWRETUwk6ePIkVK1a8tF1TH/P6pnpxbY08y5cvh4+PzyuohoiIayyIiKiF5efn4/r16y9tx7dCN05KSspL23Tr1q1Z7wRxjQURNYTBgoiIiBTCYEFEDeHibSIiIiIiEozBgoiIiIiIBOP9QSIiIlJIuO42BAQEQE1NrbVLIaLXEO9YEBERERGRYAwWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQnGYEFERERERIIxWBARERERkWAMFkREREREJBiDBRERERERCaYkFovFrV0EERERvf6U1la1dgkKEYeotnYJRG8k3rEgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMwYKIiIiIiARjsCAiIiIiIsEYLIiIiIiISDAGCyIiIiIiEozBgoiIiIiIBOMbZIiIXiPl5eU4dOgQzpw5gxs3bqC0tBR6enqwtrbGu+++C09PT6iqSv+n+/Lly9i3bx+uXLmCoqIitGnTBj169MDo0aMxZMgQmWOEhoYiJiZG8ru6ujp0dHTQqVMn2NnZwdfXF2ZmZjL9pk+fjsuXL9dbe2BgIKZOndrocy4pKcGBAwdw/vx53L59GyUlJdDR0UHnzp3h5OQEX19fGBsbS9qHh4dj69at9Y7n6OiIb775BgCQmpqKwMBAAMDixYsxatQomfYODg5wcXFBWFiYZNuL56qhoYE2bdqga9eucHBwwIgRI2BoaCgzlo+PD/Ly8uqtbeXKlfDy8gIg+3dQVlaGnp4ebG1t8c9//hN2dnb1jtMQBwcHAEDXrl2xf/9+uW0++OADXLt2DUDtNSIiag4MFkREr4mcnBzMmTMH2dnZcHR0xOTJk6Gvr4/CwkJcunQJK1aswI0bNzBnzhxJn40bN2L79u3o2LEjfH19YWJigoKCAsTFxSEkJAReXl5Yvnw5VFRUZI63cOFCaGtro7q6GkVFRcjIyMCuXbuwc+dOBAUFYcKECTJ91NXVsWTJErn1W1lZNfqcr169iuDgYDx8+BDOzs6YPHky9PT0UFJSgt9//x07d+7E9u3bcfHiRZm+gYGBMDExkdku7wM/AGzZsgWenp7Q1NRUqLbnz/XZs2coLCzElStXEB4ejh9++AGLFi2Cu7u7TD9jY2MEBQXJHbNPnz4y2+r+Ds+ePcONGzdw+PBhJCUlYdOmTbC3t1eo1hdpaGjgxo0byMjIgI2NjdS+q1ev4tq1a9DQ0EBFRUWTxicikofBgojoNVBeXo65c+fizp07WL16NYYOHSq1f/LkycjIyMDvv/8u2XbkyBFs374djo6OWLdundQH5kmTJuHf//43jh49ChMTE8m39s9zc3ODvr6+1LZ79+5h7ty5CAsLg5GREf7xj39I7VdRUZF84y5UQUEB5s6di4qKCmzdulXuN/QlJSX13p1455130LNnT4WO1bNnT/z+++/Ys2cPAgICFOpT37lmZWVhzpw5WLZsGYyNjWXqFolEjbpGL/4d7O3tERwcjIiIiCYHCzs7O2RmZiI6OlomWERFRUFfXx/W1tZITk5u0vhERPJwjQUR0WvgyJEjuH37NiZMmCATKurY2Nhg7NixAGq/Qd+0aRO0tbXx2WefyXwLr6qqikWLFqFDhw6IiIjAo0ePFKqjQ4cO+OKLL6CsrCyZTtRSduzYgYKCAsyZM6feaT86OjqYN2+e4GO5ubmhR48e+OGHH1BUVCRoLEtLSyxbtgzV1dXYsmWL4Npe5OjoCADIzs5u8hhqamrw9PTE8ePHpe5KVFZW4vjx43Kn1BERCcVgQUT0Gjhz5gwAyF0DIM+VK1dQUFCAwYMHo23btnLbaGhowNPTExUVFUhMTFS4lrq1Frm5ubh165bM/qKiIrk/VVVVCh8DqD1ndXX1Jt8BKSkpkVtHeXm5TFslJSXMmjULJSUl2LZtW5OO9zwnJyd07NgRaWlpePr0qdS+mpqaeq+RWCx+6di5ubkAAD09PUE1jhgxAk+ePEF8fLxkW3x8PB4/fowRI0YIGpuISB5+XUFE9Bq4fv06RCKR3EXT8mRlZQEA3nrrrQbb9ejRQ6q9orp3747Lly8jOzsbnTt3lmx/+vQp3Nzc5PbZsWOHwlOTSktLkZeXh+7du0NDQ0NqX1VVFUpKSqS2iUQiqKmpSW376KOP5I49Z84cTJw4UWa7k5MTnJyccODAAYwbNw4dO3ZUqNb6WFpaIi8vD3fu3IGlpaVk+61bt+q9RqdOnZKZflZcXAwAkjUWdYvIPT09BdVnZWUFa2trREdHw8PDA0DtNKgePXqge/fugsYmIpKHwYKI6DVQUlKCdu3aKdy+tLQUQO1UoYaIRCLJ+I1R16/uOHU0NDSwbt06uX06deqk8Ph149Yd53kXL16Umf60atUqmQ/rCxYsgIWFRaPq+PjjjzFx4kRs2rQJK1euVLheeequ/YvX1sTEBIsXL26wz/Pee+89mTZz5syRTHsTYsSIEVi7di3u3bsHAPjpp5/wySefCB6XiEgeBgsioteAjo6OzIf4higaGBQNIPX1e/GDv7KyMpycnBo1ljz1BRcA6NWrFzZu3AgASE5ORkREhNwxbGxsFL5DUsfa2hru7u6Ii4vDxIkTBX1zX3ftX7y2mpqajbpGq1evhkgkQllZGc6ePYtjx44129OaPDw8EBYWJnmsrZqamtwnWRERNQcGCyKi10C3bt1w+fJl5ObmKjQdqm7qzR9//NFgu8zMTKn2ivrzzz8BNO4uRGOIRCJ06NABt2/fRkVFhdR0KH19fckH8wcPHjT7sWfOnInTp0/jq6++woYNG5o8TlZWFlRVVWFqaiqoHnt7e8n0KFdXV2hoaGDz5s3o0aMHnJ2dBY2tq6uLwYMHIyYmBmKxGIMHD4aurq6gMYmI6sPF20REr4G6J0FFRkYq1L53795o164dzp07V+9TjioqKnDs2DFoaGjgnXfeUbiW27dvIz09HRYWFi0WLABg2LBhqKysRGxsbIsdQx5TU1OMGTMGSUlJTX45XEpKCvLy8mBvbw8tLa1mrW/WrFlo06YN1q9fj+rqasHj+fr6Ijc3F3fu3OGibSJqUQwWRESvgZEjR6JTp06IiIjA2bNn5ba5evUqfvzxRwC1L2+bMWMGysrKsHTpUpknIVVXV2PVqlXIy8vDxIkT631y1Ivu3buHhQsXoqampt7F0c2lrq7//ve/SE9Pl9tGkacoNcWHH34IkUjUpDsWWVlZWLlyJVRUVOS+H0QoXV1d+Pv749atWzh+/Ljg8RwdHREYGIiZM2dKHmVLRNQSOBWKiOg1oKmpibCwMMyZMwchISHo378/nJycoKenh0ePHiEtLQ0XL17EpEmTJH1Gjx6NnJwcRERE4P3334e3tzc6duyIgoICHD9+HFlZWfD09MS0adPkHvPUqVOSN28XFxcjIyMD58+fR01NDYKDg+U+2ai6urreOwympqZy3yxdH0NDQ4SFhSE4OBjTp0+Hs7Mz7O3toaenh8ePHyMrKwunT5+GhoaG3LdpJyUlyX0crpaWFlxdXRs8tr6+PiZOnIjNmzfX2+b5c62qqpK8eTspKQmampr47LPP0Lt3b5l+paWl9V4jS0tLhd5Q7u/vj927d+Pbb7+Fu7u73DenK0pZWRlTp05tcn8iIkUxWBARvSbMzc2xe/duHDx4EGfOnMG2bdtQVlYGPT099OjRA6GhoZLHhtaZM2cOnJ2dsW/fPhw6dAjFxcXQ0dFBz549MWPGjAY/YK9atQpA7YJeHR0ddOrUCePHj8eIESPqXedRWVmJZcuWyd3n6enZqGAB1L4Re//+/Thw4ADOnz8vOee6eiZOnAhfX18YGxvL9K0vFBgZGb00WADAhAkTcODAAeTn58vd//y5qquro02bNujatSsCAwPh4+MjN+wAwP379+u9RlOmTFEoWOjp6WHs2LH4/vvvcezYMQwfPvylfYiIWpuSuKXuMxMREdHfitLaxr0EsbWIQ/i9KVFr4BoLIiIiIiISjJGeiIiaTXl5uUIv46tvGhHJV990refp6OhAU1PzFVRDRCQfgwURETWbkydPYsWKFS9t19THvL6pXlxbI8/y5cvh4+PzCqohIpKPayyIiKjZ5Ofn4/r16y9t1xxv736TpKSkvLRNt27dWvxOENdYEFFDGCyIiIhIIQwWRNQQLt4mIiIiIiLBGOmJiIhIIeG62xAQEAA1NbXWLoWIXkO8Y0FERERERIIxWBARERERkWAMFkREREREJBiDBRERERERCcZgQUREREREgjFYEBERERGRYAwWREREREQkGIMFEREREREJxmBBRERERESCMVgQEREREZFgDBZERERERCQYgwUREREREQmmJBaLxa1dBBEREb3+lNZWtXYJDRKHqLZ2CURvNN6xICIiIiIiwRgsiIiIiIhIMAYLIiIiIiISjMGCiIiIiIgEY7AgIiIiIiLBGCyIiIiIiEgwBgsiIiIiIhKMD3wmImqi1NRUBAYG1rt/+/bt6NWrFxwcHODi4oKwsDCFxz5w4ABWrVoFkUiE48ePQ1NTs962ubm52LdvH1JSUnD//n1UVFRAX18fVlZWGDRoELy9vaGlpdWYU0NoaChiYmIkv6urq0NHRwedOnWCnZ0dfH19YWZmVm//y5cvY9++fbhy5QqKiorQpk0b9OjRA6NHj8aQIUPq7Xf79m3s2bMHP/30E+7fvw+xWAxjY2P069cPI0eOhI2NDYD/Xftp06ZhxowZcsdycHCAvb09tmzZItnm4+ODvLw86Onp4dixY1BXV5fpN3/+fJw/fx4AEBUVBRMTEwBAdHQ0VqxYUW/tZmZmOHLkCADg7t27GDFiBAAgICAAQUFBMu19fHygpaWF/fv3v3Ts5714Tg359ddfERERgWvXrqGwsBAA0KFDB7i5ueGDDz6Ajo6OQuMQESmCwYKISCB3d3c4OzvLbDc3N2/ymJGRkTAzM0Nubi5OnTqF4cOHy20XHR2N//u//4OKigrc3Nzw3nvvQVNTEwUFBfj555+xevVqnD17Fl9//XWT6li4cCG0tbVRXV2NoqIiZGRkYNeuXdi5cyeCgoIwYcIEmT4bN27E9u3b0bFjR/j6+sLExAQFBQWIi4tDSEgIvLy8sHz5cqioqEj1O3LkCFatWgUNDQ384x//wFtvvQUVFRVkZ2fjzJkzOHz4MPbv34+uXbs26VzqaGhooLi4GOfPn4ebm5vUvoKCAiQmJkJDQwMVFRVy+/v7+6Nnz54y27W1teW237NnD/z8/GBoaFhvTX379sXKlSultm3btg23bt2S2d62bdt6x3nR7du3UV5eDk9PTxgaGkIsFiMjIwPbtm3D6dOn8cMPPzQYWomIGoPBgohIIGtra3h5eTXbeNeuXcPVq1exYsUK7N69G1FRUXKDxaVLl/Dvf/8b3bp1w3//+18YGRnJtMnNzcXJkyebXIubmxv09fWltt27dw9z585FWFgYjIyM8I9//EOy78iRI9i+fTscHR2xbt06qQ+tkyZNwr///W8cPXoUJiYmUnd7UlJS8J///AddunTB119/jfbt20sdMygoCPv27WvyeTzP1NQUysrKiIqKkgkWR48eBQAMHDgQp06dktvfzs5Opl99evbsid9//x3h4eFYvHhxve3MzMxk7gAdOXIEt27dEvTv1vDhw2X+3RkzZgy6dOmCDRs2ICEhAe+++26Txycieh7XWBARvWYiIyOhra2NoUOHwsfHB5cvX0ZOTo5Muw0bNgAA/u///k9uqABqP7AGBAQ0a30dOnTAF198AWVl5f9n787jasr/P4C/2lRKShEt1iQJqUYoS2mmVFfWwci+71vDd5gZyyz4MvgZS2EYa4yteyvKVg0aS5sxiLGkomGkolJU9/eHx73fbvfeunWzjHk9H48edD7L+ZxzbnXe57McbNq0Sbr91atX2Lx5M+rWrYtvv/1W7km4trY2Fi5ciMaNG2P37t3IycmRpv34448Qi8VYvny5XFAhKTt8+HC1eyskBAIBLl68iL///ltme3h4ONzd3WFiYlIr+2nXrh08PDwgEomQlpZWK3XWhiZNmgAAnj179o5bQkQfEgYWRERqKioqQm5ursxXQUFBjep6+fIloqKi0Lt3b+jr68PHxwfa2toQiUQy+R48eIDU1FQ4OjqiefPmtXAU1SOZa5GZmSm9Yb5y5Qqys7PRs2dPpcN1dHV10adPHxQXF+P8+fMAZI+ltgKHqvj6+kJDQ0NmHsnVq1dx79496dwIZQoLC+Wud25uLl68eKEwv2R+xcaNG2vvAKpJ8hn966+/EBMTgx9//BE6OjpwdXV9Z20iog8Ph0IREakpJCQEISEhMts+/vhjLF++vNp1xcbGIi8vD35+fgAAY2NjuLu7IyIiApMnT5bOS7hz5w4AwNbWVq6OoqIiFBUVyWyrX78+NDQ0qt2eyrRu3RpJSUlIT09H8+bNcfv2bQBAmzZtKi3Xtm1bAJDmr+xY3hQTExN0794d4eHh0h4dkUgEU1NTuLm54cKFC0rLVpzzIDF48GAsWLBAbnvz5s3Rt29fHD16FFevXkX79u1r5yCqITg4GHv27JF+37JlS6xdu7bSCfhERNXFwIKISE39+/eXG3Nvampao7qEQiEsLCzg7Ows3ebv74/Y2Fj89ttvcHd3BwBpj4iBgYFcHRVvIgHg1KlTcnMl1CXZt6Qtkn+rWmlIUi4/P1+mnKJjeZMCAgIwe/ZspKSkwM7ODidOnMCAAQOgrV35n8YJEybA0dFRbru5ubnSMhMnTsTx48exfv16bN26Vd2mV9uAAQPQtWtXPH/+HFevXkViYiJyc3PfejuI6MPGwIKISE1NmzatlSElWVlZuHz5MgICApCZmSnd3qxZMxgYGEAoFEoDi4o39eVJbiIBYPfu3ZU+fVdHxYCgYsBQVTlJACIpV1hYWOttrKyXpmvXrjAzM0N4eDgePHiAgoKCKodBAUCrVq2qfb0bNmyIYcOGYceOHfj111/Ro0ePapVXV9OmTdG0aVMAryfk//bbb5gxYwYAwMfH5622hYg+XAwsiIjeEyKRCGVlZTh69CiOHj0ql3727Fnk5OTAxMQErVq1AvB6BamKyt9EHj9+/I21988//wTwOvABABsbGwDAzZs3Ky2Xmpoqk19yLFWVK08yMbzikC8JyXwHXV1dpXVoaWnBz88Phw4dwt27d9G+fXu0aNFC5TZU16hRo3DkyBFs3LhRGiC+K127doWpqSkOHTrEwIKIag0DCyKi94BYLEZERARsbW0xduxYufTs7GysWrUKkZGRCAwMhKWlJezs7JCSkoK0tLS3PoH7/v37SElJQdOmTaWBRYcOHWBqaoq4uDjk5uYqHHpVXFyM48ePQ1dXF926dQPwevnXNm3a4MqVKyofi+SldcpWWrp375607sr07dsXO3fuxNWrVytdDrY2GBoaYty4cVizZo3MpPF3pbi4mKtCEVGt4qpQRETvgYsXLyIrKwu+vr7w8vKS+xoyZAgsLCxkVoeSDGX54osv5JZNlRCLxbXe1r/++gv/+c9/UFZWhqlTp0q316lTB5MmTUJhYSG++uorud6E0tJSrFixAllZWRgxYoTMylGSY1m4cCGePHkit8/S0lLs27cPd+/eBfD6JXEdOnTAhQsXpJPAJcrKyhAaGgoA6NmzZ6XH0qxZMwQFBWHChAlv5X0OgwcPhoWFBUJCQvDy5cs3vj9F5xIAIiIikJ+fDwcHhzfeBiL692CPBRHRW5CRkYFt27YpTBs+fDiEQiEAwNPTU2kdnp6e2LNnj3RlIVdXV3z11Vf4/vvvMWDAAHh5ecHOzg56enp4+vQpkpOTceHCBZiZmaFOnTo1avepU6ekb97Oy8vDtWvX8Ouvv6KsrAzz5s2Tm7Q+YMAAZGRkYPfu3fj000/h5+eHJk2aIDs7G9HR0bh9+zb69OmDCRMmyJTr0qULFi5ciBUrVmDgwIHw9vaGra0ttLW1kZGRgTNnziAzM1PmJXnz58/HxIkTMXr0aPTr1w/NmzdHfn4+fv31V/z+++/w8fFBly5dqjzGoUOHVuucpKSkKA0K+vTpU+m8Dh0dHUyePBlff/01gNerdb1Js2bNQv369dGhQwc0btwY+fn5SElJQVxcHMzNzTFx4sQ3un8i+ndhYEFE9Bbcv38fwcHBCtMCAgIQFxcHOzs76RAfRSSBhUgkki5ZKhAI0KlTJ+zfvx+XLl3CqVOn8OrVKxgbG8PW1hbz58+Hn58f9PX1a9TuFStWAHh9Q2xoaIhmzZph+PDh6Nu3r9KlSmfNmgU3NzccOHAAR44cQV5eHgwNDWFvb49JkybBw8NDYbl+/frB0dERoaGhuHz5MiIjIyEWi9G4cWO4uLhg+fLlMu+5sLOzw+7du7Fjxw7ExMTgyZMn0NXVRcuWLfGf//wHAwYMqNExV2X//v1K0z755JMqV5Xq06cP9uzZo3B+TG3r378/zpw5g7CwMOTm5kJbWxtWVlYYNWoUAgMDa32lMCL6d9MQv4l+ciIiIvrgaKwueddNqJQ4iM9Lid4lzrEgIiIiIiK1MbQnIvqXyM/PV7o8q4SOjs4bH/dP6ikqKqryXSEAYGZm9hZaQ0T0PwwsiIj+JVavXl3lMqdOTk7YsmXLW2oR1cTJkyexdOnSKvMlJCS8hdYQEf0P51gQEf1L3L17V+mytBJGRkZo27btW2oR1cSTJ09w586dKvPVxtvgK+IcCyKqDAMLIiIiUgkDCyKqDCdvExERERGR2hhYEBERERGR2thnSERERCoJMdqOMWPGQEdH5103hYjeQ+yxICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitTGwICIiIiIitWmIxWLxu24EERERvf80Vpe86yYoJQ7SftdNIPrXY48FERERERGpjYEFERERERGpjYEFERERERGpjYEFERERERGpjYEFERERERGpjYEFERERERGpjYEFERERERGpjYEFERERERGpjW+TISL6l8jPz8f+/fsRExODjIwMlJaWwsLCAu7u7ggMDISpqak0b1paGgYNGoQ+ffrgm2++kannyZMn8PHxAQAcPXoU1tbWMunff/89jhw5gt27d6Nt27YIDw/H0qVLAQAbNmxAly5dZPI/fPgQffv2xeDBg7FgwYIaHdv169fxyy+/IDk5GU+ePIGGhgYsLCzg6uqKgQMHonnz5nJlnj17hj59+qC4uBhLly6Fn5+fwroFAgGysrKk32tra8PMzAydO3fGxIkT0bhx4xq1ubrtAIDi4mKIRCKcPn0at2/fxvPnz6Gvr4+mTZvCxcUFffv2lTnW8udeESsrK4SFhanVfiIiCQYWRET/Avfv38eMGTOQlZUFDw8PBAQEQFtbG1evXkVoaChEIhHWrl2LDh06AACaN28OU1NTJCUlydWVkJAAANDS0kJiYqJcYJGQkIB69eqhTZs2cmU3bNgAV1dXaGho1NqxbdmyBVu3boWxsTF8fHzQokULlJWV4e7duzhx4gR++eUXnDlzBgYGBjLljh8/jpcvX8LS0hIikajSG3pzc3NMmzYNAFBYWIiUlBSEh4cjPj4e+/fvh7GxcY3br2o7MjMzMWfOHNy7dw9OTk747LPPYGZmhsLCQty6dQsikQh79uxBREQEGjVqJFN26NChsLe3l6uzbt26NW43EVFFDCyIiD5wRUVFmDNnDh4/foy1a9fC3d1dmjZgwAAMHjwYU6dOxbx587B//35pz4WLiwuio6ORkZEhEzwkJiaiRYsWMDQ0RGJiIvr16ydNe/LkCdLT09G9e3doasqOtrW3t8f169cRHR0t7fFQl1AoxJYtW+Di4oLVq1fD0NBQJn3mzJnYunUrxGKxwrIuLi7o2bMnfvjhB2RmZsLKykrhfgwMDODr6yv9ftCgQWjQoAH27duHiIgIBAYGqnUMVbWjqKgIs2fPRmZmJlatWgUPDw+5eoqLi7Fv3z6FQZujoyO8vLxq3EYiIlVwjgUR0QcuLCwM6enpGDZsmExQIWFvb49p06YhJycHu3fvlm53cXEB8L8eConExEQ4OTnByckJiYmJMmmSvJKy5Q0ZMgSNGjXC5s2b8erVK7WP69WrV9i0aRPq1q2L5cuXywUVAKCnp4cZM2bIpaWmpuLWrVvw8/ODj48PtLS0IBKJqrX/zp07AwDS09NrfAyqtiMsLAxpaWkYMWKEwqACAHR1dTFmzBg0bNiwxu0hIlIHAwsiog/cmTNnALzunVBGIBBAW1tbmhf4X3BQPniQ9EhIAovHjx/L3FhL8ioKLHR1dTFx4kQ8ePAAhw8fVu+gAFy5cgXZ2dno1asXTExMqlVWKBSibt266N27N4yNjdG9e3dERkairKxM5ToyMzMBAPXr16/WvmvSDsl1Kd87VB2FhYXIzc2V+3rx4kWN205EVBEDCyKiD9ydO3dgYGAgNxeiPD09PTRv3hwPHz5EYWEhAMDa2hrm5uYygYWkR8LZ2RmOjo7Q0tKS6dFITEyEkZERWrdurXA/AoEALVq0wE8//YSCggK1juv27dsAAFtb22qVKy4uRlRUFDw9PaGvrw8A8PPzw6NHj/Dbb78pLFNWVia9GX/48CGOHTuGLVu2QEtLC5988kmN2l+ddkiuoaWlpcz20tJSuWChqKhIbl/Lli2Dl5eX3Nf69etr1HYiIkU4x4KI6AOXn58PMzOzKvNJJjfn5+dLJ/U6Ozvj2LFjuH//Ppo1a4bExEQ0bdpUWl+bNm2QmJiIAQMGSHszevXqJTe/QkJLSwvTpk1DUFAQdu/ejcmTJ9f4uCSBiaIhUJWJiYnB8+fP4e/vL93m7u4OExMTiEQiuLm5yZVJS0uTm6NgbW2NZcuWKQ2iarMdyq7hvXv3MHToUJlts2bNwogRI2S2TZgwAY6OjnLlzc3Na9R2IiJFGFgQEX3gDA0NkZ+fX2U+RTfqLi4uOHbsGBISEqSBhbOzszTd2dkZx48fByDbm1GZXr16oWPHjti7dy8GDRpU7eORkARC1e35EAqFMDExQaNGjZCRkSHd3qVLF5w6dQq5ublyqzxZWFhg0aJFAIDs7GwcOnQIt2/fhrZ2zf+MVqcdyq6hpaUlNm7cCAD4888/sW7dOoX7atWqFVxdXWvcViIiVTCwICL6wLVq1QpJSUlyqzuVV1RUhLS0NFhYWMgsQVp+nkXPnj2Rnp6OCRMmSNOdnJywe/dupKWlVTq/oqIZM2Zg/Pjx2Lp1K0aNGlWj47KxsQEA3Lx5U+UyDx48QEJCAsRisdI5J8eOHcNnn30ms01PT0/mxrx3794YM2YMvvjiCxw8eFClHiF12iG5hg8ePJAZDqWvry9tl5aWVrXaQERU2xhYEBF94Dw8PJCUlISwsDDMmDFDYZ6IiAiUlJTIrThkYWEBCwsLJCYmSnsknJycpOmOjo7Q1NREQkICEhMTUb9+fekNf2UcHR3Rs2dPhIWFKV3lqCodO3aEqakp4uLiFPYyKBIeHg6xWIwvv/xS4RCqzZs3QyQSyQUWFenq6mLu3LmYPHkyQkJCpL0ZqqpuOzw9PaXXUPI+DSKi9w0nbxMRfeD69esHa2tr7N27F/Hx8XLpqamp2LhxI0xMTOTG5gOvhzZlZ2fjyJEjsLS0lBmXX69ePbRu3RonTpyQrhal6svvpk+fDgDYtGlTjY5LR0cHU6dORUFBARYuXKhwSFRxcTE2btyI/Px8lJWVITw8HDY2NujXr5/Cycze3t64ffs2rl27VuX+XVxc4OTkhPDwcDx48EDldtekHf369UPz5s2xe/duxMTEqH6SiIjeIvZYEBF94PT19bFmzRrMmDEDs2fPhqenJ5ydnaGlpYVr167h2LFjqFu3LlavXq1wSI+LiwvCw8ORlJQEgUAgl+7k5ITQ0FBpXlW1aNEC/v7+EAqFNT62gIAAPHr0CFu3bkX//v3h7e2Nli1boqysDGlpaTh16hSePn2K0aNH48KFC3j06BECAgKU1ufp6YktW7ZAKBSiXbt2Ve5/3LhxmDZtGn766Sd8/fXXKrW5Ju3Q09PDunXrMGfOHHz++edwdnZGly5dYGpqioKCAqSlpeHkyZPQ0tJSOCE7JSUFL1++VLivPn361Oqb0Ino34uBBRHRv0CLFi2wf/9+hIaGIiYmBufPn0dZWRkaN26MIUOGIDAwUOk8gfLBgqKJ2c7OztLAoqqJ2xVNmjQJUVFRKC4urla58iZOnAh3d3ccOHAAcXFxOHz4MDQ0NGBlZYWPP/4YgwYNgoGBgTSA8fT0VFqXjY0NmjZtihMnTmDu3LnQ09OrdN+urq5o3749IiMjMXbsWKVv7i6vpu2wsrLC7t27IRKJcPr0aezZswf5+fnQ19eHtbU1AgICEBAQgObNm8vVt3//fqX7+uSTT9SahE5EJKEhFovF77oRRERE9P7TWF3yrpuglDiIwRHRu8Y5FkREREREpDaG90RE9F7Jy8vDq1evKs2jp6dX7RfjvWmvXr1CXl5elflMTEy4NCwRfZAYWBAR0Xvl888/R1JSUqV5/P39sWTJkrfTIBVduXJFpTeJi0QiWFhYvIUWERG9XZxjQURE75UbN27g2bNnleZp2LAhWrZs+ZZapJpnz57hxo0bVeZzdHSErq7uW2hR7eMcCyKqDAMLIiIiUgkDCyKqDCdvExERERGR2hjeExERkUpCjLZjzJgx0NHReddNIaL3EHssiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbRpisVj8rhtBRERE7z+N1SXvuglS4iDtd90EIqqAPRZERERERKQ2BhZERERERKQ2BhZERERERKQ2BhZERERERKQ2BhZERERERKQ2BhZERERERKQ2BhZERERERKQ2LgJNREhISMDkyZOl32tqasLAwAANGzZE27Zt4e3tja5du0JDQ0Nh+fXr12PXrl2wtrbG0aNHpdtTU1MxevRouLi4YMOGDQrLTp8+HQkJCfj5559hZ2eH0tJSREVF4ciRI8jMzMTz589hbGwMa2trdOrUCWPHjkWdOnWqfWyzZs3CiBEjVC73xRdf4OTJk/joo4+wefNmpfmSkpKwe/du3L59G0+ePIGhoSEaN26MDh06YNiwYbCysoJAIEBWVpZK+w0ODoaLi4tKeSvWq62tjYYNG6Jz586YMGECGjduLE1zcXGBu7s71q1bp7CuiRMn4saNGzh79qxc2oMHD7B7925cvHgRjx8/ho6ODlq0aIGPP/4YgwYNkrse4eHhWLp0KQBgw4YN6NKli0z6w4cP0bdvXwwePBgLFixQejwVLVu2DL6+vspPiBKPHz9GaGgofvvtNzx8+BCvXr2CmZkZHB0dIRAI0LlzZ2ledc4TAJw/fx6zZs2CpqYmRCKRzDWQkBw/AIwZMwbTpk2TyyMQCKCvr49ffvlFLi0zMxMHDhzAxYsX8ejRIxQXF8PY2Bi2trbo0aMH/Pz8oK+vL9PmpKQkpedn8uTJGD9+vNJ0IiJVMbAgIilvb2+4ublBLBajsLAQ9+/fR2xsLCIjI9G5c2esXLkS9erVkylTUlKCyMhIWFlZISMjA4mJiXB2dgYA2NnZYezYsdiyZQsOHTqEQYMGyZQ9fPgwLly4gEmTJsHOzg4A8OWXX+LkyZPo2LEjhg8fDiMjIzx69AipqanYtWsXhg4dWq3AoiZyc3MRGxsLKysrJCQk4OHDh7CwsJDLd+jQIaxYsQKWlpbw9/eHubk5cnJycO/ePURHR6NTp06wsrLCvHnzUFhYKC1379497NixAx4eHvDw8JCps0WLFtVqq7m5ufTGtLCwEImJiRCJRDh//jz2798PY2Pj6p+AcmJjY7Fo0SJoaWnBz88Ptra2KCoqwvnz57FmzRpERkZi/fr1MDU1VVh+w4YNcHV1VRqUVnY8FXXs2LHa7T937hwWLVqEly9fwsvLC/3794euri6ysrIQGxuLqVOnYt26dXB3d6923YoIhUKYm5vj6dOnEIlEmDhxYqX5Q0NDMWTIEJiZmalUf3h4OJYvXw4tLS14eXlh4MCB0NPTQ3Z2NpKTk/Hf//4XsbGxcoF8nTp18OWXXyqs09bWVrWDIyKqAgMLIpKys7OTeyI8Z84crF+/Hnv37sWiRYuwfv16mfRz584hOzsbmzdvxqJFiyASiaSBBQCMHTsWZ8+exfr169G1a1dYWloCALKysrB+/XrY29tjzJgxAIAbN27g5MmT8PDwwKpVq+Tal5ubC0NDw9o+bDnHjx9HSUkJli9fjjFjxiA8PByTJk2SyVNSUoKNGzeicePG2Lt3r1y7Xr16JQ0mevXqJZOWkJCAHTt2wMbGpkZP4MszMDCQqWPQoEEwMTHBL7/8ApFIhJEjR9a47tu3b2PRokUwNjZGSEgIrKyspGnDhg3D0aNH8d133+GLL75ASEiIXPBgb2+P69evIzo6Gj4+PjU6HnXcuXMHCxYsQP369fHzzz/LBW2TJ0/G8ePHoaurWyv7y8nJwa+//orx48fj5s2biIiIwIQJE5QGVZLzExISgkWLFlVZ/6VLl/DNN9+gVatW+L//+z80atRILk9mZiZOnjwpt11LS6vWzisRkTKcY0FEldLS0sKcOXPg6OiI+Ph4pKSkyKQLhUJYWlrCxcUFPj4+OH36NPLz86Xp2traWLp0KUpKSrB06VKIxWKIxWIsW7ZMuk1b+/UzjvT0dABQOhTI2NhYmvdNEgqFcHZ2Rtu2bdG9e3eEh4ejrKxMJk9ubi6eP38Oe3t7hcGOjo4O6tev/8bbqkjXrl0BABkZGWrVExISguLiYnzxxRcyQYVE//794eXlhaSkJJw7d04ufciQIWjUqBE2b96MV69eqdWWmggODkZxcTG+/PJLhT1BGhoa8PX1xUcffVQr+4uMjERpaSl8fX3h7++Phw8f4tKlS0rzt2vXDh4eHhCJREhLS6uyfklQv3z5coVBBQBYWVlJA3UioreNgQURqSQgIAAAZG4gnzx5gvj4ePj5+UFDQwMCgQBFRUU4ceKETNmWLVtiypQpSEpKwr59+3Dw4EFcvnwZU6ZMkbnhk9y8nj59Gs+ePXsLRyXv2rVruH37Nvz9/QEA/v7++Ouvv+RuEE1NTVG3bl0kJyerdFP4NkkCtIrDoEpKSpCbm6vwq6SkRCZvcXExzp8/D3Nz80qHCfXr1w8AcObMGbk0XV1dTJw4EQ8ePMDhw4dVantZWZnSNorFYpXqqNj+bt26qVwOqN55Kk8kEsHJyQkWFhZwc3NDgwYNIBKJKt2XZNjXxo0bK8334MEDpKamwtHREc2bN6/W8UjU5JiIiKqDQ6GISCWtW7cGANy/f1+6LSIiAmVlZfDz85PmsbW1hVAoxIABA2TKDx8+HHFxcdi0aRM0NTXRqVMnfPbZZzJ52rVrh+7du+Ps2bPw9fVFhw4d4ODgAAcHB3Tu3Bl6enpv+Chf3xzq6+vD09MTAODm5gYTExMIhUKZScgaGhqYOHEi1q1bhyFDhqBNmzbo0KED2rVrh48++kjlMfPqktyIA0BBQQESExOxdetWaGlpwdvbWybvhQsX4OXlpbSu8hN+MzIy8PLlyyrH37dt2xbA62FTiggEAuzduxc//fQTBAIBDAwMKq0vLS1NaRtPnTql8pwRVduvSHXOk8Qff/yBu3fvYvHixQBe99R5e3vjyJEjePbsGYyMjBTW1bx5c/Tt2xdHjx7F1atX0b59e4X57ty5A0DxfIiioiIUFRXJbKtfv77MEKwXL14oPaZdu3bB3t5eYRoRUXUwsCAilUhuCAsKCqTbRCIROnXqJJ03Aby+kfzhhx9w584dtGrVSrpdU1MTS5YswZAhQ1BWVobFixdDU1O+03TVqlU4fPgwjh07hsTERGlPgYGBASZMmIDAwMA3dYgoKipCdHQ0PD09UbduXQCvbxB9fHxw+PBh5OXlyQxvCgwMRNOmTXHo0CEkJyfj+vXrACCd6Dx//vw3HgwpuhG3srLCt99+CxsbG5ntDg4OmDJlisJ61q1bh8zMTOn3kuFsVc1pkXwuyg9/K09LSwvTpk1DUFAQdu/eLbP6mCIWFhZK5xtUZ36Nqu1XpDrnSUIoFEJfXx+9e/eWbhMIBAgNDUVUVBQ+/fRTpfubOHEijh8/jvXr12Pr1q0K80h+7hQFZsHBwdizZ4/MtopBmK6uLtasWaOw7mbNmiltGxFRdTCwICKVVLyxSU5ORnp6Onx9fWXG8js4OEBTUxNCoRBz586VqcPKygoNGjSQ/l8RbW1tDBkyBEOGDEFRURFSU1Nx/vx5HDhwAOvWrYOZmZnKE4GrSzI/xMnJSeaYnJycEBoaiuPHj2Po0KEyZXr06IEePXqgtLQU9+7dw6VLl7B//36IRCJoaWmpNClXHeVvxHV0dNCwYUNYW1srzGtsbAxXV1eFaRVX+5LckCsLGCQkn4vKbuB79eqFjh07Yu/evXIrg1Wkp6entI3VIWlP+UBYVdU5T8Dr3oATJ07A2dkZ2dnZyM7OBvC6Z8Pa2hpCobDSwKJhw4YYNmwYduzYgV9//RU9evSQy6MosJcYMGCAdF7N7t27ceHCBbk8mpqatXJeiYgqw8CCiFTy559/AoB0fLdQKATw+mlpcHCwXP7jx49j5syZak221tPTg6OjIxwdHeHs7Izp06dDJBK9scBCckzffPONwnSRSCQXWEhoaWnBxsZGutJTv379EBkZif/85z/Q0tJ6I+0Fau9GvCJra2vUqVMHt27dqjRfamoqAMj1jlQ0Y8YMjB8/Hlu3bsWoUaNqrZ3KqNr+2nDq1CkUFBTg3LlzCiexA8DNmzfRpk0bpXWMGjUKR44cwcaNGxXOaZH0/ik6nqZNm6Jp06YAXv/cERG9KwwsiEglkptuNzc3FBQU4PTp03B1dUX//v3l8t6+fRvbtm1DXFyczNAQdUjGnj9+/LhW6qsoMzMTycnJ6NOnD3r27CmXfvnyZRw+fBg3btyQzitQxtjYGFZWVkhNTUVubq7Sdzy8z3R1ddGtWzfExsYiPj5e6QTosLAwAJB7H0dFjo6O6NmzJ8LCwqrMWxt0dXXh5uaGmJgYXLhwQe4lfbVJJBKhYcOGmDdvnlxaSUkJFi9eDKFQiPnz5yutw9DQEOPGjcOaNWsQEREhl25paQk7OzukpKQgLS2txhO4iYjeJK4KRUSVKi0txbp165CSkgI3Nzc4OjrixIkTePHiBQYOHAgvLy+5r9GjR0NPT6/KFXEqSk9PV7pEamxsLIDqv0BOVUKhEGKxGMOHD1d4TJKn7JJjKioqQmJiosK60tPTce/ePRgbG8PExOSNtPdtmDRpEurUqYPvv/8eDx8+lEsXCoU4efIknJyc0L179yrrmz59OgBg06ZNtd5WRSZNmgRdXV188803SlfuioqKwuXLl2u8j/v37yM5ORmenp4KPzc+Pj5wdHREdHQ0Xr58WWldgwcPhoWFBUJCQhTmnTFjBoDXb4X/+++/FdZRnZWziIhqG3ssiEgqNTUVx44dAwCZN29nZWWhS5cu+O677wC8vqHU09NT+hRbkhYXF4fHjx8rXXO/olu3bmHhwoVwcnKCs7MzGjVqhBcvXuDatWs4efKkdAJ3TVy+fBnFxcVy242NjdG/f39ERETAwsJC+gbwiiwsLNC2bVtERUVh9uzZKCoqwqRJk9CqVSt069YN1tbWEIvFSEtLw7Fjx1BcXIz58+crnKD+T9G6dWt88803+PrrrzF06FD4+/tL37wdHx+P+Ph42NraYvny5Sq9WbtFixbw9/eX9n4pUlBQIP0MVmRjY1OtVZ5sbGywcuVKLFq0CJ999hm8vLzg4OAAXV1d/PXXX4iLi8OtW7fkXvpYHZJAU7KKmCKenp5ITExETEyM3Epd5eno6GDy5Mn4+uuvAUDuPSiurq746quv8P3332PAgAHw8vKCnZ0d9PT08PTpUyQnJ+PChQswMzOTezt9aWmp0vNqaWlZo7eaExFVxMCCiKSio6MRHR0NTU1N6Ovrw9zcHE5OTvD29pYGEXfu3MEff/wBDw+PSlc88vT0xJkzZxAREYGxY8eqtH8nJyfMnDkTly5dgkgkwtOnTyEWi2Fubg6BQICRI0cqnZhcFcmNcEXNmjVD48aN8ffff2P48OGV1uHp6YmNGzciJiYGXl5e+Prrr3HhwgXExcUhOzsbxcXFMDExgZOTE4YMGaL0RX//JL1794atrS12796N8+fPIywsDDo6OmjRogXmzJmDQYMGVevN1ZMmTUJUVJTCIA8AHj16JL2xrmjs2LHVXj7W3d0dBw8eRGhoKOLj4xETE4OSkhI0bNgQHTt2xNy5c2t8nUpLSxEZGQkTExN06tRJaT4PDw+sXr0aIpGo0sACAPr06YM9e/YonRsiEAjQqVMn7N+/H5cuXcKpU6fw6tUrGBsbw9bWFvPnz4efn5/ckrgvX75Uel779OnDwIKIaoWGmP2mREREpAKN1e/Py/TEQXw2SvS++ef20RMRERER0XuD4T4R/eO8evUKeXl5VeYzMTF5o0u9vgk5OTkoLS2tNE/dunWlL/D7tyksLERhYWGlebS0tP7Rk+aJiP6pGFgQ0T/OlStXqnyDM/B6Yq2FhcVbaFHtGTlyJLKysirNM2HCBEyaNOkttej9snv3bqVvp5Zo0qQJwsPD31KLiIhIgnMsiOgf59mzZ7hx40aV+RwdHas1sfh9kJKSonRis4SlpaXSN5d/6DIzM/HgwYNK8+jq6sLR0fHtNOhfhnMsiKgyDCyIiIhIJQwsiKgynLxNRERERERqY2BBRERERERqYz8iERERqSTEaDvGjBkDHR2dd90UInoPsceCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUpiEWi8XvuhFERET0/tNYXfLO9i0O0n5n+yYi1bDHgoiIiIiI1MbAgoiIiIiI1MbAgoiIiIiI1MbAgoiIiIiI1MbAgoiIiIiI1MbAgoiIiIiI1MbAgoiIiIiI1MbAgojoA7RkyRK4uLjUuHxCQgJcXFwQHh5ei6169wQCASZOnPium6GykJAQuLi44OHDh++6KUREVeLbZkgqISEBkydPBgAsWrQI/fv3l8vj4uICd3d3rFu3TmEd69evx65du2BtbY2jR48qzBMeHo6lS5cCAGbNmoURI0bI5UlNTUVgYCAAwN/fH0uWLJGmCQQCZGVlKT2OZcuWwdfXV2l6RSEhIdi6davS9M6dO2PTpk0AZM8RAGhqasLAwAANGzZE27Zt4e3tja5du0JDQ0PhPoKDgxXe7EnqnTBhAiZNmiSTVlJSgsjISERHR+PWrVvIz8+HgYEBbGxs4OHhgX79+kFPT0+uzkOHDmHFihUwMDBAdHS0NE/5818VJycnbNmyRdr+Xbt2wd7eXiZPfn4+9u/fj5iYGGRkZKC0tBQWFhZwd3dHYGAgTE1NZfI/fPgQffv2BQCMGTMG06ZNk9uvQCCAvr4+fvnlF5XaWfG6VMbc3BxmZma4c+cOQkNDYW1tLZcnKioKX375JQIDAzF79my5c6ahoYG6devCxsYG/fv3h7+/vzStOp8nVUjO1+DBg7FgwQKFeap7vuj9Ehsbi5s3b8r97BMR/dMwsCCFtmzZgj59+ii8YVVGcgNsZWWFjIwMJCYmwtnZWWl+XV1dhIeHKwwsRCIRdHV1UVxcrLCsubm5whtSAOjYsaPKbS5v8uTJsLCwkNtuZmYmt83b2xtubm4Qi8UoLCzE/fv3ERsbi8jISHTu3BkrV65EvXr1atSO8nJycjB37lxcvXoVDg4OGDZsGMzMzPD8+XMkJydj7dq1SElJwYoVK+TKCoVCWFlZITMzE6dOnZLe/Hbq1AnLli2Tybt9+3akpaXJbW/QoEGl7bt//z5mzJiBrKwseHh4ICAgANra2rh69SpCQ0MhEomwdu1adOjQQWH50NBQDBkyROE5ro4WLVrItf3o0aNITk7G3LlzYWxsLN1et25dNG/eHMOHD8fixYuxbds2aGr+r/P2yZMnWLVqFVq2bIkpU6bI1Dl06FDY29ujrKwMWVlZCAsLw5IlS/D48WOMHTtWJm91Pk9vwpdffokvvvjireyL1BMbG4uIiAiFgcW4ceMwevRo1KlT5x20jIioehhYkBx7e3tcv34doaGhGDNmjMrlzp07h+zsbGzevBmLFi2CSCSqNLDo1asXoqOj8ccff8DBwUG6/eXLl4iOjoaHhweioqIUljUwMKhWr4QqunXrJvc0Xhk7Ozu5/c+ZMwfr16/H3r17sWjRIqxfv16t9ojFYixYsABXr15FUFAQhg4dKpMeGBiI9PR0nDp1Sq7srVu3cOPGDSxduhT79u2DSCSSBhZWVlawsrKSyR8WFoa0tLRqndOioiLMmTMHjx8/xtq1a+Hu7i5NGzBgAAYPHoypU6di3rx52L9/v1zPheRzFhISgkWLFqm8X0VMTU3l2n7p0iUkJyejV69eCm/wp02bhjVr1mDPnj0YOXKkdPt3332H/Px8/Pjjj9DV1ZUp4+joCC8vL+n3AoEAAwcOxM6dOzFy5Ehoa//vV2p1Pk9vgra2tkx73ncFBQUwMDB418147/zTriMR/btxjgXJ8fLyQtu2bbFz507k5uaqXE4oFMLS0hIuLi7w8fHB6dOnkZ+frzR/9+7dYWxsLDeGOy4uDnl5eRAIBDU9hHdCS0sLc+bMgaOjI+Lj45GSkqJWfWfPnkVSUhI+/vhjuaBComnTpnJPyoHX16Ju3brw9PSEQCBAUlISMjIy1GpPRWFhYUhPT8ewYcNkggoJe3t7TJs2DTk5Odi9e7dcert27eDh4QGRSIS0tLRabZsqhg0bBicnJwQHB+Pu3bsAgIiICJw9exZjx45VKSho3LgxWrZsiYKCgmr9rLwNyuZYJCYmYsyYMXBzc4O3tzdWr16NO3fuwMXFBSEhIQrrEolE+PTTT9G1a1f4+/tj586dCvNdv34dQUFB6N27N7p27YoBAwbgp59+QklJiUy+iRMnQiAQIDMzE/Pnz4enpyd69uxZ5THl5+dj/fr16NevH7p27QovLy8sXLgQmZmZcnn/+usv/Oc//0HPnj3Rs2dPzJkzR2G+hw8fKj12ZfMbJL1aAQEB6Nq1Kz7++GNMnToVFy5ckOb5448/sGTJEgwYMABubm7o0aMHxo4di5iYGLlzERERAeD1UFPJl+T3orI2PHz4EF999RU++eQTdO3aFQEBAdi4cSOKiooUHkNaWho2btwIX19fdO3aFcOGDcO5c+cqO91ERNXGwILkaGhoYPr06cjPz8f27dtVKvPkyRPEx8fDz88PGhoaEAgEKCoqwokTJ5SW0dbWRp8+fXDixAmZIU8ikQht2rRBmzZtlJYtKytDbm6uwi+xWKz6wZaTn5+vsL6Kf6irEhAQAABq/9E+ffo0gNdP/6vj5cuXiIqKQu/evaGvrw8fHx9oa2tDJBKp1Z6Kzpw5U2X7BAIBtLW1pXkrkgxn27hxY622TRUaGhpYvHgxtLW1sXjxYmRlZeGHH36AnZ0dxo0bp1IdL1++xF9//QUtLS0YGhrKpNXW56n8vpR95svKylSqIyUlBdOnT8fDhw8xatQojB49GtevX5eZw1TR4cOHsW3bNnzyySeYPXs2zMzM8OOPP8r1Jp47dw7jxo1Deno6AgMDERQUhA4dOijtkSosLMSkSZOgpaWFqVOnVjmhOj8/H2PHjsWhQ4fg7u6Ozz//HJ9++ikSEhIwevRomXlXz58/x8SJExETEwNfX19Mnz4denp6mDRpEl68eKHSuVLm4cOHGDFiBA4dOgQnJyfMnTsXI0aMgIGBAS5duiTNFxsbi7S0NHh5eSEoKAhjx47Fs2fP8Pnnn8ucu7Fjx6JTp04AXs8Pk3xJtimSlZWFUaNG4dSpU/D29sbcuXPRtm1b7NixAzNnzpQL5IDXgWZycjICAwMxefJk5OTkICgoiJPCiahWsX+VFHJ1dYWrqysOHTqEYcOGoUmTJpXmj4iIQFlZGfz8/AAArVu3hq2tLYRCYaU3ngEBAQgNDUVMTAx8fHzw6NEjXLx4EfPmzat0f5I/2IqcOnVKZky9qqZOnapwu7IJ5sq0bt0awOv5B+q4c+cOAMDW1rZa5WJjY5GXlye9FsbGxnB3d0dERAQmT54MLS0ttdpVvn0GBgYKJz9L6OnpoXnz5rh9+zYKCwtRt25dmfTmzZujb9++OHr0KK5evYr27dvXSttUZWlpiTlz5uC7777DiBEjUFxcjCVLligdelJYWCi9kc/KysL27duRk5ODTz75RG4+Um19niSEQiGEQqHS9JYtW1ZZx5o1a6ChoYGffvpJOhxu8ODBld7U//XXXzh06JA0cAoICIC/vz8OHDgAHx8fAEBxcTG++eYbODg4YPPmzdLzN3DgQLRu3Rpr166VrjIlkZeXh4EDByo9TxUFBwfjwYMH2LFjh8zPhEAgwNChQxESEiINkHbt2oWHDx/i66+/li4UMHjwYPzwww8IDQ1VaX/KrFixAn///Td+/PFHdO3aVSatfIA3btw4TJ8+XSZ96NCh+Oyzz/DTTz9Jz12XLl0QFRWF5ORklYcibty4ETk5OVi3bp20t3Dw4MH4v//7P+zevRsRERHo16+fTBljY2OsXbtWurCEi4sLRo0ahSNHjsi1k4iophhYkFIzZszAiBEjsHnzZrmJsRWJRCJ06tQJlpaW0m0CgQA//PAD7ty5g1atWiksZ2NjA3t7e4hEIvj4+CAiIkLak1HZU1gLCwul4/IrPjlW1YIFC9C0aVO57c2aNatWPZJx4gUFBTVqh4SkfHXHnQuFQlhYWMjMb/H390dsbCx+++03hcOWaiI/P1+liciS9ufn58sFFsDroSDHjx/H+vXrK11N6U3p378/Tp8+jQsXLmDatGmwsbFRmrfiz4G2tjb8/f0xf/58uby19XmS6NmzJz799FOFaV9//XWV5bOzs3H9+nV8/PHHMnNstLW1MWzYMPz+++8KywkEApmfKT09PbRv314m/8WLF5GdnY1p06bJDX90c3PD2rVrcfHiRbmhWaoGWGKxGMePH0enTp3QqFEjmWFn+vr6cHBwkBmGFBsbC1NTU2lwLTFq1Ci1Aou8vDz89ttv6Natm1xQAUBmEQB9fX3p/4uKiqQ9VR999BEOHz6M/Pz8Gv2uKisrw6+//oo2bdrI/SyPHj0ae/fuRWxsrFxgMXToUJnV6tq1a4e6desiPT292m0gIlKGgQUpZWdnB29vb0RFRWHEiBHSJ/EVJScnIz09Hb6+vjLj+B0cHKCpqQmhUIi5c+cq3Y9AIMCqVauQlZWFiIgI9OzZE0ZGRpWOWdfT04Orq2uNj02Rdu3a1cpk25oGBABk/vBLyhcWFsLIyEil8llZWbh8+TICAgJkxpM3a9YMBgYGEAqFtRZYGBoaVjqHRkJyPpTdRDVs2BDDhg3Djh078Ouvv6JHjx610r7qaN++PS5cuFBlj8mECRPg6OgITU1N6epSyq5zbX2eJBo1aqT0M6/KikGSIS+KApvKgp3yDwsk6tevj7y8POn39+7dAyAfeJWXnZ0t872JiYnKK6fl5OQgLy8PFy5cUNpTWf6m/sGDB7C3t5frnTMzM1NrtbaMjAyIxeJKh2lKPH36FJs3b0ZcXByePn0ql17TwCInJweFhYUKe6jq168PMzMzPHjwQC6t4oINkvzlryMRkboYWFClpkyZgtOnT+PHH39UusqRZHhGcHAwgoOD5dKPHz+OmTNnKh1e4uPjg3Xr1uHbb79FRkaGwqe//yR//vkngNfDfCQkqwspG18v2V5+FaJWrVohNTUVN2/exEcffaTSvkUiEcrKynD06FGF7xE5e/YscnJyYGJiolJ9lWnVqpV0Uriy4VBFRUVIS0uDhYWFwt4KCcmQjI0bN9Za4PMmtGrVqtYD2vedKkPnJPOaZs2apXToXsOGDWW+r85S1pL6O3fujFGjRqlcThUV3zlTXmlpaY3qFIvFmD59Ou7duyddotjQ0BCampoIDw9HVFSUyvNiakv5wKtiW4mIagsDC6qUpaUlBg0ahNDQUCQkJMilFxQU4PTp03B1dVX4Qr3bt29j27ZtiIuLQ+/evRXuo169etKlZ83Nzf/xN26SQMvNzU26TfLUNy0tTeGNs+SJb/mnw56enoiMjERYWJhKgYVYLEZERARsbW0VrhSVnZ2NVatWITIyUvryQXV4eHggKSkJYWFhmDFjhsI8ERERKCkpgYeHR6V1GRoaYty4cVizZo10hRyqXZJ5Uorm/qg7H0gy5EtfX/+N/PxKejcKCgpUqt/S0lL6ssbygdGTJ0/w/PlzmbyS3sBnz57J1VPxyb+1tTU0NDRw8+bNSvf/559/4tatWwpfeBkWFiaXv7LgpiITExMYGBhIVzIr79mzZ3jy5Em152UREdUWrgpFVRo3bhwMDAwU9licOHECL168wMCBA+Hl5SX3NXr0aOjp6VW5ItHo0aMxYcIEzJ8/X+mTtfddaWkp1q1bh5SUFLi5ucHR0VGa5urqCn19fRw9elRu+FB+fj7CwsKgr6+Pzp07S7f36NEDTk5OiI6OxsGDBxXuMyMjAzt27ADwepx7VlYWfH19FV6LIUOGwMLCotZWh+rXrx+sra2xd+9exMfHy6WnpqZi48aNMDExUWks/eDBg2FhYYGQkBC8fPmyVtpI/2NmZgZ7e3vExcXJDJMrKSlRe0Jz165d0aBBA/z8888Kh9YUFRWpNedIU1MTPj4+uHbtmsL3tgCQGW7Us2dPZGdnIzIyUiaPomVyDQwMYGpqisuXL8s8vc/MzERsbKxM3vr166Nbt26Ij4/HxYsX5eqSlJf8DqvYG3D79m25OoH/zcdQZViSpqYmunfvjps3b8r93P38888oKytDr169qqyHiOhNYI8FVcnY2BgjRoxQOMxJKBRCT08P3bp1U1hWkhYXF4fHjx+jUaNGCvO1bt1a6RwORQoKCnDs2DGFaTY2NjV6YhcfH6/wfQr6+vpyT9xTU1Ol+y//5u2srCx06dIF3333nUx+IyMjzJ49GytWrMDQoUPh7+8Pc3NzPHr0CBEREXj06BG++OILmbkUGhoaWLlyJebMmYOVK1fi2LFj6NGjB0xNTfH8+XOkpKTg119/haenJ4D/9ZRIvlfE09MTe/bsqZUVmPT19bFmzRrMmDEDs2fPhqenJ5ydnaGlpYVr167h2LFjqFu3LlavXq3SJG8dHR1MnjxZOhG5fv36arXvXavO5+ltmTVrFqZNm4Zx48Zh0KBBMDQ0xMmTJ6XLk1bnyXl5+vr6WLp0KYKCgjBw4ED07dsX1tbWeP78OdLS0hATE4NVq1YpfK+GqqZNm4YrV67giy++wOnTp9G+fXvo6OggKysL58+fR9u2baWrQo0cORJRUVH47rvvcOPGDbRq1QqJiYn4/fffFa4Y9+mnn2Lz5s2YOXMmevbsiSdPnuDw4cNo1aoVrl+/LpN3/vz5GDt2LGbOnAl/f3+0bdsWRUVFuHbtGpo0aYKZM2eiRYsWaNmyJXbt2oWioiI0a9YM6enpOHLkCGxsbHDjxg2ZOtu3b49ffvkFK1asgLu7O7S1teHg4KBwfovkXFy8eBFBQUEYNGgQrK2tkZSUhJMnT8LJyUn6MkwioreNgQWpJDAwEIcOHcKTJ0+k2+7cuYM//vgDHh4elY6X9vT0xJkzZxAREaFwiE5NPHr0SOlKOGPHjq1RYKEocAJeT5qteCMYHR2N6OhoaGpqQl9fH+bm5nBycoK3t7fSIGvgwIGwtLTEvn37cPDgQenkzXbt2uGrr75SOMTDxMQE27ZtQ0REBE6cOIE9e/ZIy7Vu3RpBQUEQCATIy8tDXFwc7OzsFL5lWkISWIhEolpZ2rVFixbYv3+/dMng8+fPo6ysDI0bN8aQIUMQGBioUlAh0adPH+zZswe3bt1Su23vWnU+T2+Ls7MzfvzxR2zcuBE7duxAvXr18PHHH8PHxwejR4+We9N4dXTt2hU7d+7Ezp07cfz4ceTk5MDIyAhWVlYYPnx4tR4cKGJoaIjt27djz549OHnyJH799VdoaWmhUaNGcHR0lFkFycjICNu2bcOaNWukDwCcnJwQEhKCKVOmyNU9atQo5Ofn49ixY0hMTESLFi3w1Vdf4caNG3KBhaWlJXbv3o1t27bh/PnziIyMhJGREVq3bi0dDqqlpYX/+7//w7p16xAREYEXL16gVatWWLJkCW7duiUXWHh7e+PmzZs4ceIETp8+jbKyMixevFhpYNGkSRP8/PPPCA4OxvHjx/H8+XOYm5tjzJgxGDduHN/UTUTvjIaYM7eIiP7VTp8+jQULFuC7776Dt7f3u24Ovcc0Vsu/fO9tEQcxYCJ63/0zB7MTEVG1icVimbfcA6/nWOzduxdaWloy7z4hIiKqLob/9EEqLCxEYWFhpXm0tLRqZdlVerM+xGtZWlqKnJycKvPVr18fOjo6tbbfly9fQiAQwMfHB82aNUNeXh5OnjyJP//8E6NGjarWsDUiIqKKGFjQB2n37t1VvsW5SZMmCA8Pf0stopr6EK/lo0eP0Ldv3yrzBQcHqzXhuSJtbW24ubkhLi5OOl+qWbNmWLBgAQYPHlxr+yEion8nzrGgD1JmZqbCt8+Wp6urK7MkLL2fPsRrWVxcjJSUlCrztW3bVuW3rhO9DZxjQUSVYWBBREREKmFgQUSV4eRtIiIiIiJSG8N/IiIiUkmI0XaMGTOmVhcVIKIPB3ssiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbQwsiIiIiIhIbRpisVj8rhtBRERE7z+N1SXvZL/iIO13sl8iqh72WBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBDRP5KLiwuWLFnyrptBNcBrp76HDx/CxcUFISEhNa5DIBBg4sSJtdgqIvq3q9bC0AkJCZg8eTIAYNGiRejfv79cHhcXF7i7u2PdunUK61i/fj127doFa2trHD16VGGe8PBwLF26FAAwa9YsjBgxQi5PamoqAgMDAQD+/v4yf6QEAgGysrKUHseyZcvg6+urNL2ikJAQbN26VWl6586dsWnTJgCy5wgANDU1YWBggIYNG6Jt27bw9vZG165doaGhoXAfwcHBcHFxkduHpN4JEyZg0qRJMmklJSWIjIxEdHQ0bt26hfz8fBgYGMDGxgYeHh7o168f9PT05Oo8dOgQVqxYAQMDA0RHR0vzlD//VXFycsKWLVuk7d+1axfs7e1l8uTn52P//v2IiYlBRkYGSktLYWFhAXd3dwQGBsLU1FQm/8OHD9G3b18AwJgxYzBt2jS5/QoEAujr6+OXX35RqZ0Vr0tlzM3NYWZmhjt37iA0NBTW1tZyeaKiovDll18iMDAQs2fPljtnGhoaqFu3LmxsbNC/f3/4+/tL06rzeVLVkydPsGfPHsTHx+Ovv/6ChoYGGjRoADs7O3z88cfw9PSsVn1Ue06dOoX//Oc/OHToEJo3b/6um0NERPTG1PiNM1u2bEGfPn0U3rAqI7kBtrKyQkZGBhITE+Hs7Kw0v66uLsLDwxUGFiKRCLq6uiguLlZY1tzcXOENKQB07NhR5TaXN3nyZFhYWMhtNzMzk9vm7e0NNzc3iMViFBYW4v79+4iNjUVkZCQ6d+6MlStXol69ejVqR3k5OTmYO3curl69CgcHBwwbNgxmZmZ4/vw5kpOTsXbtWqSkpGDFihVyZYVCIaysrJCZmYlTp05Jb347deqEZcuWyeTdvn070tLS5LY3aNCg0vbdv38fM2bMQFZWFjw8PBAQEABtbW1cvXoVoaGhEIlEWLt2LTp06KCwfGhoKIYMGaLwHFdHixYt5Np+9OhRJCcnY+7cuTA2NpZur1u3Lpo3b47hw4dj8eLF2LZtGzQ1/9e59+TJE6xatQotW7bElClTZOocOnQo7O3tUVZWhqysLISFhWHJkiV4/Pgxxo4dK5O3Op+nymRlZWHUqFEoKCiAj48PBg0aBADSn7Hw8HAGFu9QbGwsWrRowaCCalWTJk1w/vx5aGlpveumEBFJ1SiwsLe3x/Xr1xEaGooxY8aoXO7cuXPIzs7G5s2bsWjRIohEokoDi169eiE6Ohp//PEHHBwcpNtfvnyJ6OhoeHh4ICoqSmFZAwODavVKqKJbt25yT+OVsbOzk9v/nDlzsH79euzduxeLFi3C+vXr1WqPWCzGggULcPXqVQQFBWHo0KEy6YGBgUhPT8epU6fkyt66dQs3btzA0qVLsW/fPohEImlgYWVlBSsrK5n8YWFhSEtLq9Y5LSoqwpw5c/D48WOsXbsW7u7u0rQBAwZg8ODBmDp1KubNm4f9+/fL9VxIPmchISFYtGiRyvtVxNTUVK7tly5dQnJyMnr16qXwBn/atGlYs2YN9uzZg5EjR0q3f/fdd8jPz8ePP/4IXV1dmTKOjo7w8vKSfi8QCDBw4EDs3LkTI0eOhLb2/37kqvN5qszu3bvx9OlTrF69Gr169ZJLf/Lkidr7+LcoKCiAgYFBrdVXUlKCc+fOYfDgwbVWJylW29fufaehoSH3+4eI6F2rUWDh5eUFsViMnTt3on///jJPeysjFAphaWkJFxcX+Pj44MiRI/j8889haGioMH/37t1x8eJFhIeHywQWcXFxyMvLg0AgUBpYvI+0tLQwZ84cXLt2DfHx8UhJSYGjo2ON6zt79iySkpLw8ccfywUVEk2bNpV7Ug68vhZ169aFp6cnnj9/jtWrVyMjI0PhsJ+aCgsLQ3p6OkaMGCETVEjY29tj2rRpWLlyJXbv3o3Zs2fLpLdr1w7m5uYQiUQYPnz4W3/iO2zYMMTGxiI4OBju7u5o2bIlIiIicPbsWUyYMEGloKBx48Zo2bIlbty4gdzcXLV7XhTJyMgA8HoIlSKK9nn9+nVs374dycnJKCwsRJMmTeDn54dRo0bJBD+S+rdv346LFy/i6dOnMDY2hr29PSZMmIC2bdtK88XGxmLXrl24desWNDQ00Lp1a4wcOVIu2BEIBGjSpAkWLlyItWvXIjk5GRoaGnB1dcX8+fPl2nvnzh2sW7cOycnJqFOnDrp164a5c+cqPNaDBw8iNjYWd+/eRU5ODurXr4/OnTtjypQpcsGji4sL/P394evri5CQENy6dQtt27ZFz549sXbtWmzYsAFdunSRKfPy5Uv06dMHrVu3RnBwsMI2lHf58mXk5+crDPjKKysrw/79+yESifDw4UNoaGjA1NQUjo6OWLhwocw14bV789cuIiICv/zyC9LT01FSUgJTU1O0b98e8+bNg4mJCQBg4sSJyMrKwubNm7FmzRokJiYCAD766CPMnj1b7uGMWCzG4cOHERYWhnv37kFTU1N6LRQNfz19+jQOHDiAW7du4dWrVzA3N0fXrl0xe/Zs6OjoSIeMVhweW53zSERU22o0eVtDQwPTp09Hfn4+tm/frlKZJ0+eID4+Hn5+ftDQ0IBAIEBRURFOnDihtIy2tjb69OmDEydOyAx5EolEaNOmDdq0aaO0bFlZGXJzcxV+icVi1Q+2nPz8fIX1FRUVVauegIAAAK97cNRx+vRpAK+f/lfHy5cvERUVhd69e0NfXx8+Pj7Q1taGSCRSqz0VnTlzpsr2CQQCaGtrS/NWJBnOtnHjxlptmyo0NDSwePFiaGtrY/HixcjKysIPP/wAOzs7jBs3TqU6Xr58ib/++gtaWlpyAXRtfZ4kNzBHjx5V6bN97tw5jBs3Dunp6QgMDERQUBA6dOigsGfo+vXrCAwMxIkTJ9CrVy98/vnnGDJkCF69eoUrV65I8x08eBBBQUF49uwZxo8fj3HjxuHZs2cICgrCkSNH5Nrw999/Y9KkSWjcuDFmzpwJHx8fxMTEYPHixTL5Hjx4gAkTJiA5ORmffvopJk2ahNzcXMyYMUPhse3ZswfGxsYYMmQIFixYgI8//hgxMTEYO3YscnNz5fJfv34dQUFBaNeuHebOnYs+ffrAz88PderUUfjzEBMTg7y8PPTr16/K8yzJb25uXmUQun37dqxZswZNmjTBjBkzMHPmTHh4eODq1at4+fKlNB+vnezxvYlrFxkZiSVLlkBXVxeTJ0/GvHnz0KdPH9y/fx9Pnz6VyfvixQtMmjQJOjo6mD59Ovr27Yvz589j3Lhxcj2FX3/9Nf773//C2toaM2fOxKRJk5Cfn49p06YhLi5OJu/GjRuxYMEC5Obm4rPPPsO8efPQq1cvnD9/vsrfD9U9j0REtanGcyxcXV3h6uqKQ4cOYdiwYWjSpEml+SMiIlBWVgY/Pz8AQOvWrWFrawuhUFjpjWdAQABCQ0MRExMDHx8fPHr0CBcvXsS8efMq3V9aWprMkJTyTp06pXIvS3lTp05VuF3ZBHNlWrduDeD1/AN13LlzBwBga2tbrXKxsbHIy8uTXgtjY2O4u7sjIiICkydPrrUxu3fu3IGBgUGlvSB6enpo3rw5bt++jcLCQtStW1cmvXnz5ujbty+OHj2Kq1evon379rXSNlVZWlpizpw5+O677zBixAgUFxdjyZIlck+GJQoLC5GbmyudY7F9+3bk5OTgk08+kZuPVFufp+HDh+PYsWNYu3Yt9u3bh06dOsHe3h6dOnWSeSoNAMXFxfjmm2/g4OCAzZs3S49j4MCBaN26NdauXYuEhAS4uLhALBZjyZIlePXqFXbu3Cn93AKvJ9WXlZUBAJ49e4b169fDysoKP//8szSAGjRoEIYPH45169bh448/lplTlJGRgeXLl+Pjjz+WbtPU1MTBgweRlpYm7Z3atGkTnj17JrOowaefforPP/8cN2/elDsX+/fvh76+vsy2Hj16YOrUqRAKhRg1apRM2t27d7Fx40a4urrKbPfw8JDeiNavX1+6XSgUwsjICB4eHpVckdfEYjHi4uLg6ekpt1hDRTExMWjRogXWrl0rs738TTiv3du5drGxsTAwMJA5xwAULv6Qm5uLYcOGyfw9cnJywueff44tW7Zg4cKFAF5f3+PHj2PhwoUyf++GDh2KMWPG4IcffkCPHj2goaGBP/74Azt27ICLiwv+7//+T2a4k7KgrLzqnkciotqk1nKzM2bMwKtXr7B58+Yq84pEInTq1AmWlpbSbQKBANeuXZPeICtiY2MDe3t76ROoiIgIaU9GZSwsLLBx40aFX8qGXlVlwYIFCusr/wdWFZJxwAUFBTVqh4SkfHXHFQuFQlhYWMjMb/H398fff/+N3377Ta02lZefn6/SuZa0Pz8/X2H6xIkToaenp/aclJrq378/unTpgtzcXEyYMAE2NjZK8y5btgxeXl745JNPMGrUKJw/fx7+/v748ssv5fLW1ufJysoKoaGh0nH8UVFRWLNmDUaMGIGhQ4fixo0b0rwXL15EdnY2BAKBXI+Jm5ubNA8A3Lx5E3fv3oVAIJC5MZWQTGi/ePEiXrx4gaFDh8pcb0NDQwwdOhSFhYXSOiUaNmwod5ySm0/J0K6ysjKcPXsW9vb2MkNFNDQ0ZOa8lCe5oSorK5Men62tLQwNDfHHH3/I5be1tZW7MQVeX/OXL1/i+PHj0m0PHz7E5cuX4ePjo9LY9qtXryI7O7vKYVDA63P1+PFjpKSkKM3DayfrTV07Q0NDFBUV4dy5cyr1AFa8Uffw8ECzZs1keiGOHTsGAwMD9OrVS+a65efno3v37nj48CHS09MBQDq8d/r06XJt1dDQqDJIre55JCKqTTXusQBeT1D29vZGVFQURowYofAPGAAkJycjPT0dvr6+0j88AODg4ABNTU0IhUKl426B1wHIqlWrkJWVhYiICPTs2RNGRkaVduvq6ekp/KOjjnbt2tXKZNuaBgQAZP6oSMoXFhbCyMhIpfJZWVm4fPkyAgICkJmZKd3erFkzGBgYQCgUKpwPUROGhoZKg4XyJOdDWRDSsGFDDBs2DDt27MCvv/6KHj161Er7qqN9+/a4cOFClT0mEyZMgKOjIzQ1NaWrSym7zrX1eQJeB9ILFizAggUL8OTJE6SkpCAyMhJnz57F7Nmz8csvv6B+/fq4d+8eAMitkFVednY2gP/dJFY25BB4PeQFAFq2bCmXJtkmySNR/gGDhOTpcl5eHgDg6dOnKCwsRLNmzZTWW9Hly5exdetWXLt2TW7FuOfPn8vlb9q0qcJ6XFxc0LRpU4hEIun8pfDwcIjF4moNgzIyMqp0gQqJadOmISgoCOPHj0fDhg3h7OwMd3d39O7dGzo6OgDAa1fBm7p2Y8aMQVJSEoKCglC/fn04OTnBzc0NH3/8sdzPcr169RTOYWrRogViY2Px4sUL6OvrIy0tDQUFBfjkk0+U7vfp06do1qwZ0tPTpfNcaqK655GIqDapFVgAwJQpU3D69Gn8+OOPSp8oC4VCAEBwcLDCSXPHjx/HzJkzlQ4v8fHxwbp16/Dtt98iIyMD8+fPV7fZ79Sff/4JADKTkSVPppSNn5VsL/8Eq1WrVkhNTcXNmzfx0UcfqbRvkUiEsrIyHD16VOF7RM6ePYucnBzpBEV1tGrVCklJSZVOCi8qKkJaWhosLCzkhkGVN2rUKBw5cgQbN26stcDnTWjVqlWtB7TVZWZmBi8vL3h5eeHLL79EVFQUzp8/D19fX+kT2FmzZikdQtewYcM33sbyy/dWVNM5UNeuXcP06dNhZWWF6dOnw8LCArq6utDQ0MDChQulw3/Kq2y57P79++P//u//cOPGDbRp0wbh4eGwt7dXeehhbGws3NzclP5eK69Dhw4ICwvDb7/9hoSEBCQmJiIqKgo//fQTtm3bhvr16/PaVfCmrl3Tpk1x8OBBXLp0CZcvX0ZSUhK+/fZb6ftnKk7KVoVYLIaJiQm+/fZbpXlatWol/b8qPROK1OQ8EhHVJrUDC0tLSwwaNAihoaFISEiQSy8oKMDp06fh6uqq8IV6t2/fxrZt2xAXF4fevXsr3Ee9evWkS8+am5u/8xs3dUkCLcnwBeB/TwHT0tIU3jhLnlaWf1ro6emJyMhIhIWFqRRYiMViREREwNbWVuFKUdnZ2Vi1ahUiIyOlLx9Uh4eHB5KSkhAWFqZ0bHBERARKSkqqHPdsaGiIcePGYc2aNYiIiFC7bf8WDg4OiIqKwuPHjwH87ymvvr5+lT9Hkry3bt2qNJ/kRuvu3btyK1Mp+tyqysTEBHXr1lU4F+nu3bty26KiolBaWor169fL7O/Fixc1elIrEAiwadMmCIVC9OzZE3/99RdGjx6tUtnbt28jIyNDpTHxEnXr1kXv3r2lvwcPHjyIlStXQigUYuTIkbx21aDOtQOAOnXqwN3dXfq7+Ny5c5g9ezb27t2LBQsWSPM9f/4cT548keu1uHfvHho0aCAdlmRtbY309HS0b9++0gcowOve4/j4eNy6dUtmNURV1PZ5JCKqLrXmWEiMGzcOBgYGCnssTpw4gRcvXmDgwIHSp6jlv0aPHg09Pb0qVyQaPXo0JkyYgPnz51f6xOx9VlpainXr1iElJQVubm4yS826urpCX18fR48elRs+lJ+fj7CwMOjr68v88e/RowecnJwQHR2NgwcPKtxnRkYGduzYAeD1eOqsrCz4+voqvBZDhgyBhYVFra0O1a9fP1hbW2Pv3r2Ij4+XS09NTcXGjRthYmKi0mTlwYMHw8LCAiEhITIr5fzbJSQkKOzpkoxzB/43/KRr165o0KABfv75Z+mwlfKKioqkQ9NsbW3RsmVLiEQihfOgJE+nJZ/dAwcOyMwbKigowIEDB1C3bl25pT9VoaWlBXd3d1y/fl3moYVYLMauXbsU5i/fLont27fX6EmtsbExevXqhaioKPzyyy/Q09ODj4+PSmVjY2Ohq6uLbt26qZRf0bBOOzs7AK8nWAO8dtWhzrWr7FooOu87d+6U+T4mJgb3799Hz549pdv8/PxQVlaGDRs2KNynZAgb8PrlqsDrye+vXr2Sy1tZr1Btn0cioupSu8cCeP1LfMSIEQqHOQmFQujp6Sn9AytJi4uLw+PHj9GoUSOF+Vq3bl2tMacFBQU4duyYwjQbG5tqr6QEAPHx8UhLS5Pbrq+vL/fEPTU1Vbr/8m/ezsrKQpcuXfDdd9/J5DcyMsLs2bOxYsUKDB06FP7+/jA3N8ejR48QERGBR48e4YsvvpCZS6GhoYGVK1dizpw5WLlyJY4dO4YePXrA1NQUz58/R0pKCn799VfpW5clPSWVvYXZ09MTe/bsqZUVmPT19bFmzRrMmDEDs2fPhqenJ5ydnaGlpYVr167h2LFjqFu3LlavXq3S+x10dHQwefJkfP311wAgs+LLP1F1Pk+V2bNnD65cuYLu3bvDzs4OhoaGyM7OxpkzZ3Djxg24uLhIn7zq6+tj6dKlCAoKwsCBA9G3b19YW1vj+fPnSEtLQ0xMDFatWgUXFxfpcrtTp07FqFGjEBAQgFatWuH58+dISkpC165dMXToUNSrVw8zZ87EypUrMXr0aOmLFiMiIpCRkYGFCxfWeMGEqVOnIj4+HrNnz8aQIUPQqFEj6XC9inr16oV9+/Zh1qxZ6N+/P3R0dHDx4kXcvn27RqvAAa+H1Jw8eRJnz56Fv7+/yscRExMDV1fXSofrlDdo0CC0b98e7dq1Q8OGDfHkyRMcPXoUOjo60nH5vHbVU9NrN23aNNSrVw+dOnWCubk5nj9/jvDwcGhoaMi9ZNPY2BhnzpzB33//DWdnZ6Snp+PQoUMwNTWVebeEl5cXBAIBfvnlF6SmpqJ79+4wNjbG48eP8fvvvyMzM1P6+9nBwQGjRo3Czp07MXz4cHzyyScwNTXFw4cPcfr0aezcuVNmla43fR6JiKqjVgIL4PVbng8dOiSzdvedO3fwxx9/wMPDo9I/sJ6enjhz5gwiIiIUDtGpiUePHklvQCsaO3ZsjQILZS9VatSokdyNYHR0NKKjo6GpqQl9fX2Ym5vDyckJ3t7eSoOsgQMHwtLSEvv27cPBgwelqyq1a9cOX331lcLhDyYmJti2bRsiIiJw4sQJ7NmzR1qudevWCAoKgkAgQF5eHuLi4mBnZ1fpS5IkgYVIJKqVpV1btGiB/fv3S5cMPn/+PMrKytC4cWMMGTIEgYGB1XppXJ8+fbBnz54qh3j8E1Tn81SZcePG4dSpU0hOTsaFCxeQl5cHfX19tGjRArNnz8ann34q08vXtWtX7Ny5Ezt37sTx48eRk5MDIyMjWFlZYfjw4TIBfLt27bBz50789NNPOHXqFA4fPgxjY2O0a9dOpsdt8ODBMDMzw+7du7F161YAr5+aK3sbuKqsrKywbds2rF27FgcOHJC+ZG3ZsmVyE2EdHR3x3//+F9u2bUNwcDB0dXXRuXNnbNmyBRMmTKjR/j/66CNYW1sjIyND+v6ZqmRlZeHmzZtKX1qpSGBgIM6fP48DBw4gPz8fDRo0gIODA8aMGSPzu4rXTnU1uXbA6yDv5MmTOHLkiHTJ2jZt2mD+/PlyL7LT19eXviBvw4YNEIvF6Nq1K+bMmSP3e23x4sVwcXHB0aNH8fPPP+PVq1cwNTWFnZ2d9H09EjNmzEDr1q3xyy+/YNeuXSgrK4O5uTnc3Nwq/Vv6Js4jEVF1aIhrOtuOiOhf4NNPP0VpaSkOHz6sUv7Q0FCsW7cO0dHRfEr8jlX32lWH5M3b4eHhtV73+0xjdck72a84qNaegxLRG/TPnKxARPQWXL58GXfv3lW48IQyZmZmCAoKYlDxjtXk2hERkXr+tY8ACgsLUVhYWGkeLS2tWll2ld6sD/FalpaWKhyLXlH9+vWl7zmg2nP58mVkZmbi559/homJicrvrgBQ7RccUu1S59oREZF6/rWBRfnxxMo0adLkX9fN/U/0IV7LR48eoW/fvlXmCw4Olhv3TerbunUrrly5ghYtWmDJkiU1nsBMbx+vHRHRu/OvnWORmZkp90bZinR1dWUmOdL76UO8lsXFxUhJSakyX9u2bVV+6zoRkbo4x4KIKvOvDSyIiIioehhYEFFlOHmbiIiIiIjUxsCCiIiIiIjUxr5FIiIiUkmI0XaMGTOGq9ERkULssSAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrUxsCAiIiIiIrVpiMVi8btuBBEREb3/NFaXvNX9iYO03+r+iEg97LEgIiIiIiK1MbAgIiIiIiK1MbAgIiIiIiK1MbAgIiIiIiK1MbAgIiIiIiK1MbAgIiIiIiK1MbAgIiIiIiK1MbAgIiIiIiK18c0zRET/cAkJCZg8ebLS9B07dqB9+/ZwcXGBu7s71q1bp3Ldhw4dwooVK2BgYIDo6Gjo6ekpzZuZmYkDBw7g4sWLePToEYqLi2FsbAxbW1v06NEDfn5+0NfXr86hSf3555/Ys2cPEhMTkZ2dDX19fbRu3Rp+fn7w8/ODlpaWNO+PP/6InTt3YuPGjXB1dZWp5+eff8aGDRvQsWNH/PTTTzJpJSUl8PT0RJMmTXDgwAEAwMSJE5GUlARLS0scOnQIOjo6MmVCQkKwdetW7Nq1C/b29tU+rpKSEkRGRiI6Ohq3bt1Cfn4+DAwMYGNjAw8PD/Tr10/hOVfluij6XOjr66Np06bw9fXFkCFDoK3N2wAiqj38jUJE9IHw9vaGm5ub3HZra+sa1ykUCmFlZYXMzEycOnUK/v7+CvOFh4dj+fLl0NLSgpeXFwYOHAg9PT1kZ2cjOTkZ//3vfxEbG4sNGzZUuw2HDh3CqlWrUK9ePQgEAjRr1gzPnz/HmTNnsGzZMkRHR2P16tXSoMXFxQU7d+5EYmKiXGCRkJAALS0tXL9+HUVFRTI35NevX0dhYSFcXFzk2vDgwQMcOnQIw4YNq3b7lcnJycHcuXNx9epVODg4YNiwYTAzM8Pz58+RnJyMtWvXIiUlBStWrJArq+p1Af73uRCLxcjOzkZkZCTWrl2LtLQ0LFq0qNaOh4iIgQUR0QfCzs4Ovr6+tVbfrVu3cOPGDSxduhT79u2DSCRSeAN76dIlfPPNN2jVqhX+7//+D40aNZLLk5mZiZMnT1a7DRcuXMDKlSthY2ODzZs3w9jYWJo2YsQIbNq0Cdu3b8fy5cuxbNkyAICjoyO0tbWRmJgoU1dJSQmuXLkCX19fhIeH48qVKzKBhyS/s7OzTDldXV1YWlrip59+Qt++fWFgYFDt46hILBZjwYIFuHr1KoKCgjB06FCZ9MDAQKSnp+PUqVNyZVW9LhIVPxeDBw/GoEGDEBYWhqlTp8LExETt4yEiAjjHgoiIlBAKhahbty48PT0hEAiQlJSEjIwMuXzr168HACxfvlxhUAEAVlZWGDNmTLXbIOnh+Pbbb2WCCokpU6bAwcEBx44dw+3btwG8Hu5jb2+Pa9euoaioSJr3+vXrePHiBQYMGABTU1MkJCTI1JWYmAgNDQ04OTnJbNfU1MS0adOQm5uLXbt2VfsYFDl79iySkpLw8ccfywUVEk2bNsXYsWPltqt6XZTR19eHg4MDxGIxMjMza3wMREQVMbAgIvpAFBUVITc3V+aroKCgRnW9fPkSUVFR6N27N/T19eHj4wNtbW2IRCKZfA8ePEBqaiocHR3RvHnzWjgK+bo7dOiAVq1aKcyjoaGBgIAAAMCZM2ek211cXFBSUoKUlBTptsTERNStWxdt27aFk5OTTI+GpDejdevWCgOYnj17wtHREfv27cOTJ0/UPrbTp08DAAYMGFCtcqpel6pIAgojI6NqlSMiqgwDCyKiD0RISAi8vLxkvr799tsa1RUbG4u8vDz4+fkBAIyNjeHu7o6IiAiUlpZK8925cwcAYGtrK1eHokBHLBar3AZJ3XZ2dpXma9u2LQBIeywASOdJlA8eEhMT0bFjR2hra8PZ2VnagwH8rzej4jCo8mbMmIEXL15gy5YtKh+DMpWdt8qoel3Kk1yHnJwc3L59GytXrsTNmzfRrl07NGvWTL0DISIqh3MsiIg+EP3794eXl5fMNlNT0xrVJRQKYWFhIXOj7e/vj9jYWPz2229wd3cHAGmPiKJ5B8HBwdizZ4/MtlOnTinsEVBEUrehoWGl+ST7zs/Pl27r0KEDdHR0pIGFpEdCMrTIyclJuq1Lly5K51eU17FjR/Tq1QtCoRDDhw9X66a8svNWGVWvS3khISEICQmR2ebh4YEFCxbUoOVERMoxsCAi+kA0bdpUbhWkmsjKysLly5cREBAgMwa/WbNmMDAwgFAolN7ASm6MFQ25GjBgALp27QoA2L17Ny5cuFCtdigKGBRRFIDo6emhffv2uHLlCl68eIE///wTL168kM6faNmyJUxMTJCQkCANLDQ1NeXmV1Q0ffp0nD17Fhs2bMCqVauqdTyKjq2wsFDl4UjVuS7lSQLOkpIS3L59G7t27cLjx4+hq6tb4/YTESnCwIKIiGSIRCKUlZXh6NGjOHr0qFz62bNnkZOTAxMTE+nch1u3bsnla9q0KZo2bQoAOH78eLXbIak7NTW10nySdBsbG5ntzs7OSEpKQkpKClJTU6Gnp4d27dpJ0zt16oTExESZ+RVV3eQ3b94cAoEAYWFh+OOPP6p9TBKtWrVCamoqbt68iY8++kilMtW5LuWVDzjd3Nzg6OiI8ePH4/vvv8fy5ctrfAxERBUxsCAiIimxWIyIiAjY2toqXJEoOzsbq1atQmRkJAIDA2FpaQk7OzukpKQgLS2tVidwW1pawtbWFr///jvu3buHFi1aKGyvUCgE8Hp4T3kuLi7YunUrEhIScPPmTXTo0EHmhXBOTk5Yu3YtEhIS8OLFC4Xvr1Bk0qRJiIqKwvr16ysdOlUZT09PREZGIiwsTKXAorrXpTIdO3aEr68vIiMjMXToUHTs2LFGx0BEVBEnbxMRkdTFixeRlZUFX19fuYngXl5eGDJkCCwsLGRWIZoxYwYA4IsvvsDff/+tsN7qTNoub/r06QCAL7/8Erm5uXLpW7ZswdWrV+Hr64vWrVvLpLVv3x66urq4ePEirly5IjfMydnZGaWlpdi+fbv0e1U0bNgQw4YNQ1JSEs6fP1+DowJ69OgBJycnREdH4+DBgwrzZGRkYMeOHQBqdl0qM378eGhpacnNvSAiUgd7LIiI/kUyMjKwbds2hWnDhw+XPv339PRUWoenpyf27NmDq1evon379nB1dcVXX32F77//HgMGDICXlxfs7Oygp6eHp0+fIjk5GRcuXICZmRnq1KlTrfZ269YNQUFB+OGHHzB48GC5N2///vvvcHV1xRdffCFXtk6dOujQoQMuX74MAHKBhY2NDerXr4+kpCRoaWlVOb+ivFGjRuHIkSO4fv16tY5HQkNDAytXrsScOXOwcuVKHDt2DD169ICpqSmeP3+OlJQU/Prrr9LrUJPrUhlra2t88sknOH78OJKTk9GpU6caHQcRUXkMLIiI/kXu37+P4OBghWkBAQGIi4uDnZ0dLCwslNYhuYEViUTSG1iBQIBOnTph//79uHTpEk6dOoVXr17B2NgYtra2mD9/Pvz8/KCvr1/tNg8ZMgQdO3bE3r17ER0djezsbOjr66N169b4+uuv4efnBy0tLYVlnZ2dcfnyZejq6sLBwUEmTUNDA46OjoiLi4OtrW2Vq0+VZ2hoiLFjx2Lt2rXVPh4JExMTbNu2DREREThx4gT27NmD/Px8GBoaonXr1ggKCoJAIEBeXl6Nr0tlxo4di+joaAQHB7PngohqhYa4pv3TRERE9K+isbrkre5PHMTnn0T/JJxjQUREREREauOjACIieqvy8/NRVFRUaR4dHR3Ur1//LbWodpSWliInJ6fKfPXr14eOjs5baBER0dvFwIKIiN6q1atXIyIiotI8Tk5O2LJly1tqUe149OgR+vbtW2W+4OBglZe2JSL6J+EcCyIieqvu3r2rdFlaCSMjI7Rt2/Yttah2FBcXIyUlpcp8bdu2Vflt2+8bzrEgosowsCAiIiKVMLAgospw8jYREREREamNjwKIiIhIJSFG2zFmzBhOPicihdhjQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREatMQi8Xid90IIiIiev9prC55K/sRB2m/lf0QUe1ijwUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNC0UT0T9WQkICJk+eDABYtGgR+vfvL5fHxcUF7u7uWLdunVza+vXrsWvXLlhbW+Po0aMK9xEeHo6lS5cCAGbNmoURI0bI5UlNTUVgYCAAwN/fH0uWLJGmCQQCZGVlKT2GZcuWwdfXV2m6Mo8fP0ZoaCh+++03PHz4EK9evYKZmRkcHR0hEAjQuXNnmfxlZWU4duwYIiIi8Oeff6KwsBANGjSAk5MTAgMD0aZNG7l9SNresWNH/PTTT3LpS5YsQUREBE6dOoXCwkL07dtX5fYnJCTIXD8JfX19NG3aFL6+vhgyZAi0tRX/mTp//jxmzZoFTU1NiEQiNG7cWOm+VDlXEydORFJSkkptX7x4MQQCQaV5QkJCsHXrVpXq69y5M65fvw5zc3Ps2bMHOjo6cnm+++47HD16FGvXrkX37t2l515CU1MT9evXh4ODA0aPHo2OHTtK06o6tsmTJ2P8+PEqtZWIqDIMLIjog7Blyxb06dMHenp6KuUvKSlBZGQkrKyskJGRgcTERDg7OyvNr6uri/DwcIWBhUgkgq6uLoqLixWWNTc3x7Rp0xSmlb8BVNW5c+ewaNEivHz5El5eXujfvz90dXWRlZWF2NhYTJ06FevWrYO7uzsA4MWLFwgKCsLFixfh4OCAUaNGwcjICOnp6QgPD8eJEyfw+eefY9CgQQr3d+XKFcTGxqJXr15K22RiYoJly5bJbIuJiUFMTAzGjBmDFi1aKC3r7e0NNzc3iMViZGdnIzIyEmvXrkVaWhoWLVqksIxQKIS5uTmePn0KkUiEiRMnqnWuxo4di379+knL5ebmYs2aNejUqZNcwNqhQwelxyLh6ekJa2trmW1r1qwBAMydO1dmu5WVFdLT07FkyRIEBwdjxowZMum//fYbjh49CoFAgO7du8uk/ec//0HdunXx8uVL3LlzB0ePHkV8fDw2bdok83muU6cOvvzyS4VttbW1rfJ4iIhUwcCCiP7x7O3tcf36dYSGhmLMmDEqlTl37hyys7OxefNmLFq0CCKRqNLAolevXoiOjsYff/wBBwcH6faXL18iOjoaHh4eiIqKUljWwMCgRr0Sity5cwcLFixA/fr18fPPP8vdsE+ePBnHjx+Hrq6udNv333+PixcvYsyYMXIBzsiRIzFlyhSsXLkS1tbWcHV1lUlv0qQJioqKsGnTJnTv3h1aWloK26Wvry93jBkZGYiJiYGrqytcXFyUHpOdnZ1M2cGDB2PQoEEICwvD1KlTYWJiIpM/JycHv/76K8aPH4+bN28iIiICEyZMgIaGRo3P1UcffSST9vDhQ6xZswaWlpY1unatW7dG69atZbZt3rwZABTW16FDB8TExGDPnj3o1asX2rdvDwDIz8/Ht99+i8aNG2PevHly5by8vGBsbCz93tHREQsWLMCuXbtkPs9aWlq19hkkIlKGcyyI6B/Py8sLbdu2xc6dO5Gbm6tSGaFQCEtLS7i4uMDHxwenT59Gfn6+0vzdu3eHsbExwsPDZbbHxcUhLy+vyqExtSU4OBjFxcX48ssvFfYCaGhowNfXV3qj/Oeff+L48eNwcHDA1KlT5fIbGxvj22+/BQBs2LBBLl1fXx/jxo3D3bt35Y79TdHX14eDgwPEYjEyMzPl0iMjI1FaWgpfX1/4+/vj4cOHuHTpkly+6p6rd23RokWoV68eFi9ejKKiIgDADz/8gMePH2Px4sUwNDSsso6uXbsCeB3UERG9bQwsiOgfT0NDA9OnT0d+fj62b99eZf4nT54gPj4efn5+0NDQgEAgQFFREU6cOKG0jLa2Nvr06YMTJ07IDHkSiURo06aNwjkKEmVlZcjNzVX4JRaLVT7O4uJinD9/Hubm5ujWrZtKZc6cOQMA6Nevn9wTfYlWrVqhffv2uHHjhsL5IAMHDoSlpSW2bNkiveF90yQBhZGRkVyaSCSCk5MTLCws4ObmhgYNGkAkEsnkqcm5etcaNGiA//znP0hPT8eGDRtw7tw5hIeHY/DgwSoHP+np6QAg04shoewzWFJSUpuHQUT/YgwsiOiD4OrqCldXVxw6dKjSydIAEBERgbKyMvj5+QF4PWzF1tYWQqGw0nIBAQF4/vw5YmJiAACPHj3CxYsXq5y0nJaWBi8vL4VfeXl5Kh9jRkYGXr58Wa0x8bdv3wbwerhRZdq2bSuTvzwdHR1MmTIFjx8/xv79+1Xet6qKioqQm5uLnJwc3L59GytXrsTNmzfRrl07NGvWTCbvH3/8gbt378Lf3x/A64DP29sbsbGxePbsmTRfTc7V+8DLyws+Pj44cOAAFi9ejKZNm2LmzJlK8+fl5SE3Nxd///034uPj8fXXXwOA9LMt8eLFC6WfwVu3br3RYyKifw/OsSCiD8aMGTMwYsQIbN68WW4icXkikQidOnWCpaWldJtAIMAPP/yAO3fuoFWrVgrL2djYwN7eHiKRCD4+PoiIiJD2ZJSVlSndn4WFhdJJyKoMb5GQDNWqTpmCggKVyhgYGMjsoyJvb2/s2bMHO3fuRP/+/VG/fn2V21CVkJAQhISEyGzz8PDAggUL5PIKhULo6+ujd+/e0m0CgQChoaGIiorCp59+KnMc1TlX74v58+fj8uXLyM7Oxtq1aytdkGDgwIEy39erVw/Tp0+X266rqyudPF5RxeCNiKimGFgQ0QfDzs4O3t7eiIqKwogRI+QmzwJAcnIy0tPT4evrKzMO3cHBAZqamhAKhXKr9pQnEAiwatUqZGVlISIiAj179oSRkVGlczv09PTkJkXXhOQmWRIsqKKqgEGiqgBEMtxs+vTp2L59O+bMmaNyG6rSv39/eHl5oaSkBLdv38auXbvw+PFjmQnowOun7idOnICzszOys7ORnZ0N4PWcDGtrawiFQmlgUZNz9b4wMjJCs2bNkJ2dXeUKVP/9739hYGAALS0t1K9fHy1atFC4RK+mpmatfAaJiCrDwIKIPihTpkzB6dOn8eOPP2L9+vVy6ZLhTsHBwQgODpZLP378OGbOnKn0/Qk+Pj5Yt24dvv32W2RkZGD+/Pm1ewCVsLa2Rp06dao1dMXGxgYxMTFITU2tdDhUamqqNL8yXbp0QefOnXHw4EEMGzZM9YZXoWnTptKbXjc3Nzg6OmL8+PH4/vvvsXz5cmm+U6dOoaCgAOfOncO5c+cU1nXz5k20adOmRufqn8jJyUnhfAoioneBgQURfVAsLS0xaNAghIaGIiEhQSatoKAAp0+fhqurq8KX6d2+fRvbtm1DXFyczFCb8urVqyddetbc3PytPgXW1dWFm5sbYmJicOHCBXTp0qXKMh4eHti6dSuEQiECAgIUTuC+e/cufv/9d9jZ2aFJkyaV1jdz5kzpcDNlk8HV1bFjR/j6+iIyMhJDhw6VvutDJBKhYcOGCpddLSkpweLFiyEUCjF//vwanSsiIlIPJ28T0Qdn3LhxMDAwkOuxOHHiBF68eIGBAwcqnMQ6evRo6Onpya0wVNHo0aMxYcIEzJ8/H5qab/fX6KRJk6Crq4tvvvkGaWlpCvNERUXh8uXLAF6//Mzb2xtXr17Fli1b5PLm5eXhq6++AgBMnz69yv3b2dnhk08+wfHjxxVO9K4t48ePh5aWlnTuxf3795GcnAxPT0+F187HxweOjo6Ijo7Gy5cvAVT/XBERkXrYY0FEHxxjY2OMGDFCbqiTUCiEnp6e0uVHJWlxcXF4/PgxGjVqpDCfopefVaagoADHjh1TmGZjY1OtlYtsbGywcuVKLFq0CJ999hm8vLzg4OAAXV1d/PXXX4iLi8OtW7dkgqqFCxfi6dOn2Lp1Ky5evAgPDw+ZN2/n5uZiwYIFKj/VnzJlCs6cOSMdPvUmWFtbSwOY5ORk6dAnT09PpWU8PT2RmJiImJgYeHt71+hcfahKS0uVfgYtLS1r9AZ4IqKKGFgQ0QcpMDAQhw4dwpMnTwC8fgvzH3/8AQ8Pj0pX2fH09MSZM2cQERGBsWPH1kpbHj16JF0GtKKxY8dWe0lUd3d3HDx4EKGhoYiPj0dMTAxKSkrQsGFDdOzYEXPnzpV507WBgQE2bNiAyMhIREREYMeOHSgsLISpqSlcXV0RGBhY6Xs4KrKyssLAgQPfyNKz5Y0dOxbR0dEIDg7G/fv3YWJigk6dOinN7+HhgdWrV0MkEsHb2xtA9c/Vh+rly5dKP4N9+vRhYEFEtUJDXJ23MxEREdG/lsbqt/MyPXEQn3sS/RNxjgUREREREamNjwSIiN6xwsJCFBYWVppHS0sLJiYmb6lFVJm8vDy8evWq0jx6enr/yJfzERGpg4EFEdE7tnv3bmzdurXSPE2aNEF4ePhbahFV5vPPP0dSUlKlefz9/bFkyZK30yAiovcEAwsionfMz88Pjo6Oleap+BZqenfmzJmDZ8+eVZqnYcOGb6k1RETvD07eJiIiIpVw8jYRVYaTt4mIiIiISG0MLIiIiIiISG3sayQiIiKVhBhtx5gxY6Cjo/Oum0JE7yH2WBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdoYWBARERERkdo0xGKx+F03goiIiN5/GqtL3vg+xEHab3wfRPRmsMeCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxsCCiIiIiIjUxrfQEBFVIiEhAZMnT5Z+r6mpCQMDAzRs2BBt27aFt7c3unbtCg0NDYXl169fj127dsHa2hpHjx6Vbk9NTcXo0aPh4uKCDRs2KCw7ffp0JCQk4Oeff4adnR1KS0sRFRWFI0eOIDMzE8+fP4exsTGsra3RqVMnjB07FnXq1KnxsQGAvr4+mjZtCl9fXwwZMgTa2rJ/JiZOnIikpCSldU6ePBnjx4+X2fbkyRMcOHAAv/32GzIzM/HixQsYGRnBxsYG3bp1g0AggLGxsTT/kiVLEBERgVOnTslsv3XrFn7++Wdcv34djx8/hr6+Pho2bIj27dtj4MCBsLOzq7J95S1evBgCgQACgQBZWVnS7dra2jAzM0Pnzp0xceJENG7cWGH50tJS+Pv74++//5Y77op1ViY4OBguLi5wcXGBu7s71q1bJ5cnKSkJBw4cwJUrV5Cbm4t69eqhbdu2GDBgAHr16iWXX3IODQwMIBQKZc4jAISHh2Pp0qVYsWIFvLy8VGonEVFVGFgQEanA29sbbm5uEIvFKCwsxP379xEbG4vIyEh07twZK1euRL169WTKlJSUIDIyElZWVsjIyEBiYiKcnZ0BAHZ2dhg7diy2bNmCQ4cOYdCgQTJlDx8+jAsXLmDSpEmws7MDAHz55Zc4efIkOnbsiOHDh8PIyAiPHj1Camoqdu3ahaFDh1YrsFB0bNnZ2YiMjMTatWuRlpaGRYsWyeWvU6cOvvzyS4V12draynwfHx+PhQsXoqioCB4eHvD19YWhoSFyc3Nx9epVbNq0CUePHsWRI0cqbePZs2cRFBQEY2Nj+Pn5wdraGs+fP0d6ejrOnz+Ppk2bSs9pv379pOVyc3OxZs0adOrUCf3795eps0OHDtL/m5ubY9q0aQCAwsJCpKSkIDw8HPHx8di/f7/cjbnk2P7++29YWVkhPDwc48aNkwaY8+bNQ2FhoTTvvXv3sGPHDnh4eMDDw0OmnhYtWlR67Bs3bsSOHTvQpEkTBAQEwMLCAtnZ2YiKikJQUBB8fX2xePFiaGlpyZUtKCjATz/9hHnz5lW6DyKi2sDAgohIBXZ2dvD19ZXZNmfOHKxfvx579+7FokWLsH79epn0c+fOITs7G5s3b8aiRYsgEomkgQUAjB07FmfPnsX69evRtWtXWFpaAgCysrKwfv162NvbY8yYMQCAGzdu4OTJk/Dw8MCqVavk2pebmwtDQ8NaObbBgwdj0KBBCAsLw9SpU2FiYiKTX0tLS+5cKHLnzh3Mnz8f9evXx44dOxTeQGdnZ2P//v1V1rVhwwbo6upi165dMDc3l0krKytDXl4eAKBLly4yaQ8fPsSaNWtgaWlZaZsNDAxk0gcNGoQGDRpg3759iIiIQGBgoFwZoVAIKysrzJkzB/PmzUNiYiJcXFwAQK4XISEhATt27ICNjY1K504iLCwMO3bsQOfOnbFmzRro6elJ00aOHIlvvvkGkZGRsLCwkOt9AgB7e3scPnwYn332GZo0aaLyfomIaoJzLIiIakhLSwtz5syBo6Mj4uPjkZKSIpMuFAphaWkJFxcX+Pj44PTp08jPz5ema2trY+nSpSgpKcHSpUshFoshFouxbNky6TbJUKT09HQAkN64VmRsbCw3bKmm9PX14eDgALFYjMzMzBrXExwcjKKiInz11VdKn8qbmppKewoqk5GRgWbNmskFFcDr4WkVg5/a0LlzZwD/O/flZWdn4+zZs/Dz84ObmxsaNGgAoVBYq/t/9eoVNm/ejLp16+Lbb7+VCSqA15+fhQsXonHjxti9ezdycnLk6pg2bRpevXqFTZs21WrbiIgUYWBBRKSmgIAAAK97KCSePHmC+Ph4+Pn5QUNDAwKBAEVFRThx4oRM2ZYtW2LKlClISkrCvn37cPDgQVy+fBlTpkyRuRm3srICAJw+fRrPnj1748ckCSiMjIwUpufm5ir8KikpAQAUFxfj/PnzaNKkiVwvQk1YWVnh7t27uHLlitp1qUpyDurXry+XFhkZibKyMvj5+UFbWxs+Pj44c+aMTOCoritXriA7Oxs9e/ZEgwYNFObR1dVFnz59pOe7ojZt2sDHxwdRUVG4detWrbWNiEgRDoUiIlJT69atAQD379+XbouIiJDeeEry2NraQigUYsCAATLlhw8fjri4OGzatAmampro1KkTPvvsM5k87dq1Q/fu3XH27Fn4+vqiQ4cOcHBwgIODAzp37iz3NLs6ioqKkJubK51jcfjwYdy8eRPt2rVDs2bN5PK/ePFC6YTfXbt2wd7eHhkZGXj58qX03JRXXFyMFy9eyGwzNDSstMdl4sSJ+OKLLzBu3DjY2NigQ4cOaNeuHT766CNYWFhU84jllZWVITc3F8D/5lhs2bIFWlpa+OSTT+Tyi0QidOrUSbpvf39/7Nu3D1FRUXLzZWrq9u3bAF4HB5Vp27atTP6KpkyZglOnTuHHH3/Ejz/+WCttIyJShIEFEZGaDAwMALyeKCshufGUzJsAXq8U9MMPP+DOnTto1aqVdLumpiaWLFmCIUOGoKysDIsXL4ampnyH8qpVq3D48GEcO3YMiYmJuHTpknT/EyZMUDgPQBUhISEICQmR2ebh4YEFCxYozK+rq4s1a9YoTJMEIpIn95JzU15YWJjcPBFJQKKMl5cXzMzMEBoaikuXLuHIkSPSCd89evTAV199pdZwqLS0NLlgydraGsuWLZMLjq5cuYK0tDSMHDlSus3W1ha2trYQiUS1FlhIPk9VzZ2RnGNlvSUWFhYYNGgQQkNDcfnyZXz00Ue10j4ioooYWBARqUlyAyi5wUtOTkZ6ejp8fX2RkZEhzefg4ABNTU0IhULMnTtXpg4rKyvpcBfJsKeKtLW1MWTIEAwZMgRFRUVITU3F+fPnceDAAaxbtw5mZmbw8fGpdvv79+8PLy8vlJSU4Pbt29i1axceP34MXV1dhfk1NTXh6upaaZ2Sm+HywZZEr1690Lx5cwCvhxQdO3ZMpXY6OjrC0dERYrEY6enpSEhIwKFDh/Drr7/iq6++UrpsryosLCykK2BlZ2fj0KFDuH37tsJeFKFQCG1tbbRp00bm+nbt2hU7d+7En3/+qbCnprqqChgkVAlAxo0bB5FIhB9//BE7d+5Uu21ERIowsCAiUtOff/4JANKbZckk3uDgYAQHB8vlP378OGbOnKnWZGs9PT3pjbazszOmT58OkUhUo8CiadOm0kDBzc0Njo6OGD9+PL7//nssX768Ru2ztrZGnTp1pOemPHNzc+kk7IoT3lWhoaGBZs2aoVmzZvD398enn36KCxcu4NGjRwond6tCT09PJljq3bs3xowZgy+++AIHDx6EmZkZgNfDpE6dOoWSkhIMHz5cYV0ikahWlne1sbEBANy8ebPSfKmpqTL5FTE2NsbIkSOxefNmnDx5Uu22EREpwsCCiEhNkkDCzc0NBQUFOH36NFxdXeXemwC8Hge/bds2xMXFoXfv3rWy//bt2wMAHj9+XCv1dezYEb6+voiMjMTQoUPRsWPHatehq6sLNzc3xMTE4MKFC7UygVvZfmxtbfHgwQP8/fffNQ4sFNU7d+5cTJ48GSEhIdLejJMnT6KwsBDTpk2DtbW1XLkDBw7g2LFjmDlzJnR0dNRqQ4cOHWBqaoq4uDjk5uYqfJdGcXExjh8/Dl1dXXTr1q3S+oYPH46DBw9i8+bNMsO4iIhqC1eFIiKqodLSUqxbtw4pKSnSJ/0nTpzAixcvMHDgQHh5ecl9jR49Gnp6ehCJRNXaV3p6usywm/JiY2MBVP2iteoYP348tLS05OZeVMfkyZOhp6eHb775Bvfu3VOrPfHx8RCLxXLbc3Jy8Pvvv0NLS0vhjb46XFxc4OTkhPDwcDx48ADA6yCyfv36GDFihMLrGxAQgLy8PMTFxam9/zp16mDSpEkoLCzEV199haKiIpn00tJSrFixAllZWRgxYoTSlaMk9PT0MHHiRGRkZMi8BZ6IqLawx4KISAWpqanSuQDl37ydlZWFLl264LvvvgPw+sZTT09P6dNjSVpcXBweP36MRo0aqbT/W7duYeHChXBycoKzszMaNWqEFy9e4Nq1azh58qR0Andtsba2xieffILjx48jOTkZnTp1kqaVlpYqnRdhaWkp7eFo1aoV/vvf/2LhwoUYNmwYPDw80KFDBxgYGCAnJwfXr19HXFwcDA0NlS5r90YjQQAANtVJREFUK7FgwQI0aNAA7u7uaNGiBbS1tfHgwQMcO3YM2dnZmDBhgsJlYdU1btw4TJs2DT/99BNGjhyJ33//HQKBQOkwth49ekBbWxtCoVDpylnVMWDAAGRkZGD37t349NNP4efnhyZNmiA7OxvR0dG4ffs2+vTpo/K1DwgIwN69e3H9+nW120ZEVBEDCyIiFURHRyM6OhqamprQ19eHubk5nJyc4O3tLQ0i7ty5gz/++AMeHh6VLv/q6emJM2fOICIiAmPHjlVp/05OTpg5cyYuXboEkUiEp0+fQiwWw9zcHAKBACNHjqz1J/Zjx45FdHQ0goODZXouXr58ia+//lphmT59+sgMnerWrRsOHTqEAwcOID4+HvHx8SgqKoKRkRFatWqFadOmQSAQKBzmU97ixYtx/vx5XL58GceOHUNhYSHq168POzs7zJ07t9aGlVXk6uqK9u3bIzIyUjpJ2sPDQ2l+IyMjuLi44OLFi/jrr7/QuHFjtdswa9YsuLm54cCBAzhy5Ajy8vJgaGgIe3t7TJo0qdL2VKSlpYXp06fj888/V7tdREQVaYgV9S0TERERVaCxuuSN70McxGeeRP9UnGNBRERERERq42MBIqIPyKtXr5CXl1dlPhMTE2hpab2FFhER0b8FAwsiog/IlStXMHny5CrziUQiWFhYvIUWERHRvwUDCyKiD4itrS02btxYZT5TU9O30BoiIvo3YWBBRPQBMTIyknmDNBER0dvCydtERERERKQ29lgQERGRSkKMtmPMmDHQ0dF5100hovcQeyyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtDCyIiIiIiEhtGmKxWPyuG0FERETvP43VJW98H+Ig7Te+DyJ6M9hjQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREREREamNgQUREVMsmTpwIgUDwrptBRPRWcbFoovdcQkICJk+eDABYtGgR+vfvL5fHxcUF7u7uWLdunVza+vXrsWvXLlhbW+Po0aMK9xEeHo6lS5cCAGbNmoURI0bI5UlNTUVgYCAAwN/fH0uWLJGmCQQCZGVlKT2GZcuWwdfXV2l6RSEhIdi6dSt27doFe3t7AOqfh+vXr+OXX35BcnIynjx5Ag0NDVhYWMDV1RUDBw5E8+bNZfLn5+dj//79iImJQUZGBkpLS2FhYQF3d3cEBgbC1NRUJv/Dhw/Rt29fAFDahpKSEvj4+CA3NxdNmjRBeHi4NG3JkiWIiIhQek4CAgLw1VdfKU2veB5U5eHhgZiYGHz77bfw8fGRS8/IyMCwYcNgY2ODn376CY8ePZIep4Suri4sLS3h5eWFkSNHQk9PD4DsNVNES0sLFy9eVLmtgPxnTVtbGw0bNkTnzp0xYcIENG7cuFr1ERFR7WFgQfQPsmXLFvTp00d641aVkpISREZGwsrKChkZGUhMTISzs7PS/Lq6uggPD1cYWIhEIujq6qK4uFhhWXNzc0ybNk1hWseOHVVqr6qqex62bNmCrVu3wtjYGD4+PmjRogXKyspw9+5dnDhxAr/88gvOnDkDAwMDAMD9+/cxY8YMZGVlwcPDAwEBAdDW1sbVq1cRGhoKkUiEtWvXokOHDnL70tXVxW+//YYnT57AzMxMJi0uLg65ubnQ1dVV2tb//Oc/qFu3rtx2a2trlY4VeB3IlZecnIyjR4+if//+6NSpk0yah4cHRo4ciVWrVsHFxUWmzWVlZViyZAnEYjGWLFkCLS0taZqrqyv8/PwAADk5OTh58iS2bNmC33//HRs2bJDZh7e3N9z+v737jorievsA/l16L+qqYAMFxIIVhSgRsYAVu8YG2JJgi4qaRI2x688aEktsWBATG4pdgxo9Gk0EeyGJCraACFJEUdp9//Dsviy7CwuLEOL3c44neufO7DN3ZjfzzL1zp21bpTh1dErWaZ7/XHv9+jWio6Nx8OBBXLhwAT///DOsrKxKtN3StGbNGvD9s0T0oWFiQVRBNGzYEHfu3MFPP/2EESNGaLTO+fPnkZycjHXr1mHmzJk4ePBgoYlF+/btceLECdy6dQuNGzeWl2dlZeHEiRPw8vLC8ePHVa5ramparF6JkipuO0RERGDDhg1wdXXF8uXLYWZmprB84sSJ2Lhxo/wi8M2bN5g8eTISExOxatUqeHh4yOv27dsXAwYMwNixYxEUFISff/5ZqefCw8MDv/76K44cOQJ/f3+FZQcPHoSjoyNyc3ORmZmpMt5OnTppfWFc8Djk5uZi//79aNKkicpjNHfuXIwYMQILFixQ6GnZuXMnrl+/jqCgIKUendq1aytsa9CgQfDz88OlS5dw+/ZtNGrUSL7M2dm5VM+Nguda//79YW1tjd27d+PgwYPw8/Mrtc8qKX19/fIOQWNCCGRmZqpMaImIioPPWBBVEJ06dUKDBg2wbds2pKamarROREQEatSoAVdXV3Tp0gWnTp1CRkaG2voff/wxrKysFIboAO/utKelpf0rxowXpx2ys7Oxdu1amJiYYPHixUpJBQAYGRlhwoQJ8mUHDhzAo0ePMHjwYIWkQqZhw4YYN24cUlJSEBoaqrS8UqVKaNu2rVIbJiUl4dKlS/+KNiyoYcOGGDFiBM6fP48DBw4AAOLi4rBu3Tq0bNkSn3zySZHb0NPTQ+vWrQG8Gz5V1j766COlz3706BG++eYb+Pj4wN3dHT179kRwcLBSUjdnzhy4uroiIyMDixcvRufOndGmTRuMHDkSt27dUqibl5eHnTt34pNPPkG7du3g6emJvn37Yt68ecjJyZHXU/eMxZUrVzB27Fh4enqibdu2GDp0qLzN85Ot//z5c8yYMQNeXl5o27Ytxo8fj4cPHyrVz8rKQkhICAYOHIg2bdqgffv2mDx5MmJiYhTqRUVFwdXVFYcOHcLu3bsxYMAAtGnTRuW5TERUXEwsiCoIiUSC8ePHIyMjAyEhIUXWT0pKwm+//Ybu3btDIpGgZ8+eePPmDU6ePKl2HT09PXTt2hUnT55UGPJ08OBB1K9fH/Xr11e7bl5eHlJTU1X+Kc0hIcVph+vXryM5ORnt27eHtbW1Rts/ffo0gHe9E+r07NkTenp68roF+fr6Ii4uDjdu3JCXHT58GDo6OkXeuU9LS1PZhtnZ2RrFX1KjR49G/fr1sWrVKjx58gRz586Fnp4evv32W0gkEo228ejRIwBQ6nF58+aNyn0qLMktroKffffuXQwfPhxXr15F37598eWXX8LDwwM///wzxo0bp5AEyIwfPx6JiYkYPXo0AgICcP/+fXzxxRd49eqVvE5ISAhWrlwJGxsbTJgwARMnToSXlxdu3ryJrKysQmM8d+4cAgMDERcXh2HDhmHs2LHQ09PDggULsGbNGqX6mZmZGDNmDHR1dTFu3DgMHDgQ0dHRCAoKQm5urrxeTk4OJkyYgI0bN8LFxQVTpkxBQEAAHjx4gFGjRuHOnTtK2/7pp5+wbds2eHt7Y9q0aQo9lEREJcWhUEQViJubG9zc3LB3714MHjwYNjY2ausePnwYeXl58nHwjo6OcHJyQkRERKEXzb169cJPP/2EM2fOoEuXLnj27Bl+//13BAUFFRpbXFwcOnXqpHJZZGRkqY5717Qd7t27BwBwcnLSeNv379+Hqalpoc80GBkZwc7ODvfu3cPr16+VhpB4eHigcuXKOHTokPw5jIMHD8p7hArTr18/leVLlixR276lQU9PD3PnzoWfnx8CAgKQmpqKWbNmwdbWVmX9rKwseY9RSkoKjh07hnPnzsHW1hYtWrRQqLt+/XqsX79eaRvqHnIviiyJBYBXr14hOjoaGzduhK6uLnx8fAC8e86kSpUq2L59u/zZGQBo3bo1pk2bhmPHjin1KDg7O+Orr76S/7tu3br46quvcPz4cflxOXPmDOzt7bFq1SqFdSdMmFBozLm5uVi6dCmMjY2xbds2SKVSAMDAgQPx2WefYdu2bejZsydq164tXyc1NRXDhw9XGFJnbW2N77//Hn/88Ye8l2bXrl2Ijo7GDz/8IC8D3g0RGzRoEL777jts2LBBIZ6EhATs3bsXlSpVKjRuIqLiYGJBVMFMmDABw4cPx7p165Qe0s3v4MGDaN68OWrUqCEv69mzJ1asWIH79++jXr16KtdzcHBAw4YNcfDgQXTp0gWHDx+W92Tk5eWp/TxbW1vMnDlT5TJVQ5C0pUk7yO40F+fzMzIylB66VkV2sZqRkaGUWOjp6aFbt24IDw9HUFAQYmJi8OjRI0yZMqXI7S5dulThQljG0dFRwz0oOQcHB4wZMwZr1qyBu7s7evfurbZuREQEIiIiFMpatGiBWbNmwcDAQKG8T58+KpMiTXuRClKVxNasWRMLFiyAg4MD7t27h7///hufffYZsrOzFYbMNWvWDMbGxiqHpQ0ZMkTh37LZtfIPrzIzM0NMTAyuXbuGZs2aaRzz3bt3kZCQgCFDhsiTCuDdsxh+fn6YOnUqzp49qzBxgo6OjtIwtFatWgF410MjSyKOHTsGOzs7NGjQQGl4oJubG44cOYI3b94oTHbQvXt3JhVEVOqYWBBVMM7OzvDx8cHx48cxfPhwlRecV69exaNHj9CtWzeFi6LGjRtDR0cHERERhV7k9uzZE8uWLUN8fDwOHz4MT09PWFhYFPpMg5GREdzc3LTat+LQpB1kF+j5h7IUxczMTKMhOkUlLT179kRoaChOnz6NqKgoSKVShbvJ6rRo0aJcZzVycXFR+K86np6eGDhwICQSCQwMDFCrVi2lB9llateuXarnRv4kVl9fH1KpVKGHKTY2FoD6nhIAePHihVJZ/iQc+P9hVWlpafKycePGYerUqRg9ejSkUilatmwJDw8PdOzYsdAHtv/55x8A73pBCpIl+U+fPlUol0qlSjOIWVpaKsUUGxuLt2/fFtqjlZqaqjAVb/6eESKi0sLEgqgCCgwMxKlTp/DDDz/g+++/V1ouu5P8448/4scff1RafuzYMUycOBF6eqp/Arp06YLvvvsOCxYswOPHjzF9+vTS3YFSUlQ7ODg4AAD+/PNPjbdZr149XLlyBY8fP1Y7HOrNmzeIi4uDra2t2pl06tati8aNG2PPnj24f/8+Bg4cqDBda0VXtWrVMk0k8ysqiZU90zNs2DC1yZyFhYVSmbrjk/8ZoSZNmuDAgQO4ePEioqKiEB0djePHj2Pz5s3YtGmT/MK/NBQ2HW/B55YcHBwwefJktfUL9g5pOlUzEVFxMLEgqoBq1KiB/v3746effkJUVJTCslevXuHUqVNwc3NT+RK5e/fuYdOmTTh79iw6duyocvvm5ubyqWerVatWbheQRSmsHYB378+oXLmy/P0RmvQEeHl54cqVKzhw4IDacfOHDx9GTk4OvLy8Ct2Wr68vFi1aJP87lQ3Z3XgdHZ33cu6amJigY8eO8u/Pnj178L///Q8RERFqp7qV9YY8ePBAaZmsrGCPiaZq1aqFlJQUtGrVqsTvBiEiKg38BSKqoEaNGgVTU1OlO/UnT55EZmYm+vXrh06dOin9CQgIgJGREQ4ePFjo9gMCAjBmzBhMnz79X32xoq4dgHfDZMaOHYtXr15hxowZKodEvX37FmvWrJEPf+rduzdq1aqFsLAw/Pbbb0r1Y2JisGbNGlhbW6t8kWB+3t7eGDNmDKZOncqhJ2Wofv36qFevHvbt24cnT54oLc/JyVEYSlQcqoYDOjs7AwDS09PVrufs7Izq1avj0KFDSEpKUoglNDQUEokEnp6eJYqpe/fuSE5ORlhYmMrlycnJJdouEVFxsceCqIKysrLC8OHDlYY6RUREwMjICG3atFG5nmzZ2bNnkZiYiKpVq6qs5+joWKwHhl+9eoWjR4+qXObg4FCsmZmKQ107yPTq1QvPnj3Dxo0b0adPH/j4+KBu3brIy8tDXFwcIiMj8eLFCwQEBAAAjI2NsXLlSkyYMAGTJk1Chw4d0LJlS+jq6uL27ds4evQoTExMsHz58iIf8jYzM8Nnn31WrP2JjIxUObyqUqVKcHd3L9a2/i1iYmLUnhvt27cv9RezSSQSzJs3D4GBgRg8eDB8fX1Rt25dvHnzBk+ePMHp06cxfvz4Er1TpH///nBxcUGjRo0glUqRlJSE/fv3Q19fH97e3mrX09XVxfTp0zFt2jT4+/ujT58+MDExwS+//IKbN29ixIgRJU4+Bw8ejN9//x3BwcG4fPkyWrVqBVNTUyQkJODy5cswMDBQ+6wJEVFpYmJBVIENGzYMe/fuld8BvX//Pm7dugUvL69Cx1B36NABp0+fxuHDhzFy5MhSieXZs2eYPXu2ymUjR458b4kFoNwOBX366afw8PDArl27cPbsWezbtw8SiQQ1a9ZE586d0b9/f4WZmOzt7fHzzz/Lp929cOEC8vLyUL16dQwaNAjDhg3TaOaokliyZInK8qZNm1bYxOLEiRM4ceKEymX79+9/L298rl+/PsLCwrBlyxacO3cO+/btg6mpKWxsbNCzZ0/57ErFNWzYMFy4cAG7du1CRkYGKlWqhMaNG2PEiBFFnuPt2rXD2rVrsXnzZoSGhiI7Oxt2dnaYNWtWoTNwFUVPTw/fffcd9u7di6NHj8qTCKlUikaNGqFHjx4l3jYRUXFIRGm+uYqIiIj+syTLlV8sWNrEVN7zJKqo/r0Dp4mIiIiIqMLgbQEiKhOvX7/G69evC62jq6tb4pemfQiys7M1eujY2tq6Qk1tm5KSgtzc3ELrmJiYvJchU0REVHqYWBBRmQgNDcXGjRsLrWNjY4NDhw6VUUQVz/Xr1/H5558XWe/gwYOwtbUtg4hKh5+fH+Lj4wutM2bMmGI/CE9ERGWLz1gQUZl48uSJ0puFCzI0NESzZs3KJqAKKD09HXfv3i2yXrNmzZTe2Pxvdu3aNbx9+7bQOjVq1EDNmjXLKCJSh89YEFFhmFgQERGRRphYEFFh+PA2ERERERFpjYkFERERERFpjf2NREREpJH1FiEYMWIE9PX1yzsUIvoXYo8FERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpjYkFERERERFpTa+8AyAiIqJ/PyEEMjMzkZ6eDn19/fIOh4jKmLm5OSQSSaF1JEIIUUbxEBERUQWVlJQEqVRa3mEQUTlJS0uDhYVFoXXYY0FERERFMjQ0RLNmzXDkyBGYmZmVdzj/GhkZGejevTvbpQC2i3oVtW3Mzc2LrMPEgoiIiIokkUigq6sLCwuLCnUx9L7p6OiwXVRgu6j3X24bPrxNRERERERaY2JBRERERERaY2JBRERERTIwMMCYMWNgYGBQ3qH8q7BdVGO7qPdfbhvOCkVERERERFpjjwUREREREWmNiQUREREREWmN080SERF94OLi4rB06VLcuHEDpqam6NatG8aOHVvkG7aFENi2bRv27NmD1NRUODk5YcqUKXBxcSmjyN+vkrbLnj17cOHCBdy6dQupqalYsmQJOnXqVEZRv38laZekpCSEhYXh999/x5MnT2BmZobmzZtj/PjxsLGxKcPo35+Sni/ffPMNbt26hefPn0NfXx8ODg4YNWoU3N3dyyjy0sMeCyIiog9Yeno6Pv/8c+Tk5GDZsmUYO3Ys9u/fj5UrVxa57rZt27B+/XoMGTIEq1atQpUqVTB+/Hg8efKkDCJ/v7RplyNHjiA1NRVt27Ytg0jLVknb5e7duzhz5gw6deqEFStWYPLkybh37x78/f2RkpJSRtG/P9qcL9nZ2Rg6dChWrFiBefPmwdLSEl988QWuXr1aBpGXMkFEREQfrJCQEOHh4SFSU1PlZfv27ROtW7cWiYmJatd78+aNaNeunVi9erW8LCsrS/To0UMsXrz4vcZcFkraLkIIkZubK4QQ4unTp6Jly5bil19+ea+xlqWStkt6errIzs5WKEtISBCurq4iNDT0vcVbVrQ5XwrKyckR3bp1EwsWLCjtMN879lgQERF9wH777Te0bt0alpaW8rLOnTsjLy8Ply5dUrvejRs38OrVK4UhPvr6+vDy8sKFCxfea8xloaTtArx7s/J/VUnbxdzcHHp6iiPwq1WrBmtrazx//vy9xVtWtDlfCtLV1YW5uTmys7NLO8z37r975hMREVGR4uLiYGdnp1Bmbm6OKlWqIC4urtD1ACita29vj4SEBLx586Z0Ay1jJW2X/7rSbJeHDx/ixYsXsLe3L70Ay4m27SKEQE5ODlJTUxEaGorHjx+jb9++7yfY94gPbxMREX3A0tPTYW5urlRubm6O9PT0QtczMDCAoaGh0npCCLx8+RJGRkalHm9ZKWm7/NeVVrsIIbB8+XJIpVL4+PiUZojlQtt2iYiIwIIFCwAAJiYmWLRoEZo0aVLqcb5vTCyIiIiIqExt2LABf/zxB3744QcYGxuXdzjlrn379nByckJqaioiIyPx9ddfY9myZRVuAgAmFkRERB8wCwsLZGRkKJW/fPkSFhYWha6XlZWFt2/fKvRavHz5EhKJROXd24qkpO3yX1ca7bJ//35s3LgR33zzDVq3bl3aIZYLbdvFysoKVlZWAIA2bdogPT0dwcHBFS6x4DMWREREHzA7OzulMeAZGRlISkpSGjNecD3g3Tj5/OLi4lC9evUKPQwKKHm7/Ndp2y5nzpzBkiVL8Pnnn6NXr17vJ8hyUNrni7Ozc4WctpmJBRER0QesTZs2+OOPP/Dy5Ut5WWRkJHR0dAp9QVeTJk1gamqKyMhIeVlOTg7OnDlT4e6yqlLSdvmv06ZdoqKiMHPmTPTu3RujR49+36GWqdI+X65fv44aNWqUZohlgkOhiIiIPmD9+vXDrl27EBQUhJEjRyIxMRHBwcHo27cvpFKpvF5gYCDi4+Nx4MABAIChoSFGjBiBDRs2wNraGg4ODtizZw/S0tIwbNiwctqb0lPSdgGAO3fu4J9//kFqaioA4NatWwAAa2trtGzZsix3o9SVtF1iY2MxdepU1KpVC926dcPNmzflda2trVGzZs2y3pVSVdJ2OX/+PI4cOQIPDw9Uq1YN6enpOH78OC5evIiFCxeW096UHBMLIiKiD5iFhQXWrVuHZcuWISgoCKampujduzfGjh2rUC83Nxe5ubkKZf7+/hBCYMeOHUhJSYGTkxN++OGHCn+RCGjXLrt378bhw4fl/96xYwcAoEWLFtiwYcP7D/49Kmm73Lp1CxkZGcjIyMCoUaMU6vbo0QNz5swpi/Dfm5K2S82aNZGVlYXVq1cjNTUVVlZWcHR0xPr16ytkEioRQojyDoKIiIiIiCo2PmNBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRERERERaY2JBRESlLjExEZaWlti4caNCeUBAAOzs7MonqP+IOXPmQCKRIC4urkw+b+vWrUqfl5mZCVtbW8ydO7fY21N3blDJyY7Rr7/+Wt6hUDnT9vdB23OJiQUREZW6WbNmQSqVYsSIERrVT0hIwNSpU9G4cWOYm5vDwsICjo6O+OSTTxAeHq5Qt3379jAzM1O7Ldn/WKOiolQuT0lJgbGxMSQSCUJDQ9Vux87ODhKJRP7HwMAAdnZ2GD16NB4/fqzRfv1XGRsb46uvvsKyZcsQHx9frHWLe27Qh+3atWuYM2dOmSXSpB0mFkREVKqePHmCkJAQTJgwAXp6ekXWf/jwIZo2bYo1a9bA3d0dS5YsweLFi9GjRw/ExMRgy5YtpRpfWFgY3r59C3t7e4SEhBRat2bNmggNDUVoaCiCg4Ph5uaGkJAQuLm5ISkpqVTjqmhGjRoFiUSClStXarxOcc8N0szw4cORmZmJdu3alXcope7atWuYO3cuE4sKgt9qIiIqVevXr4dEIsHgwYM1qr98+XIkJibiwIED6NWrl9LyhISEUo1v8+bN8PLyQq9evTBp0iQ8ePAAdevWVVnX0tISw4YNk/87MDAQVatWxerVq7FlyxZMmzatVGOrSExNTdG3b19s3boVCxYsgKGhYZHrFPfcKG+5ubl4+/YtTExMyjuUQunq6kJXV7e8wyBijwURUXmTjWk9deoU5s2bhzp16sDY2Bhubm64dOkSAODs2bPw8PCAqakpbGxsMH/+fJXbioqKQp8+fVClShUYGhqifv36WLhwIXJychTq/fHHHwgICICTkxNMTExgbm6Otm3bYv/+/UrbDAgIgEQiQVpamvzC2sjICG3btsXvv/+uVH/Pnj1wdXVF1apVNdr/v//+GwDQsWNHlcurV6+u0XY0ceXKFVy7dg3+/v4YMmQI9PT0iuy1KMjHxwcAcO/ePbV1jh07BolEgu+//17l8o8++ghSqRTZ2dkAinc8VJEdI1UkEgkCAgKUynft2gUPDw+Ym5vDxMQEbm5u2Lt3r0afJ9O1a1ckJSXhzJkzGtVXd27k5eVh4cKFaNeuHapXrw4DAwPUrl0bgYGBSE5OltdLTU2FkZER+vbtq3L7X3/9NSQSCa5duyYvS0tLw5dffgkHBwcYGhpCKpVi8ODBePDggcK6su9hZGQk5s+fj3r16sHIyAi7d+8GAJw8eRKDBg1C3bp1YWxsDCsrK3h7e+Ps2bMqY9m3bx+aNm0KIyMj1K5dG3PnzkVkZCQkEgm2bt2qUPft27dYtGgRGjVqBCMjI1hZWaFnz564evWqRu2qalx8af2u2NnZoX379rhy5Qo6dOgAMzMzVKpUCf7+/khMTFSo+/LlS8yaNQtubm7y3yAHBwd89dVXeP36tdK2hRDYuHEj3NzcYGZmBjMzM7i4uGD27NkA3g1rlA2Z8/Lykg9LVHU+F3Tjxg306dMHlStXhpGRERo2bIilS5ciNzdXoV5xf99UkQ2/vHPnDiZNmgQbGxuYmJigY8eO+PPPPwEA4eHhaNGiBYyNjWFnZ4cNGzao3NamTZvk9SwtLeHt7Y3z588r1cvLy8PixYthb28PIyMjNG7cGGFhYWpjjI+PR2BgIGrXrg0DAwPY2tri008/VTqGxVWwndljQUT0L/HVV18hNzcXX3zxBbKysrBixQp4e3tj+/btGDVqFD799FMMHToUu3fvxuzZs2Fvb69wN/3IkSPo27cvHBwcEBQUhEqVKuHixYuYPXs2rl27hj179sjr7t+/HzExMRg4cCDq1KmD5ORkbNu2DX379kVYWBiGDBmiFJ+Pjw+kUilmz56N5ORkrFy5Et27d0dsbCzMzc0BAM+ePcOff/6JiRMnarzf9erVAwBs3LgRkyZNUnuBXJC6oUiqLmBkNm/eDDMzM/Tr1w+mpqbo0aMHtm3bhnnz5kFHR7N7bbJEqEqVKmrreHt7o3r16ti+fbtSW/z999+4dOkSJk6cCH19fQAlOx7amDVrFhYuXIguXbpg/vz50NHRwf79+zFgwACsXr0a48aN02g7H330EQDg119/RZcuXQqtW9i5kZWVhWXLlqFfv37o1asXTE1NcfnyZWzevBnnz59HdHQ0DAwMYGVlBV9fX0RERODFixeoVKmSfBt5eXkICwtDkyZN0KxZMwDvkoo2bdrg0aNHGDlyJBo1aoT4+HisXbsWbm5uiIqKQp06dRRimTp1KrKzszFmzBhYWFigfv36AN5dqL948QJ+fn6oWbMmnj59ik2bNqFjx444c+YMPv74Y/k2du3ahcGDB6NevXr49ttvoaenh23btuHQoUNK+56dnY0uXbrgt99+w/DhwzF+/HikpaVh48aNaNu2Lc6dOwdXV1eNjocq2v6uAO+GsHXs2BH9+vVD//79ceXKFYSEhCAqKgqXL1+W9+jI2qRfv37yxP3s2bNYunQprl69ihMnTihsd/jw4QgLC4ObmxtmzpwJKysrxMTEYO/evZg3bx769u2L+Ph4bNiwATNmzECDBg0A/P9vhjpRUVHw9PSEvr4+xo0bh+rVq+PQoUP48ssvcf36dZUX4Jr8vhXF398fZmZmmDFjBp4/f44VK1bAx8cH8+fPx/Tp0xEYGIiRI0di8+bN+Oyzz9CwYUN4eHjI1//yyy+xdOlStG7dGosWLcLLly+xYcMGeHl5ISIiAt26dZPXnTJlCoKDg9GuXTtMnjwZiYmJGDdunMre10ePHuGjjz5CVlYWRo0ahXr16uHevXtYt24dzpw5g6ioKFhaWmq0j0W1MwQREZWrLVu2CACiefPm4u3bt/LyiIgIAUDo6emJy5cvy8vfvn0rqlevLtzd3eVlmZmZolq1auLjjz8W2dnZCttfuXKlACDOnDkjL8vIyFCK49WrV8LJyUk0aNBAodzf318AEIGBgQrlu3fvFgDEjz/+KC87ffq0ACCCg4NV7qu/v7+oU6eOQtn9+/eFhYWFACBq1aolhgwZIlatWiWioqJUbsPT01MAKPJP/jaTtZGVlZXw9/eXlx04cEAAEEePHlX6nDp16ghnZ2fx/Plz8fz5c/HgwQMREhIiLC0thZ6enrh586bK+GSmTp0qAIjbt28rlM+aNUsAENHR0fKy4hyPb7/9VgAQsbGx8jLZMVIFgMI+R0dHCwDi66+/Vqrbq1cvYW5uLtLT0+VlsvMz/+flp6enJ3r06KFyWX6FnRt5eXni9evXSuWbNm0SAMSuXbvkZYcPHxYAxJo1axTqRkZGCgBixYoV8rKJEycKIyMjce3aNYW6cXFxwtzcXKFdZPvp5OQkXr16pRSLqmOUkJAgKleuLLp27Sovy87OFra2tqJq1arixYsX8vKXL18Ke3t7AUBs2bJFXi77fh4/flxh22lpaaJWrVrC09NT6XMLksWe/zteGr8rQrz7HgAQq1atUiiXxb148WKFbWRlZSnFJzvnf//9d3nZrl27BAAxbNgwkZubq1A//79V7VtR2rRpI3R1dcX169flZXl5eWLAgAECgIiMjJSXF+f3TR3Zd7JHjx4iLy9PXh4cHCwACHNzc/Ho0SN5eWJiojA0NBSffPKJvCwmJkZIJBLRtm1bheP19OlTYWlpKerUqSNycnIU6nbo0EFeJsS777ZEIlH6vvr6+gqpVCoeP36sEPfly5eFrq6u+Pbbb+VlxWlvVe3MoVBERP8SgYGBMDAwkP9bdgfUzc1N4Y6lgYEBWrduLb9zDgC//PILnj17hhEjRiA1NRVJSUnyP7K7XCdPnpTXNzU1lf/99evXSE5OxuvXr9GhQwfcvXsX6enpSvFNnjxZ4d8dOnQAAIU4nj9/DgAKd5KLUrduXVy/fl1+l3znzp2YPHkyXF1d0aRJE0RHRyutY2RkhF9++UXln+HDh6v8nPDwcKSmpsLf319e1q1bN0ilUrXDoWJiYiCVSiGVSlG3bl2MHDkSVapUQUREBBo3blzofsk+Z/v27fIyIQR27NiBxo0bo0WLFvLykhyPkgoLC4NEIoG/v7/CeZKUlARfX1+8fPkSFy9e1Hh7lSpV0mg4RWHnhkQigbGxMYB3zzXIzmHZOZZ/SIqPjw+qVaum0K7Au3bW09PD0KFDAbxr67CwMLRr1w41atRQ2E9TU1O4u7srfCdkAgMDVT5Tkf8YZWRkIDk5Gbq6unBzc1OILzo6Gv/88w8CAgJgbW0tLzczM8Pnn3+utN0dO3bA2dkZLVu2VIgxKysLnTt3xvnz55GZmamiRTWjze+KjIWFBcaOHatQNnbsWFhYWCgM1zMwMJD3wuXk5CAlJQVJSUno1KkTAMXjKOs1WL58uVJvoaa9h6okJibit99+g6+vL5o0aSIvl0gkmDlzJgCoHGKoye9bUSZOnKjQ4ypra19fX9SqVUteLpVKUb9+fYVtR0REQAiB6dOnKxwvW1tbjBgxAg8fPpQPjZPVnTJlisKzNS1atEDnzp0VYkpLS8Phw4fh6+sLIyMjhXPMzs4ODg4OKr8HRVHXzhwKRUT0L1GwC1t2UWJvb69U19raWmHs+d27dwEAI0eOVLv9Z8+eyf+emJiIWbNmISIiQuVFYWpqKiwsLAqNr3LlygCgEIfsf6pCCLVxqGJnZ4fVq1dj9erViI+Px/nz5xEaGopDhw6hR48euH37tsIFqa6urvxipSBV45GBd8OgpFIpatasqfB8hLe3N/bs2YOkpCSl4U12dnby9y3IxiU7ODhotE+y5CEsLAyLFi2Cjo4Ozp07h7i4OCxdulShbkmOR0ndvXsXQgg4OzurrZP/XCmKEEKj4WtFnRu7d+/GihUrcPXqVfmzJzIpKSnyv8uSh5UrV+Kvv/6Ck5MTXr16hfDwcHh7e6NatWoA3iUyycnJOHnyJKRSqcrPVHUB6+TkpLLu/fv3MXPmTJw4cQKpqakq9w0AYmNjAUA+hCo/VWV3795FZmam2hiBd8P+8l+YFoc2vyv5t5H/YhcADA0NUbduXaVnVdauXYsff/wRt2/fRl5ensKy/Mfx77//ho2Njfx4lRZZ+zdq1EhpWYMGDaCjo6MUM6DZ71tRitvWDx8+1ChuWdmDBw/g6uoqj1/Vd7hhw4YKicKff/6JvLw8bN68GZs3b9Yobk2oi5eJBRHRv4S6WV00me1FdrG2bNky+fjygmxtbeV1vb29cffuXXzxxRdwdXWFpaUldHV1sWXLFuzcuVPpgqCwOPJfKMoujl68eFFkzOrY2NhgwIABGDBgAIYOHYqdO3fi6NGjSuO+iyM2NhZnzpyBEELtheOOHTswadIkhTJTU1O1CYwm/Pz8MGnSJJw+fRqdOnXC9u3boaurq7AvJT0e+am7sC/40L7s8yQSCY4dO6b2mKq6uFEnJSWl0ItimcLOjfDwcAwaNAitW7dGcHAwatWqBSMjI+Tm5qJLly5K++/n54eVK1di+/btWLBgAcLDw5GRkaHQGyU7Lzt16oQvv/xS4/1R1VuRkZGBdu3a4dWrV5g0aRJcXFxgbm4OHR0dLF68GKdPn9Z4+wUJIeDi4lLotL2atK862vyuFNfKlSsRFBQEb29vTJw4Eba2tjAwMMDTp08REBBQ5HlcnjT5fSvpNkpj2yUl+4xhw4YpfD/yk/UWlgYmFkRE/wGOjo4ANLsQvnHjBq5fv47Zs2crvTl506ZNWsUhuyAtzvCBwri7u2Pnzp14+vSpVtvZsmWLfAYaKysrpeWzZs1CSEiIUmKhrSFDhmDatGnYvn072rZti71796Jz586wsbGR1ymN4yHrzSn4QLOqO7OOjo44fvw4ateuLX8YtqTi4uKQk5NT5LAwoPBzIzQ0FEZGRjhz5ozChX1MTIzKbTVt2hRNmzbFjh07MH/+fGzfvl3+YLeMVCqFlZUV0tPTtUoOAeDUqVP4559/EBISovRiv1mzZin8W/ZmedlsQPmpKnN0dMTz58/RoUMHrYYAvU8PHjxAVlaWQq/F27dv8eDBA4W75qGhobCzs8OxY8cU9uX48eNK23RyckJERASePXtWaK+FppM5yMh6B27fvq20LCYmBnl5eSW6Q/++yWK6ffu20sPpd+7cUagj+29MTIzaujIODg6QSCTIysrS+nuQn7p2/neewUREVCw+Pj6oWrUqlixZovKOcGZmJl6+fAng/++eFbxbduvWLY2nN1VHKpWiUaNG8uksNfHrr7+qHEOel5cnn0WnYcOGJY4pLy8PW7duhYuLC0aPHo3+/fsr/Rk8eDBu3ryJy5cvl/hzVJFKpejatSvCw8MRFhaG9PR0pbuGpXE8ZL0wkZGRCuUrVqxQqit7BmXGjBlKU28CxRsGJTvOnp6eRdYt7NzQ1dWFRCJRuKMthMCCBQvUbs/f3x8PHz7Ezp07cfr0aQwaNAhGRkby5To6Ohg6dCj++OMPtdPoajrVprpjdPLkSaUpSV1dXWFjY4OtW7cqDP3JyMjAjz/+qLRtPz8/JCQkqO2xKM7xeF/S09Oxdu1ahbK1a9ciPT0dvXv3lpfJjmP+dsrJycGSJUuUtil7Fmb69OlKPRn51zczMwOgeS9o1apV0aZNGxw6dAi3bt1S2ObixYsBAH369NFoW2XJ19cXEokEy5YtUxgKGB8fjy1btqBOnTpo3ry5Qt2VK1cqfIevXLmi9BtQuXJldOvWDeHh4Sq/e0II+fNPxaGundljQUT0H2Bqaort27ejd+/eqF+/PkaOHAkHBwekpqYiJiYG4eHh2L9/P9q3b48GDRqgUaNGWLp0KV6/fo369evjr7/+wvr16+Hi4qLyYeniGDBgAObPn4/4+HiFO/PqLF++HBcuXEDPnj3RokULWFpaIiEhAfv27UN0dDS8vLzQvXv3Esdz8uRJPH78GKNGjVJbp1+/fpgzZw42b96MVq1alfizVPH398fBgwcRFBQES0tLhQsxAKVyPAYPHowZM2bg008/RUxMDCpVqoTjx4+rnJK3VatWmDNnDubMmYNmzZphwIABsLW1RXx8PKKjo3H06FFkZWVptG9Hjx5FlSpV4OXlpVF9dedG//79sW/fPnTo0AF+fn7Izs7GgQMHCp06eOjQoZg+fTrGjh2LvLw8lcM8Fi5ciAsXLmDgwIEYOHAg3N3dYWBggIcPH+Lo0aNo2bKl0jslVPHw8ED16tURFBSEuLg41KxZE9euXUNoaChcXFxw8+ZNeV09PT0sX74cQ4cORevWrTFq1Cjo6elh69atqFy5MmJjYxXuwn/xxRf45ZdfMG3aNJw+fRodOnSAhYUFHj16hFOnTsl7cspTvXr1MHfuXNy6dQstW7ZEdHQ0QkJC4OzsrDB9cP/+/fH111+ja9eu6Nu3L9LT07Fz5075A935DRgwAIMGDcL27dvx999/w9fXF9bW1vjrr79w4sQJ+cVqq1atoKOjg4ULFyIlJQWmpqawt7eHm5ub2niDg4Ph6emJjz/+WD4N6uHDh3HixAkMGTJE7TtzylP9+vUxbdo0LF26FO3atcOgQYPk081mZGQgLCxMnuA6Oztj3LhxWL16NTp06IB+/fohMTERq1evRtOmTZXef7Ju3Tp4eHigXbt28PPzQ/PmzZGXl4cHDx4gIiICfn5+mDNnTrFjVtXOnG6WiKicFTa9HwpMFSqjbnrRmzdviqFDhwpbW1uhr68vqlatKj766CMxb948kZycLK8XFxcn+vfvL6pUqSKMjY1Fq1atRHh4uNZTmQrxbnpEPT09sXz5cpVxF5xu9uLFi2LKlCnC1dVVVK1aVejp6QlLS0vh7u4uVqxYId68eaNQ39PTU5iamqqMR4j/n/pRNpVm//79BQBx48YNtesIIYSTk5OwtLSUT3tap04d0ahRo0LX0cTbt29FpUqVBAAxevRolXWKczxUlQkhxKVLl0SbNm2EoaGhqFy5shgzZoxISUlRew4dPnxYeHt7C2tra2FgYCBq1qwpunTpItatW6dQT910sxkZGcLU1FRMnTpV47Yo7NzYsGGDaNCggTA0NBTVq1cXY8aMEcnJyWrjF0KIHj16CADC0dFR7We+evVKzJs3TzRu3FgYGRkJMzMz4ezsLEaPHi0uXbqktJ/qptm8fv268PHxEVZWVsLMzEx4enqKc+fOqf1+7N69W7i4uAgDAwNRq1YtMWfOHBEeHq40fa4Q76aoDQ4OFq6ursLExESYmJgIBwcHMWTIEHHixAm1+1ZY7KX1u1KnTh3h6ekpoqOjhZeXlzAxMRFWVlZi2LBhIiEhQaFuTk6OWLRokahXr54wMDAQtWvXFtOmTRN37twRABSmNRXi3bSyq1evFs2bNxfGxsbCzMxMuLi4iDlz5ijU27p1q2jQoIHQ19cv9HzI79q1a6JXr17y89vZ2Vn873//U5ieVd0+F9VOBan7TsbGxqrcbyHe/Y4V/C0U4t33oFmzZsLQ0FCYm5uLTp06iXPnzinVy83NFQsWLBC1a9cWBgYGolGjRmLHjh1qY3n+/LmYOnWqcHR0FIaGhsLS0lI0btxYTJw4UWFK7OJO71uwnSVClMGTI0RE9EH5/PPPcfLkSfz5558KdysDAgLw66+/Ii4urvyCo2LZunUrRowYgdjYWPnzA8C7u5UzZ86Uz+6jKXXnxodgxYoVmDp1Ki5evAh3d/fyDkcjdnZ2sLOzU3irN5E6fMaCiIhK3bx585CcnIwtW7aUdyj0HmRmZmLJkiWYNm1asZIK4MM4N7KyspSeX8nIyMCaNWtQuXJlhXeYEP2X8BkLIiIqdVWrVkVaWlp5h0HvibGxMeLj40u07odwbjx48ABdu3bFJ598Ant7e8THx2Pbtm2IjY3FunXrlN4JQfRfwcSCiIiIqBRJpVK4u7sjLCwMiYmJ0NPTg4uLC5YsWYKBAweWd3hE7w2fsSAiIiIiIq3xGQsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItIaEwsiIiIiItLa/wFGCgAT9KITYgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "shap.summary_plot(shap_values, shap_df['Feature'], plot_type=\"bar\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0cf0144f", + "metadata": {}, + "outputs": [], + "source": [ + "#!pip freeze > requirements.txt" + ] + }, + { + "cell_type": "markdown", + "id": "0b3389b1", + "metadata": {}, + "source": [ + "\n", + "## 7 Feature Selection after SHAP feature Importance" + ] + }, + { + "cell_type": "markdown", + "id": "df6a7489", + "metadata": {}, + "source": [ + "## Filter not useful features" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "id": "49198917", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(76, 2)\n" + ] + }, + { + "data": { + "text/plain": [ + "115" + ] + }, + "execution_count": 178, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Displaying the sorted DataFrame\n", + "SHAP_feature_important_001 = shap_df[abs(shap_df['SHAP Value'])>0.001]['Feature'].tolist()\n", + "len(SHAP_feature_important)" + ] + }, + { + "cell_type": "markdown", + "id": "2c288254", + "metadata": {}, + "source": [ + "Retrain" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "id": "5ded83c7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "76" + ] + }, + "execution_count": 175, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(SHAP_feature_unimportant)" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "id": "6551c804", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "115" + ] + }, + "execution_count": 184, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(SHAP_feature_important)" + ] }, { "cell_type": "code", @@ -2925,7 +3378,210 @@ }, { "cell_type": "code", - "execution_count": 215, + "execution_count": 237, + "id": "b09617a1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789...229230231232233234235236237238
00.00.01.00.0202500.0406597.524700.5351000.00.0188019461.0...0.00.00.00.00.01.00.01.00.00.0
10.00.00.00.0270000.01293502.535698.51129500.00.00354116765.0...1.00.00.00.00.00.00.01.00.00.0
21.01.01.00.067500.0135000.06750.0135000.00.01003219046.0...0.00.00.00.00.00.00.00.00.00.0
30.00.01.00.0135000.0312682.529686.5297000.00.00801919005.0...0.00.00.00.00.00.00.00.00.00.0
40.00.01.00.0121500.0513000.021865.5513000.00.02866319932.0...0.00.00.00.00.00.00.00.00.00.0
\n", + "

5 rows × 239 columns

\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 \\\n", + "0 0.0 0.0 1.0 0.0 202500.0 406597.5 24700.5 351000.0 0.018801 \n", + "1 0.0 0.0 0.0 0.0 270000.0 1293502.5 35698.5 1129500.0 0.003541 \n", + "2 1.0 1.0 1.0 0.0 67500.0 135000.0 6750.0 135000.0 0.010032 \n", + "3 0.0 0.0 1.0 0.0 135000.0 312682.5 29686.5 297000.0 0.008019 \n", + "4 0.0 0.0 1.0 0.0 121500.0 513000.0 21865.5 513000.0 0.028663 \n", + "\n", + " 9 ... 229 230 231 232 233 234 235 236 237 238 \n", + "0 9461.0 ... 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 \n", + "1 16765.0 ... 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 \n", + "2 19046.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "3 19005.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "4 19932.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + "[5 rows x 239 columns]" + ] + }, + "execution_count": 237, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 249, "id": "f2282a63", "metadata": {}, "outputs": [], @@ -2936,14 +3592,18 @@ " df = X_train.copy()\n", " df.columns = feature_names['0'].tolist()\n", " df = df[SHAP_feature_important]\n", + " # Remove all column names\n", + " #df.rename(columns={x:y for x,y in zip(df.columns,range(0,len(df.columns)))})\n", + " df.columns = [x for x in range(0, len(df.columns))] \n", " print(df.shape)\n", - " print(df.info())\n", + " #print(df.info())\n", + " print(df.head())\n", " return df" ] }, { "cell_type": "markdown", - "id": "0eb0cd93", + "id": "b7b2f0ca", "metadata": {}, "source": [ "### First attempt to improve feature selection and model training" @@ -2977,13 +3637,13 @@ } ], "source": [ - "new_X_train = select_columns(X_train, feature_names, SHAP_feature_important)\n", - "new_X_test = select_columns(X_test, feature_names, SHAP_feature_important)" + "new_X_train = select_columns(X_train, feature_names, shap_df, 0.001)\n", + "new_X_test = select_columns(X_test, feature_names, shap_df, 0.001)" ] }, { "cell_type": "code", - "execution_count": 203, + "execution_count": 234, "id": "e2578818", "metadata": {}, "outputs": [ @@ -2991,7 +3651,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "START time Fri Mar 1 11:46:14 2024\n" + "START time Sat Mar 2 18:28:36 2024\n" ] }, { @@ -3027,6 +3687,44 @@ " return fit_method(estimator, *args, **kwargs)\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", @@ -3099,6 +3797,74 @@ "text": [ "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", @@ -3175,6 +3941,108 @@ " return fit_method(estimator, *args, **kwargs)\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", @@ -3289,6 +4157,7 @@ " return fit_method(estimator, *args, **kwargs)\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n", + "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", @@ -3356,7 +4225,13 @@ "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", + " return fit_method(estimator, *args, **kwargs)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", @@ -3366,13 +4241,7 @@ "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ + " return fit_method(estimator, *args, **kwargs)\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", @@ -3503,10 +4372,6 @@ "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n" ] }, @@ -3583,6 +4448,12 @@ "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n", "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", + " return fit_method(estimator, *args, **kwargs)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", " return fit_method(estimator, *args, **kwargs)\n" ] }, @@ -3663,223 +4534,460 @@ ] }, { - "name": "stderr", + "name": "stdout", + "output_type": "stream", + "text": [ + "Best Hyperparameters: {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100}\n", + "START time Sat Mar 2 18:28:36 2024\n", + "END time Sat Mar 2 22:15:31 2024 duration 226.91404071648915 min\n", + "\n", + "---------------------------------\n", + "start generate_model_report\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbMElEQVR4nO3deVhUZf8G8HtmYIZFdmRTFkUF9wUVcUkrktTUNjNza9O3sk17K83Ssl9qu71l+WaW9pZLlpqluW+55I4bCCooiCyisi8DM9/fH8TkCCiDwGG5P9c1V3mWOd85DMw9z3me56hEREBERESkELXSBRAREVHjxjBCREREimIYISIiIkUxjBAREZGiGEaIiIhIUQwjREREpCiGESIiIlIUwwgREREpykrpAirDaDTi0qVLcHBwgEqlUrocIiIiqgQRQXZ2Nnx8fKBWV9z+US/CyKVLl+Dr66t0GURERFQFiYmJaN68eYXr60UYcXBwAFDyYhwdHRWuhoiIiCojKysLvr6+ps/xitSLMFJ6acbR0ZFhhIiIqJ65VRcLdmAlIiIiRTGMEBERkaIYRoiIiEhRDCNERESkKIYRIiIiUhTDCBERESmKYYSIiIgUxTBCREREimIYISIiIkVZHEZ27dqFoUOHwsfHByqVCmvWrLnlPjt27EC3bt2g0+nQqlUrLF68uAqlEhERUUNkcRjJzc1F586dMX/+/EptHx8fjyFDhuDOO+9EZGQkXn75ZTz99NPYuHGjxcUSERFRw2PxvWkGDRqEQYMGVXr7BQsWoEWLFvj4448BAG3btsXu3bvx6aefIiIiwtLDExERUQNT4zfK27dvH8LDw82WRURE4OWXX65wn8LCQhQWFpr+nZWVVVPlERERNSrZBUVIzixAcmYBUjLzS/4/owCvRLSBh4ONIjXVeBhJSUmBp6en2TJPT09kZWUhPz8ftra2ZfaZM2cO3nnnnZoujYiIqMEREVy8lo/o5CycTsnGxWt514WPAuQUFpe73yM9mjfcMFIV06ZNw5QpU0z/zsrKgq+vr4IVERER1T05hcWISclCdHI2Tqdk4XRyNk6nZFcYOEo52ljBx9kWXk428HaygbeTrWJBBKiFMOLl5YXU1FSzZampqXB0dCy3VQQAdDoddDpdTZdGRERULxiNgoSreYhOzkJ0SjZO/93qkXA1r9ztrTUqtPJwQFsvBwS425sCh7ezDbwcbWCvq1ttETVeTVhYGNavX2+2bPPmzQgLC6vpQxMREdU7mflFiEkpaemITi5p9YhJyUZ+kaHc7T0ddQj2ckSwtwPaeTsi2MsRLZvaw1pTf6YSsziM5OTk4OzZs6Z/x8fHIzIyEq6urvDz88O0adOQlJSE77//HgDwzDPP4IsvvsBrr72GJ598Etu2bcNPP/2EdevWVd+rICIiqoeMRkFsWjb2nbuCfeeu4NSlLCRl5Je7rdZKjSBPBwR7OSDY2xFt//6vq722lquufhaHkUOHDuHOO+80/bu0b8f48eOxePFiJCcnIyEhwbS+RYsWWLduHSZPnozPPvsMzZs3xzfffMNhvURE1OiICM5dzikJH3FX8FfcVVzN1ZfZrpmz7d+hwwHBXo5o6+2AADd7WNWj1g5LqERElC7iVrKysuDk5ITMzEw4OjoqXQ4REVGliAjOX8m7LnxcweXsQrNtbK016B7ggrBAN3Tzc0FbL0c42VkrVHH1quznd93qwUJERFTPJV7Nw764K6ZLLylZBWbrdVZqhPi7IKylG8IC3dCpuTO0Vg2zxaOyGEaIiIhuQ3Jmvil47Iu7govXzPt8WGtU6Orrgl6Bbghr6Yaufs6wsdYoVG3dxDBCRERkgbTsAuw7V3LJZd+5Kzh/xXx4rZVahU7NnRAW6Iawlu4I8XeBrZbh42YYRoiIiG7iaq7eFDz2nkvHucu5ZuvVKqBDs9Lw4YYeAa51bh6Puo5ni4iI6DqZeUX4K/6KqfXjdEq22XqVCmjr5WgKHz1busLRpmF0OFUKwwgRETVqRqPg2MUMbI5Kxc7Yy4hKzsKN40yDPB0QFuiGXi3d0KulK5zt6v/cHnUJwwgRETU6BUUG7Dt3BZuiUrE1OhVpNwy3bdnUHmEt3dA70B2hLV3h3oS3KKlJDCNERNQoZOTpse10mqkFJE//z/TqTXRW6B/UFOFtPdA70B2ejsrdNK4xYhghIqIGK/FqHjZFpWJzVAoOnr8Gg/Gf6y9ejjYIb+eBe9p5oVdLV+isOOJFKQwjRETUYIgITiRlYnNUKjZHpZbpfBrs5YB72nninnae6NjMCSqVSqFK6XoMI0REVK/pi43YF3cFm6NSsCUqzWzGU41ahR4BLrinnRfuaesJPzc7BSulijCMEBFRvZOZX4QdMWnYFJWKnTGXkVNYbFpnp9Wgf5umuKedJ+4M8oBLA7irbUPHMEJERPVCUkY+Np9KweboVOyPu4ri6/p/NHXQIbytJwa280RYoBunW69nGEaIiKhOEhGcupRl6v8RlZxltr6VRxNT/48uzZ2hVrP/R33FMEJERHVGkcGI/XFXS/p/RKchKeOfm86pVUCIv8vfAcQLLdztFayUqhPDCBERKSq7oAg7Yi5jc1QqtsekIbvgn/4fNtZq9Gtd0v/j7mAPuHHysQaJYYSIiGpdSmYBNkenYtOpFPwVdwVFhn/6f7jZa3F325L5P/q2cucdbxsBhhEiIqoV5y7nYOOpFGw8lYpjiRlm61q625v6f3T1c4GG/T8aFYYRIiKqESKC4xczsSmqJICcTcsxW9/VzxkD23nhnnaeaOXRRKEqqS5gGCEiompTbDDiQPxVbDyVgk1RqUjO/GcCMiu1CmGBbohoXxJAeP8XKsUwQkREtyVfb8CuM5ex8VQKtp1OQ0ZekWmdnVaDAUFNMbCdF+4M9oCTrbWClVJdxTBCREQWy8jTY2t0GjZFpWBn7GUUFBlN61zsrBHe1hMR7b3Qt7U7JyCjW2IYISKiSknJLPi7/0cK/oq7anYH3GbOthjYviSAdPd3gZVGrWClVN8wjBARUYXOppWMgNl0KgXHLmaarQvydEBEe08MbO+F9j6OvAMuVRnDCBERmYgIjl3MxKZTJS0g5y7nmtapVEA3PxcMbFfSAhLAGVCpmjCMEBE1ckXXj4A5lYqUrH9GwFhrVAgLdEdE+5I5QDwcOAKGqh/DCBFRI5SvN2Bn7GVsOpWCrafTkJn/zwgYe60GA4I8MLC9J+4M9oCjDUfAUM1iGCEiaiQy8vTYEp2GTadSsOuM+QgYN3ttyQiYDp7oHcgRMFS7GEaIiBqwrIIirI28hPUnkrE/3nwETHMXW0S098LAdp7oHuDKKdhJMQwjREQNjIjg0IVrWH4gEetOXDJrAQn2csDA9l6IaO+Jdt4cAUN1A8MIEVEDcTVXj1VHLmL5wUSz+8C08WyCh0OaI6K9F/zdOAKG6h6GESKiesxoFOw9dwXLDiZg06kUFBlKLsPYWmswtLM3RvbwQzc/Z7aAUJ3GMEJEVA+lZhVg5aFErDiUiMSr+ablHZs54dGevhjW2QcOHAVD9QTDCBFRPVFsMGJn7GUsO5CI7TFpps6oDjZWuL9LM4zs4YsOzZwUrpLIcgwjRER1XOLVPPx0KBErD100m5CsR4ALHu3hh8EdvWGr5VBcqr8YRoiI6iB9sRGbo1Kx/GACdp9Nh/w9ItfFzhoPdWuOR3v6opWHg7JFElUThhEiojrk3OUcrDiYiF8OX8SVXL1ped9W7ni0py/uaecJnRVbQahhYRghIlJYQZEB608kY/mBRBw4f9W03MNBh0e6++KR7r7wc7NTsEKimsUwQkSkkKhLWVh+MAGrjyYhu6AYAKBWAXcFe2BkDz/cGdQUVhq1wlUS1TyGESKiWpRTWIy1kZew4mACjl3MNC1v7mKLkd19MaK7L7yceGdcalwYRoiIapiIIDIxA8sPJOK345eQpzcAAKw1Kgxs54VHe/qiT6A71Lw3DDVSDCNERDUkI0+P1UeTsOJgIk6nZJuWt2xqj0d7+OLBbs3h3kSnYIVEdQPDCBFRNRIR/BV3FSsOJmD9yRToi0tuUqezUmNIR2882tMPPQJcOD070XUYRoiIqkFOYTFWHkrE//ZdQFx6rml5W29HjOrpi+Gdm8HJjtOzE5WHYYSI6DYkZeRjyd7zWHYgwTQixl6rwbAuPni0hx86NXdiKwjRLTCMEBFVwdGEa/hmdzw2nEwx3SOmpbs9nujbAg92bQZ7Hf+8ElUWf1uIiCqp2GDExlOpWLQ7DkcSMkzL+7Ryw1N9W2BAGw+OiCGqAoYRIqJbyCoowk8HE/HdnvNIysgHAGg1agzr4oMn+7RAOx9HhSskqt8YRoiIKpB4NQ/f7TmPnw4lIqewpD+Iq70WY0L9MCbMHx4OnJyMqDowjBARXUdEcPjCNSzaHY+Np1Lwd3cQtPJogqf6tsADXZvBxpo3qiOqTgwjREQAigxG/HEyBYv+jDObpr1fa3c81bcF+rdpylExRDWEYYSIGrXMvCIsO5iAJXvPIzmzAACgtVLjgS7N8GTfFgjyclC4QqKGj2GEiBql8+m5+G5PPFYevmi6V4x7Ey3G9grA6F5+nKadqBYxjBBRoyEi2B9/FYt2x2NLdCrk7/4gwV4OeLJvCwzr7MP+IEQKYBghogZPX2zEuhOXsGh3PE4mZZmW3xnUFE/1bYk+rdzYH4RIQQwjRNRgZeTp8eP+BHy/7zxSswoBADbWajzYrTme7NMCrTyaKFwhEQEMI0TUAJ27nINvd8fjlyMXUVBUctdcDwcdxvcOwGM9/eBir1W4QiK6nroqO82fPx8BAQGwsbFBaGgoDhw4cNPt582bh6CgINja2sLX1xeTJ09GQUFBlQomIiqPiGDP2XQ8ufgg7v54J37cn4CCIiPaeTvik0c6Y/frd2HSna0YRIjqIItbRlasWIEpU6ZgwYIFCA0Nxbx58xAREYGYmBh4eHiU2X7p0qWYOnUqvv32W/Tu3RuxsbF4/PHHoVKp8Mknn1TLiyCixktEsP5ECj7fdganU7IBACoVcHewJ57q2wK9WrqyPwhRHacSKe1PXjmhoaHo0aMHvvjiCwCA0WiEr68vXnjhBUydOrXM9s8//zyio6OxdetW07JXXnkF+/fvx+7duyt1zKysLDg5OSEzMxOOjrwHBBGVOBB/FbPXRyMyMQMAYGutwYjuzfFEnxZo4W6vbHFEVOnPb4taRvR6PQ4fPoxp06aZlqnVaoSHh2Pfvn3l7tO7d2/88MMPOHDgAHr27Im4uDisX78eY8eOrfA4hYWFKCwsNHsxRESlzqbl4P0Np7E5KhUAYKfV4Ol+LfFknwA42/EyDFF9Y1EYSU9Ph8FggKenp9lyT09PnD59utx9HnvsMaSnp6Nv374QERQXF+OZZ57BG2+8UeFx5syZg3feeceS0oioEUjLLsC8LWew4mAiDEaBRq3CyB6+ePnu1vBw5E3riOqrKnVgtcSOHTswe/ZsfPnllzhy5AhWrVqFdevW4d13361wn2nTpiEzM9P0SExMrOkyiagOyy0sxrwtsRjw4Q4s3Z8Ag1FwTztPbHy5H2Y/0JFBhKies6hlxN3dHRqNBqmpqWbLU1NT4eXlVe4+b731FsaOHYunn34aANCxY0fk5uZi4sSJmD59OtTqsnlIp9NBp+NUzESNXbHBiBWHEvHp5jNIzym5dNvF1xlvDG6Lni1cFa6OiKqLRWFEq9UiJCQEW7duxf333w+gpAPr1q1b8fzzz5e7T15eXpnAodGUTLdsYd9ZImokRASbo1Lx/obTOHc5FwDg72aH1yKCMbijF0fHEDUwFg/tnTJlCsaPH4/u3bujZ8+emDdvHnJzc/HEE08AAMaNG4dmzZphzpw5AIChQ4fik08+QdeuXREaGoqzZ8/irbfewtChQ02hhIio1NGEa5iz/jQOnL8KAHC11+LFu1rhsVB/aK1q/MoyESnA4jAycuRIXL58GTNmzEBKSgq6dOmCDRs2mDq1JiQkmLWEvPnmm1CpVHjzzTeRlJSEpk2bYujQoXjvvfeq71UQUb13Pj0XH26MwboTyQAAnZUaT/drgX/1D4SjjbXC1RFRTbJ4nhElcJ4RoobrSk4hPt92Fj/8dQHFRoFKBTzcrTmmDGwDbydbpcsjottQI/OMEBFVl3y9Ad/uiceCHeeQXVgMABgQ1BRTBwUj2ItfOogaE4YRIqpVBqPglyMX8cmmWKRkldyjqkMzR0wb1BZ9WrkrXB0RKYFhhIhqhYhgR+xlzF1/GjGpJfeQaeZsi1cjgjCssw/Uao6QIWqsGEaIqMadTMrE7PXR2HvuCgDA0cYKL9zVGmPD/GFjzVF1RI0dwwgR1ZjEq3n4eFMM1kReAgBoNWo83icAzw0I5D1kiMiEYYSIql1Gnh7zt5/Fkr0XoDcYAQD3d/HBKwOD4Otqp3B1RFTXMIwQUbUpKDLgf/su4IvtZ5GZXwQA6B3ohjcGt0WHZk4KV0dEdRXDCBHdNqNRsPbYJXy4MQZJGfkAgGAvB0wdFIz+bZpy+nYiuimGESK6LUcSruGd36JwLDEDAODlaIMpA9vgoW7NoeEIGSKqBIYRIqqSlMwCvL/hNFYfTQIA2Gs1eO7OVniyTwvYajlChogqj2GEiCxSUGTAwl1x+HLHOeQXGQAAI0Ka49WIIHg42ihcHRHVRwwjRFQpIoI/TqbgvXXRpn4hIf4umDm0HTo1d1a2OCKq1xhGiOiWTl3KxDu/ReFA/FUAgLeTDaYOCsawzj7snEpEt41hhIgqlJ5TiI83xWD5wUSIADbWavzrjkA80z+Q/UKIqNowjBBRGfpiI5bsPY//bD1juqPu0M4+mDooGM2cbRWujogaGoYRIjIREWw7nYb/WxeN+PRcACV31J05tD16BLgqXB0RNVQMI0QEADiblo1Zv0djV+xlAIB7Ex1eiwjCwyHNeUddIqpRDCNEjVxmXhE+3RKL//11AQajwFqjwpN9W+D5O1vBwcZa6fKIqBFgGCFqpIoNRiw7kIBPNsfiWl7JfWTuaeeJ6YPbIsDdXuHqiKgxYRghaoT2nE3HrN+iEJOaDQBo49kEM+5rj76t3RWujIgaI4YRokbkwpVcvLcuGpuiUgEAznbWmHJPGzzW0w9WGrXC1RFRY8UwQtQI5BQW44ttZ/Ht7njoDUZo1CqM7eWPl8Nbw9lOq3R5RNTIMYwQNWBGo+DnIxfxwYYYpOcUAgD6tXbHW/e1QxtPB4WrIyIqwTBC1EAdvnAVb6+NwomkTABAgJsd3hzSDne39eAU7kRUpzCMEDUwOYXFmPtHNH74KwEA4KCzwgt3t8L43gHQWXEKdyKqexhGiBqQP89cxtRfTpjuqvtI9+Z4NSIYTR10CldGRFQxhhGiBiCroAiz10Vj+cFEAEBzF1t88FAn9G7FobpEVPcxjBDVc9tj0vDGqhNIziwAAIwP88dr9wbDXsdfbyKqH/jXiqieyswrwrvrovDz4YsAAH83O3zwUCeEtnRTuDIiIsswjBDVQ1uiUvHG6hNIyy6ESgU80bsFXo0Igq2WHVSJqP5hGCGqR67l6vHOb6ewJvISAKCluz0+eLgTuge4KlwZEVHVMYwQ1RMbTqbgzTUnkZ5TCLUKeLpfS0y5pw1srNkaQkT1G8MIUR13JacQM9eewu/HkwEArTya4MOHO6Grn4vClRERVQ+GEaI6bN3xZMz49SSu5OqhUavwrzta4sW7W7M1hIgaFIYRojrocnYhZvx6En+cTAEABHk64MMRndCpubOyhRER1QCGEaI6RESw9tglvL32FK7lFcFKrcJzAwIx6a5WnMqdiBoshhGiOiItqwDT15zE5qhUAEBbb0d8NKIT2vs4KVwZEVHNYhghUpiIYNWRJMz6PQqZ+UWw1qjw/J2t8dydgbDWqJUuj4ioxjGMECkoJbMA01Ydx/aYywCAjs2c8OGITgj2clS4MiKi2sMwQqQAEcHKQxfx7rooZBcUQ6tR46Xw1vjXHS1hxdYQImpkGEaIallyZj5e/+UEdsWWtIZ09nXGRw93QmtPB4UrIyJSBsMIUS36/fglvLHqBLIKiqG1UuOVe9rgqb4t2BpCRI0awwhRLcgqKMLbv57CqqNJAIDOzZ3w8SNd0MqjicKVEREpj2GEqIYdiL+KySsikZSRD7UKeP7OVnjh7tYcKUNE9DeGEaIaoi824rOtsfhqxzkYBfB1tcW8kV0Q4s877BIRXY9hhKgGnE3LweQVkTiRlAkAeDikOWYObQcHG2uFKyMiqnsYRoiqkYjgh/0JeG9dFAqKjHCytcacBzticEdvpUsjIqqzGEaIqsnl7EK8/stxbDudBgDo28odH43oDC8nG4UrIyKq2xhGiKrBlqhUvP7LcVzJ1UNrpcbUe4PxeO8AqNUqpUsjIqrzGEaIbkOevhj/ty4aS/cnAACCvRzw2aNdEeTFCcyIiCqLYYSoio4lZuDlFZGIT88FAEy8oyVeGdgGOiuNwpUREdUvDCNEFio2GPHVjnOYt/UMDEaBl6MNPnmkM3q3cle6NCKieolhhMgCCVfyMPmnSBy+cA0AMKSTN967vwOc7bQKV0ZEVH8xjBBVgojglyNJeHvtKeQUFsNBZ4VZ97fH/V2aQaViJ1UiotvBMEJ0C9dy9Zi+5gTWn0gBAPQMcMXHj3SGr6udwpURETUMDCNEN/Hnmcv498pjSM0qhJVahSkD2+BfdwRCwyG7RETVpkp36po/fz4CAgJgY2OD0NBQHDhw4KbbZ2RkYNKkSfD29oZOp0ObNm2wfv36KhVMVBsMRsFHG2MwdtEBpGYVomVTe6x+rg+eG9CKQYSIqJpZ3DKyYsUKTJkyBQsWLEBoaCjmzZuHiIgIxMTEwMPDo8z2er0e99xzDzw8PPDzzz+jWbNmuHDhApydnaujfqJql55TiBeXHcXec1cAAKND/fDmkHaw1XLILhFRTVCJiFiyQ2hoKHr06IEvvvgCAGA0GuHr64sXXngBU6dOLbP9ggUL8OGHH+L06dOwtq7aTcKysrLg5OSEzMxMODo6Vuk5iCrj0PmrmLT0CFKzCmGn1WDOgx0xvEszpcsiIqqXKvv5bdFlGr1ej8OHDyM8PPyfJ1CrER4ejn379pW7z9q1axEWFoZJkybB09MTHTp0wOzZs2EwGCo8TmFhIbKyssweRDVJRPDNn3EY+fVfSM0qRCuPJvh1Uh8GESKiWmDRZZr09HQYDAZ4enqaLff09MTp06fL3ScuLg7btm3D6NGjsX79epw9exbPPfccioqKMHPmzHL3mTNnDt555x1LSiOqsuyCIrz283H8cbJktMzQzj6Y+2BH2OvYv5uIqDbU+F9bo9EIDw8PfP3119BoNAgJCUFSUhI+/PDDCsPItGnTMGXKFNO/s7Ky4OvrW9OlUiN0OiULz/5wBPHpubDWqPDmkHYYF+bPuUOIiGqRRWHE3d0dGo0GqampZstTU1Ph5eVV7j7e3t6wtraGRvNP57+2bdsiJSUFer0eWm3ZmSt1Oh10Op0lpRFZ7OfDF/HmmhMoKDLCx8kG80d3Q1c/F6XLIiJqdCzqM6LVahESEoKtW7ealhmNRmzduhVhYWHl7tOnTx+cPXsWRqPRtCw2Nhbe3t7lBhGimlZQZMC0Vcfx75XHUFBkRP82TbHuxX4MIkRECrF4npEpU6Zg4cKFWLJkCaKjo/Hss88iNzcXTzzxBABg3LhxmDZtmmn7Z599FlevXsVLL72E2NhYrFu3DrNnz8akSZOq71UQVVLClTw89NVeLDuQCJUKmBzeBt893gMu9gzGRERKsbjPyMiRI3H58mXMmDEDKSkp6NKlCzZs2GDq1JqQkAC1+p+M4+vri40bN2Ly5Mno1KkTmjVrhpdeegmvv/569b0KokrYEpWKKT9FIqugGC521vjs0a64o01TpcsiImr0LJ5nRAmcZ4RuR7HBiI83x+KrHecAAF39nDH/sW7wcbZVuDIiooatsp/fHLtIDVpadgFeXHYUf8VdBQA83jsAbwxuC61Vle6EQERENYBhhBqs/XFX8MKyo0jLLoS9VoP3H+6E+zr5KF0WERHdgGGEGhwRwde74vDBxhgYjII2nk3w5egQtPJoonRpRERUDoYRalAy84vw6spj2BRVMhfO/V18MPvBjrDT8q1ORFRX8S80NRhnUrPx9PeHcOFKHrQaNWYMbYfRoX6cTZWIqI5jGKEG4UD8VTy95CCyCorRzNkWX47uhs6+zkqXRURElcAwQvXeHyeS8dKKSOiLjejq54xF43vAlZOYERHVGwwjVK8t3hOPd36PgggQ3tYTn4/qClut5tY7EhFRncEwQvWS0Sh4f+Np/HdnHABgdKgf3hnWHlYazh9CRFTfMIxQvaMvNuK1n49hTeQlAMCrEUF4bkAgO6oSEdVTDCNUr2QXFOGZHw5jz9krsFKrMOfBjhjR3VfpsoiI6DYwjFC9kZpVgMe/O4jo5CzYaTX4akwI+vNGd0RE9R7DCNULZ9OyMf7bg0jKyId7Ex2+e7wHOjZ3UrosIiKqBgwjVOcdPH8VTy85hMz8IrR0t8eSJ3vC19VO6bKIiKiaMIxQnbbhZDJeXM45RIiIGjKGEaqzluw9j7d/O8U5RIiIGjiGEapzjEbBBxtjsGDnOQCcQ4SIqKFjGKE6RV9sxOu/HMfqo0kAgH8PbINJd7biHCJERA0YwwjVGdkFRXj2hyPYfTYdGrUKczmHCBFRo8AwQnVCWlYBxl83h8iXo7thQJCH0mUREVEtYBghxaVmFeDRr/9CfHou3Jto8d3jPTmHCBFRI8IwQoq6Pog0c7bFsgm94OfGOUSIiBoThhFSzI1BZPnEXpzMjIioEeJYSVIEgwgREZViGKFaxyBCRETXYxihWsUgQkREN2IYoVrDIEJEROVhGKFawSBCREQVYRihGpeaVYBRDCJERFQBhhGqUaVBJI5BhIiIKsAwQjWGQYSIiCqDYYRqBIMIERFVFsMIVTsGESIisgTDCFUrBhEiIrIUwwhVmzQGESIiqgKGEaoWBUUGTPjfYQYRIiKyGMMI3TYRwRurTuBYYgacbK3x49OhDCJERFRpDCN02xb+GYdVR5OgUavw5ehuCHC3V7okIiKqRxhG6LZsj0nDnD9OAwBm3NcOfVq5K1wRERHVNwwjVGVn03Lw4tKjEAEe7eGLcWH+SpdERET1EMMIVUlmXhEmfn8I2YXF6BHgglnDO0ClUildFhER1UMMI2Qxg1HwwvKjiEvPhY+TDb4aEwKtFd9KRERUNfwEIYvN/SMau2Ivw8ZajYXju8O9iU7pkoiIqB5jGCGL/HL4Ihb+GQ8A+HhEF7T3cVK4IiIiqu8YRqjSjiRcw7RVJwAAL97VCkM6eStcERERNQQMI1QpKZkF+Nf/DkNvMGJgO0+8HN5G6ZKIiKiBYBihWyooMmDi/w7hcnYhgjwd8OnILlCrOXKGiIiqB8MI3ZSIYOovx3H8YiZc7KzxzfjusNdZKV0WERE1IAwjdFP/3RWHNZGXYKVW4cvRIbznDBERVTuGEarQttOpeH9DyVTvM4e2Q1igm8IVERFRQ8QwQuU6m5aNF5dFQgR4LNQPY3pxqnciIqoZDCNURkaeHk8tOYScwmL0bOGKt4e251TvRERUYxhGyEyRwYhJS4/gwpU8NHexxVeju3GqdyIiqlH8lCEz762Lxp6zV2Cn1WDhuO5w41TvRERUwxhGyGTZgQQs3nseAPDpyC5o6+2obEFERNQoMIwQAGB/3BW8teYkAODfA9sgor2XwhUREVFjUaUwMn/+fAQEBMDGxgahoaE4cOBApfZbvnw5VCoV7r///qoclmpI4tU8PPvjERQbBfd18sakO1spXRIRETUiFoeRFStWYMqUKZg5cyaOHDmCzp07IyIiAmlpaTfd7/z58/j3v/+Nfv36VblYqn65hcWY8P0hXM3Vo2MzJ3z4cGeOnCEiolplcRj55JNPMGHCBDzxxBNo164dFixYADs7O3z77bcV7mMwGDB69Gi88847aNmy5W0VTNXHaBRMXhGJ0ynZcG+iw9fjQmCr1ShdFhERNTIWhRG9Xo/Dhw8jPDz8nydQqxEeHo59+/ZVuN+sWbPg4eGBp556qlLHKSwsRFZWltmDqt+nW2KxKSoVWo0aX48LgbeTrdIlERFRI2RRGElPT4fBYICnp6fZck9PT6SkpJS7z+7du7Fo0SIsXLiw0seZM2cOnJycTA9fX19LyqRK+O3YJXy+7SwAYM6DHdHNz0XhioiIqLGq0dE02dnZGDt2LBYuXAh3d/dK7zdt2jRkZmaaHomJiTVYZeNzMikTr/58DAAw8Y6WeCikucIVERFRY2bRveDd3d2h0WiQmppqtjw1NRVeXmWHgp47dw7nz5/H0KFDTcuMRmPJga2sEBMTg8DAwDL76XQ66HScbKsmXM3VY8L3h1BQZMSAoKZ4/d5gpUsiIqJGzqKWEa1Wi5CQEGzdutW0zGg0YuvWrQgLCyuzfXBwME6cOIHIyEjTY9iwYbjzzjsRGRnJyy+1TETw75XHkJxZgJbu9vjPqK7QqDlyhoiIlGVRywgATJkyBePHj0f37t3Rs2dPzJs3D7m5uXjiiScAAOPGjUOzZs0wZ84c2NjYoEOHDmb7Ozs7A0CZ5VTzFu2Ox7bTadBaqTF/dDc42lgrXRIREZHlYWTkyJG4fPkyZsyYgZSUFHTp0gUbNmwwdWpNSEiAWs2JXeuaY4kZeH/DaQDAW/e141TvRERUZ6hERJQu4laysrLg5OSEzMxMODryQ9RSWQVFuO8/u5FwNQ+DOnjhy9HdOLEZERHVuMp+frMJo4ETEbyx6gQSruahuYst5j7UiUGEiIjqFIaRBm75wUT8fjwZVmoVPh/VFU627CdCRER1C8NIAxaTko23154CALwaEYSunNiMiIjqIIaRBipfb8DzS4+gsLhkPpEJ/XhPICIiqpsYRhqot9eewpm0HHg46PDxiM5Qcz4RIiKqoxhGGqBfI5Ow4lAiVCpg3qNd4NaEs9kSEVHdxTDSwJxPz8Ubq04AAF64qzV6B1b+nkBERERKYBhpQAqLDXh+2RHk6g3o2cIVL97VSumSiIiIbolhpAH5bMsZnEzKgoudNT57tAusNPzxEhFR3cdPqwbiTGo2vt4VBwCY82AneDvZKlwRERFR5TCMNAAigulrTqLYKAhv64l7O3gpXRIREVGlMYw0AL8cScKB+Kuwtdbg7WHtlC6HiIjIIgwj9VxGnh6z10cDAF4Kb43mLnYKV0RERGQZhpF67v0Np3E1V482nk3wVN8WSpdDRERkMYaReuzwhWtYdiARAPB/93eENUfPEBFRPcRPr3qq2GDE9NUlk5uNCGmOni1cFa6IiIioahhG6qnFe8/jdEo2nO2sMW1wW6XLISIiqjKGkXroUkY+PtkcCwCYNigYrvZahSsiIiKqOoaRemjWb1HI0xsQ4u+CESG+SpdDRER0WxhG6pltp1Ox4VQKNGoV/u/+DlCrVUqXREREdFsYRuqRfL0BM349BQB4qm8LtPV2VLgiIiKi28cwUo/8Z9sZXLyWDx8nG7x0d2ulyyEiIqoWDCP1RNSlLNON8GYOaw97nZXCFREREVUPhpF6oNhgxNRVx2EwCgZ18EJEe94Ij4iIGg6GkXpg8d7zOH4xEw42VnhnWHulyyEiIqpWDCN1XMKVPHy0KQYAMH1wW3g42ihcERERUfViGKnDRATT15xAQZERYS3dMLIH5xQhIqKGh2GkDlt1JAl/nkmHzkqN2Q92hErFOUWIiKjhYRipo9JzCvHuuigAwMvhbdDC3V7hioiIiGoGw0gdNeu3KGTkFaGdtyOe7tdC6XKIiIhqDMNIHbTtdCrWHrsEtQp4/6FOsNbwx0RERA0XP+XqmJzCYkxffRIA8HS/lujY3EnhioiIiGoWw0gd88GG00jOLICfqx0mh7dRuhwiIqIaxzBSh+yPu4Lv910AAMx5sCNstRqFKyIiIqp5DCN1RL7egNd/OQ4AGNXTF31auStcERERUe1gGKkjPtkcg/NX8uDlaINpg9sqXQ4REVGtYRipA44kXMOi3fEASi7PONpYK1wRERFR7WEYUVhhsQGv/XwcRgEe7NYMdwZ7KF0SERFRrWIYUdh/tp7B2bQcuDfRYcZ97ZQuh4iIqNYxjCjoZFImFuyMAwD83/0d4GynVbgiIiKi2scwohB9sRH/XnkMBqNgSCdv3NvBS+mSiIiIFMEwopDv953H6ZRsuNhZ451h7ZUuh4iISDEMIwooLDbg610ll2dejQiGexOdwhUREREph2FEAb8cTkJadiG8HG3wUEgzpcshIiJSFMNILSs2GPHfXecAABPuaAmdFad8JyKixo1hpJatO5GMC1fy4GJnjVE9fZUuh4iISHEMI7XIaBR8ub2kVeTJPi1gp7VSuCIiIiLlMYzUom2n0xCTmg17rQbjwgKULoeIiKhOYBipJSKC+TvOAgDGhPnDyY73nyEiIgIYRmrNX3FXcTQhA1orNZ7q20LpcoiIiOoMhpFa8uXfrSIju/vCw8FG4WqIiIjqDoaRWrDv3BX8eSYdGrUKE+9oqXQ5REREdQrDSA3TFxvx1q8nAQCjevrC19VO4YqIiIjqFoaRGrZodzzOpuXAzV6LVwcGK10OERFRncMwUoOSMvLxn61nAABvDG7LETRERETlYBipQbN+O4X8IgN6BrjiwW68Bw0REVF5qhRG5s+fj4CAANjY2CA0NBQHDhyocNuFCxeiX79+cHFxgYuLC8LDw2+6fUOx/XQaNp5KhUatwrv3d4BKpVK6JCIiojrJ4jCyYsUKTJkyBTNnzsSRI0fQuXNnREREIC0trdztd+zYgVGjRmH79u3Yt28ffH19MXDgQCQlJd128XVVQZEBM9eeAgA81bcFgrwcFK6IiIio7lKJiFiyQ2hoKHr06IEvvvgCAGA0GuHr64sXXngBU6dOveX+BoMBLi4u+OKLLzBu3LhKHTMrKwtOTk7IzMyEo6OjJeUq4ottZ/DRplh4Odpg6yv9Ya/jPWiIiKjxqeznt0UtI3q9HocPH0Z4ePg/T6BWIzw8HPv27avUc+Tl5aGoqAiurq4VblNYWIisrCyzR31RUGTAd3vOAwCmDgpmECEiIroFi8JIeno6DAYDPD09zZZ7enoiJSWlUs/x+uuvw8fHxyzQ3GjOnDlwcnIyPXx9fS0pU1G/RibhSq4ePk42uK+Tt9LlEBER1Xm1Oppm7ty5WL58OVavXg0bm4qnRJ82bRoyMzNNj8TExFqssupEBN/uPg8AGN87AFYaDlYiIiK6FYuuIbi7u0Oj0SA1NdVseWpqKry8vG6670cffYS5c+diy5Yt6NSp00231el00Ol0lpRWJ+w5ewUxqdmw02rwaE8/pcshIiKqFyz66q7VahESEoKtW7ealhmNRmzduhVhYWEV7vfBBx/g3XffxYYNG9C9e/eqV1vHLdodBwAYEdIcTrac4IyIiKgyLO5dOWXKFIwfPx7du3dHz549MW/ePOTm5uKJJ54AAIwbNw7NmjXDnDlzAADvv/8+ZsyYgaVLlyIgIMDUt6RJkyZo0qRJNb4UZZ1Ny8H2mMtQqYDH+7RQuhwiIqJ6w+IwMnLkSFy+fBkzZsxASkoKunTpgg0bNpg6tSYkJECt/qfB5auvvoJer8fDDz9s9jwzZ87E22+/fXvV1yHf7YkHANwd7IEW7vYKV0NERFR/WDzPiBLq+jwj13L1CJu7FQVFRiydEIrege5Kl0RERKS4GplnhMq39EACCoqMaOvtiLCWbkqXQ0REVK8wjNymwmIDFu89DwB4um8L3oOGiIjIQgwjt2lt5CVczi6Ep6MOQzv7KF0OERFRvcMwchtEBN/8WdJx9Yk+LaC14ukkIiKyFD89b8OuM+mISc2GvVaDUZzkjIiIqEoYRm7Dwl0lk5yN7OHHSc6IiIiqiGGkiqIuZWH32XRo1Co80SdA6XKIiIjqLYaRKvr270nOBnXwgq+rncLVEBER1V8MI1VwLVePtccuAQCe7Mup34mIiG4Hw0gVrDiUCH2xER2aOaKrr7PS5RAREdVrDCMWMhgFP/x1AQAwrlcAJzkjIiK6TQwjFtoRk4aL1/LhZGvNSc6IiIiqAcOIhb7fV9Iq8kj35rDVahSuhoiIqP5jGLFA4tU87Iy9DAAY08tf4WqIiIgaBoYRC6w5mgQA6NPKDf5u9gpXQ0RE1DAwjFSSiGB1ZEkYeaBrc4WrISIiajgYRirpRFIm4i7nwsZajYj2nkqXQ0RE1GAwjFTS6r8v0dzTzgsONrwPDRERUXVhGKmEYoMRv/094+oDXTmcl4iIqDoxjFTCnnNXkJ6jh6u9Fv1aN1W6HCIiogaFYaQSSltFBnf0grWGp4yIiKg68ZP1FgqLDdh4MgUAMKxzM4WrISIiangYRm5hZ8xlZBcWw8vRBt39XZQuh4iIqMFhGLmF344nAwDu6+QNtZo3xSMiIqpuDCM3kacvxpaoVADAfbwpHhERUY1gGLmJrdFpyC8ywM/VDp2bOyldDhERUYPEMHITpaNo7uvkDZWKl2iIiIhqAsNIBbIKirDj7zv03teJl2iIiIhqCsNIBTafSoW+2IjApvZo6+2gdDlEREQNFsNIBX79+xLN0M4+vERDRERUgxhGypGWXYDdZ0ou0dzfhROdERER1SSGkXL8fiwZRgG6+DojwN1e6XKIiIgaNIaRcpReorm/CzuuEhER1TSGkRucT8/FscQMqFXAEI6iISIiqnEMIzconVukTyt3NHXQKVwNERFRw8cwcoNNf0//PpTTvxMREdUKhpHr5OmLEZWcBQDo28pd4WqIiIgaB4aR6xy/mAmDUeDlaAMfZ1ulyyEiImoUGEauc/jCNQBAiL+LwpUQERE1Hgwj1znydxjp6uesbCFERESNCMPI34xGweGEkjDSPcBV4WqIiIgaD4aRv8Wl5yAjrwg21mq093FUuhwiIqJGg2Hkb0cSMgAAnZo7w1rD00JERFRb+Kn7t6hLJUN6OzVzUrgSIiKixsXqdp/AYDCgqKioOmqpkF6vh7+/P/R6PQoKCmrkGMlXs9DMQYPOPnY1dgwiIqKGxNraGhqN5rafRyUiUpUdRQQpKSnIyMi47SJuxWg0IjExEb6+vlCrq78xRwRIzsyHUQBPRx0v0xAREVWSs7MzvLy8oFKpyqzLysqCk5MTMjMz4ehYcX/MKreMlAYRDw8P2NnZlVtEdTEYDMjPz0dAQEC1JLAb6YsMKLLLhUqlQmuPJjX6WoiIiBoCEUFeXh7S0tIAAN7e3lV+riqFEYPBYAoibm5uVT64JccDABsbmxoJIwVGPVRWWthprWBry5lXiYiIKqP0MzMtLQ0eHh5V/oyu0vWI0j4idnZ2VTpoXZOnLwk7ttrqDzpEREQNWWkWuJ3+o7fVOaKhXM7IKSwGADRhGCEiIrJIdWSBRt9Ts8hgREFRScuIve62BxcRERGRhRp9GMn9u1XE1loDK46iaXAef/xx3H///TfdZseOHVCpVLUyMqw+GzBgAF5++eUGezwiUk6j/PTdt28fNBoNhgwZgvy/W0XstCWtIjf7YAoICMC8efPMlm3fvh2DBw+Gm5sb7Ozs0K5dO7zyyitISkqq8PgBAQFQqVRQqVSws7NDx44d8c0335TZzmAw4NNPP0XHjh1hY2MDFxcXDBo0CHv27CmzrV6vxwcffIDOnTvDzs4O7u7u6NOnD7777rubXscTEXz99dcIDQ1FkyZN4OzsjO7du2PevHnIy8urcL/64rPPPsPixYtN/66JD7h//etf0Gg0WLlyZbU+r6UqCl51PWzV9frqk4SEBAwZMgR2dnbw8PDAq6++iuLi4gq3Lz335T0OHjxo2u748ePo168fbGxs4Ovriw8++KDMc82bNw9BQUGwtbWFr68vJk+ebDZn065duzB06FD4+PhApVJhzZo1ZZ4jNTUVjz/+OHx8fGBnZ4d7770XZ86cMa0/f/58hfVe//t38OBB3H333XB2doaLiwsiIiJw7Ngxs2Nt3LgRvXr1goODA5o2bYqHHnoI58+fN63fvXs3+vTpAzc3N9ja2iI4OBiffvqp2XNc/7f8+sekSZMAAFevXsULL7xgOi9+fn548cUXkZmZWea1L168GJ06dYKNjQ08PDxMz3Gjs2fPwsHBAc7OzmbLT506hYceeshU042fVaWSkpIwZswY0+vq2LEjDh06ZLZNdHQ0hg0bBicnJ9jb26NHjx5ISEgo9/mqS6MMI4sWLcILL7yAXbt24XzCRQCAjbXlp+K///0vwsPD4eXlhV9++QVRUVFYsGABMjMz8fHHH99031mzZiE5ORknT57EmDFjMGHCBPzxxx+m9SKCRx99FLNmzcJLL72E6Oho7NixA76+vhgwYIDZL7Jer0dERATmzp2LiRMnYu/evThw4AAmTZqEzz//HKdOnaqwjrFjx+Lll1/G8OHDsX37dkRGRuKtt97Cr7/+ik2bNll8Tq6vqS5wcnIq80tbnfLy8rB8+XK89tpr+Pbbb2+5fV05L0owGAwwGo1Kl1Ht6srP1GAwYMiQIdDr9di7dy+WLFmCxYsXY8aMGRXu07t3byQnJ5s9nn76abRo0QLdu3cHUDJPxMCBA+Hv74/Dhw/jww8/xNtvv42vv/7a9DxLly7F1KlTMXPmTERHR2PRokVYsWIF3njjDdM2ubm56Ny5M+bPn19uLSKC+++/H3Fxcfj1119x9OhR+Pv7Izw8HLm5uQAAX1/fMvW+8847aNKkCQYNGgQAyMnJwb333gs/Pz/s378fu3fvhoODAyIiIkxfzOLj4zF8+HDcddddiIyMxMaNG5Geno4HH3zQVI+9vT2ef/557Nq1C9HR0XjzzTfx5ptvmr3ugwcPmtWyefNmAMCIESMAAJcuXcKlS5fw0Ucf4eTJk1i8eDE2bNiAp556yuy1f/LJJ5g+fTqmTp2KU6dOYcuWLYiIiChzjoqKijBq1Cj069evzLq8vDy0bNkSc+fOhZeXV7nn+Nq1a+jTpw+sra3xxx9/ICoqCh9//DFcXFxM25w7dw59+/ZFcHAwduzYgePHj+Ott96CjY1Nuc9ZbaQK8vPzJSoqSvLz86uyu8WKi4vl4MGDUlxcfNvPlZ2dLU2aNJHTp0/LyJEj5cXX35Jjidckr7Dkubdv3y4A5Nq1a2X29ff3l08//VRERBITE0Wr1crLL79c7nHK27+85ynl6uoqkydPNv17+fLlAkDWrl1bZv8HH3xQ3NzcJCcnR0RE3n//fVGr1XLkyJEy2+r1etN2N1qxYoUAkDVr1pRZZzQaJSMjQ0RE+vfvLy+99JLZ+uHDh8v48ePNXtOsWbNk7Nix4uDgIOPHj5ewsDB57bXXzPZLS0sTKysr2blzp4iIFBQUyCuvvCI+Pj5iZ2cnPXv2lO3bt5dbr4jIK6+8IkOGDDH9+9NPPxUA8scff5iWBQYGysKFC0VEZPz48TJ8+HDT/wMwe8THx5t+5lu2bJGQkBCxtbWVsLAwOX36dIV1lFq8eLH06tVLMjIyxM7OThISEszWlx7///7v/8Tb21sCAgJERCQhIUFGjBghTk5O4uLiIsOGDZP4+HjTfgcOHJDw8HBxc3MTR0dHueOOO+Tw4cM3reX613q9G9/TM2fOlM6dO8v3338v/v7+4ujoKCNHjpSsrCzTPjk5OTJ27Fixt7cXLy8v+eijj8q8D271s/vuu+/EyclJfv31V2nbtq1oNBqz1ygiEh8fX+ZnUvq+6t+/v7zwwgvy6quviouLi3h6esrMmTPN9r927Zo89dRT4u7uLg4ODnLnnXdKZGTkTc9TYmKiPProo+Li4iJ2dnYSEhIif/31V4Xn8KWXXpL+/fub/t2/f3+ZNGmSvPTSS+Lm5iYDBgyQUaNGySOPPGK2n16vFzc3N1myZImIiBgMBpk9e7YEBASIjY2NdOrUSVauXHnTWi2xfv16UavVkpKSYlr21VdfiaOjoxQWFlbqOfR6vTRt2lRmzZplWvbll1+Ki4uL2XO8/vrrEhQUZPr3pEmT5K677jJ7rilTpkifPn3KPQ4AWb16tdmymJgYASAnT540LTMYDNK0aVPT73N5unTpIk8++aTp3wcPHhQAZr+Lx48fFwBy5swZERFZuXKlWFlZicFgMG2zdu1aUalUotfrKzzWAw88IGPGjKlw/UsvvSSBgYFiNBor3Oann34SrVYrRUVFIiJy9epVsbW1lS1btlS4T6nXXntNxowZY/rdqkh5nzEiJT+3vn373vQYI0eOvOlrLM/NMkFmZqYAkMzMzJs+R7W1jIgI8vTFNfYoKC7/+cXCCWR/+uknBAcHIygoCKNGPYbVy3+AiEBrZdmpWLlyJfR6PV577bVy11f227jRaMQvv/yCa9euQavVmpYvXboUbdq0wdChQ8vs88orr+DKlSumFP7jjz8iPDwcXbt2LbOttbU17O3tyz32jz/+iKCgIAwfPrzMOpVKBScny+7T89FHH6Fz5844evQo3nrrLYwePRrLly83+xmtWLECPj4+pmT//PPPY9++fVi+fDmOHz+OESNGlGmavV7//v2xe/du09wzO3fuhLu7O3bs2AGgpAny3LlzGDBgQJl9P/vsM4SFhWHChAmmbzK+vr6m9dOnT8fHH3+MQ4cOwcrKCk8++eQtX/OiRYswZswYODk5YdCgQWaXhEpt3boVMTEx2Lx5M37//XcUFRUhIiICDg4O+PPPP7Fnzx40adIE9957r+lbdnZ2NsaPH4/du3fjr7/+QuvWrTF48GBkZ2ffsqbKOHfuHNasWYPff/8dv//+O3bu3Im5c+ea1r/66qvYuXOnqYVsx44dOHLkiNlzVOZnl5eXh/fffx/ffPMNTp06BQ8PD7Pn8PX1xS+//AIAiImJQXJyMj777DPT+iVLlsDe3h779+/HBx98gFmzZpne90DJN9C0tDT88ccfOHz4MLp164a7774bV69eLfd15+TkoH///khKSsLatWtx7NgxvPbaaxa32CxZsgRarRZ79uzBggULMHr0aPz222/IyckxbbNx40bk5eXhgQceAADMmTMH33//PRYsWIBTp05h8uTJGDNmDHbu3FnhcZ555hk0adLkpo9S+/btQ8eOHeHp6WlaFhERgaysrJu2jl5v7dq1uHLlCp544gmz573jjjvM/j5FREQgJiYG165dA1DSwnL48GEcOHAAABAXF4f169dj8ODBlTouABQWFgKA2TdwtVoNnU6H3bt3l7vP4cOHERkZadbSEBQUBDc3NyxatAh6vR75+flYtGgR2rZti4CAAABASEgI1Go1vvvuOxgMBmRmZuJ///sfwsPDYW1tXe6xjh49ir1796J///7lrtfr9fjhhx/w5JNP3nR0SelMpFZWJV0DNm/eDKPRiKSkJLRt2xbNmzfHI488gsTERLP9tm3bhpUrV1bYslQZa9euRffu3TFixAh4eHiga9euWLhwoWm90WjEunXr0KZNG0RERMDDwwOhoaHlXlKrdhbFn7998803smnTJjl06JBERUVJTk6O5BYWif/rv9f6I7ewyKLae/fuLfPmzRMRkYycfHFxdZPFP/9uWl/ZlpFnn31WHB0dq3L6xN/fX7Rardjb24uVlZUAEFdXV1NqFxEJDg4u91uuSEmSBiDvv/++iIjY2trKiy++aHEdbdu2lWHDht1yu8q2jNx///1m25S2guzatcu0LCwsTF5//XUREblw4YJoNBpJSkoy2+/uu++WadOmlVvLtWvXRK1Wy8GDB8VoNIqrq6vMmTNHQkNDRUTkhx9+kGbNmpm2v/Gbbnmv5fqWkVLr1q0TADdt/YuNjRVra2u5fPmyiIisXr1aWrRoYfataPz48eLp6Wn2rfJ///ufBAUFmW1XWFgotra2snHjxnKPZTAYxMHBQX777bcK67GkZcTOzs6sJeTVV181ncPs7GzRarXy008/mdZfuXJFbG1tTeeuMj+77777TgDcsqWiot+5/v37l/kW16NHD9P7588//xRHR0cpKCgw2yYwMFD++9//lnus//73v+Lg4CBXrlwpd31lW0a6du1qtk1RUZG4u7vL999/b1o2atQoGTlypIiUtCLZ2dnJ3r17zfZ76qmnZNSoUeXWIiKSmpoqZ86cuemj1IQJE2TgwIFm++fm5goAWb9+fYXHuN6gQYNk0KBBZsvuuecemThxotmyU6dOCQCJiooyLfvss8/E2tra9DftmWeeqfA4KKdlRK/Xi5+fn4wYMUKuXr0qhYWFMnfuXAFQ5nWVevbZZ6Vt27Zllp84cUICAwNFrVaLWq2WoKAgOX/+vNk2O3bsEA8PD9FoNAJAwsLCyv2736xZM9FqtaJWq81ajG60YsWKcn8nrnf58mXx8/OTN954w7Rszpw5Ym1tLUFBQbJhwwbZt2+f3H333RIUFGT6u5Geni6+vr6mFuWqtozodDrR6XQybdo0OXLkiPz3v/8VGxsbWbx4sYiIJCcnCwCxs7OTTz75RI4ePSpz5swRlUolO3bsqPB4irSMrFixAu+//z6cnZ0RGBgIW1tbxMbG1vjN8qpDTEwMDhw4gFGjRgEAikSFgUMfwJoVP1j8XCJyW2OrX331VURGRmLbtm0IDQ3Fp59+ilatWpU5RmVrqYqq7leR0mvMpZo2bYqBAwfixx9/BFBynXbfvn0YPXo0AODEiRMwGAxo06aN2Te9nTt34ty5c+Uew9nZGZ07d8aOHTtw4sQJaLVaTJw4EUePHkVOTg527txZ4TeXW+nUqZPp/0unNS6d5rg83377LSIiIuDu7g4AGDx4MDIzM7Ft2zaz7Tp27Gj2rfLYsWOmTmilr9nV1RUFBQWm152amooJEyagdevWcHJygqOjI3JycqqtE1lAQAAcHBzMXm/paz137hz0ej1CQ0NN611dXREUFGT6d2V/dlqt1uy8WurGfa+v89ixY8jJyYGbm5tZDfHx8RW+fyIjI9G1a1e4urpWuSag5Jv19aysrPDII4+Y3uu5ubn49ddfTe/1s2fPIi8vD/fcc49Zrd9//32FtQKAh4cHWrVqddNHdbl48SI2btxYpj9DZezYsQOzZ8/Gl19+iSNHjmDVqlVYt24d3n333Uo/h7W1NVatWoXY2Fi4urrCzs4O27dvx6BBg8q9J1l+fj6WLl1apt78/Hw89dRT6NOnD/766y/s2bMHHTp0KBmwkJ8PoOR2JhMmTMD48eNx8OBB7Ny5E1qtFg8//HCZv4t//vknDh06hAULFmDevHlYtmxZufUvWrQIgwYNgo+PT7nrs7KyMGTIELRr1w5vv/22abnRaERRURH+85//ICIiAr169cKyZctw5swZbN++HQAwYcIEPPbYY7jjjjsqfT7LYzQa0a1bN8yePRtdu3bFxIkTMWHCBCxYsMC0HgCGDx+OyZMno0uXLpg6dSruu+8+0zY1xeKJNT755BOMGDECTZo0gY2NDfz9/ZGZmYnczGuImlW2w01cXDyMRiNatQo0LYs5HQNbOzv4+fmW2b48BoMBx44dR+fOncpMNWtrXfmJyhYtWoTi4mKzN4uIQKvTITMz0/RHHyhpSrvxUktGRobp0kWbNm2QmZmJ5OTkKs3H7+7ubvpjsnLlSnTs2BHdu3dHu3btTM8fHR1d7r6ly9u0aWP67+nTpy2uobL7qdXqMr+g5YXP8i4HjR49Gi+++CI+//xzLF26FB07dkTHjh0BlDSZazQaHD58uMzP9frm5xsNGDAAO3bsgE6nQ//+/eHq6oq2bdti9+7d2LlzJ1555ZVbvqbyXN88Wxo0K2q+NxgMWLJkCVJSUkzNraXLv/32W9x9992mZTeel5ycHISEhJg+uK7XtGlTAMD48eNx5coVfPbZZ/D394dOp0NYWNhNO0s6OjriwoULZZZnZGRAo9GY1XFjU7RKpbLoUkVlf3a2tra3FdpvVmdOTg68vb1Nl+iuV9Fl0lvd7uF23+v9+/dHWloaNm/eDFtbW9x7772mWgFg3bp1aNasmdl+Op2uwnqeeeYZ/PDDzb8slT63l5eX6TJJqdTUVNO6W/nuu+/g5uaGYcOGmS338vIyPU9Fz/vWW29h7NixePrppwGUBPDc3FxMnDgR06dPr/QNTkNCQhAZGYnMzEzo9Xo0bdoUoaGhZb7oAMDPP/+MvLw8jBs3zmz50qVLcf78eezbt8903KVLl8LFxQW//vorHn30UcyfPx9OTk5mo4J++OEH+Pr6Yv/+/ejVq5dpeYsWLUyvKTU1FW+//bbpC22pCxcuYMuWLVi1alW5rys7Oxv33nsvHBwcsHr1arP3dennR+nffqDk74C7u7vpy8e2bduwdu1afPTRRwBKPreMRiOsrKzw9ddfV+qScumxrj8OALRt29Z0qdTd3R1WVlblblPRpbLqYlHLiF6vx+HDhxEWFmZaplKp4OjoiLy8PNhprco8jPp8eLo5my3zcHOGobD87e20VrCxUkOnUZk9bKxU5W5b2T90xcXF+P777/Hxxx8jMjISkZGRWLnxT/y08U94eXub0m7r1q2hVqtx+PBhs/3j4uKQmZlpCgAPP/wwtFptuUPcAFg0TNHX1xcjR47EtGnTTMseffRRnDlzBr/99luZ7T/++GO4ubnhnnvuAQA89thj2LJlC44ePVpm26KiIlNP9Bs99thjiI2Nxa+//lpmnYiYhp81bdoUycnJpnUGgwEnT56s1GsbPnw4CgoKsGHDBixdutT0TREAunbtCoPBgLS0tDLf9m72x7O038jWrVtNfUMGDBiAZcuWITY2ttz+IqW0Wq2pv8ntWL9+PbKzs3H06FHT+ykyMhLLli3DqlWrbvrz79atG86cOVPut97SsLtnzx68+OKLGDx4MNq3bw+dTof09PSb1hQUFIRTp06Zrr2XOnLkCFq0aFHhtfAbBQYGwtraGvv37zctu3btGmJjY03/rurPrjylrUaW/ly6detmCoM31lDaWnWjTp06ITIyssI+JTe+14GS1pTK6N27N3x9fbFixQr8+OOPGDFihOmct2vXDjqdDgkJCWVqvb7f0o1mzZpl9v4q71EqLCwMJ06cMGvN27x5MxwdHct8uNxIRPDdd99h3LhxZd4nYWFh2LVrl1ko27x5M4KCgkyjMPLy8soEjtKQWpUWWCcnJzRt2hRnzpzBoUOHyu3XtmjRIgwbNswU4EuV1nL9Z0Ppv0uD7M3qvVkoNxqNZX6/gJIg5+HhgSFDhpRZVzoaSavVYu3atWVGpfTp0wdASct9qatXryI9PR3+/v4ASvrtXP8znzVrFhwcHBAZGWnqk1QZffr0MTsOAMTGxpqOo9Vq0aNHj5tuU2NuehHnBklJSQJA9u7da3Z9KDEx0eza4fUOHTok6enpZstSU1Pl6NGjNz3OwYMHyzxuZzTN6tWrRavVmkaIiIjEpGTJscRrMumlKdK9e3fT8okTJ0pAQID8+uuvEhcXJzt37pRevXpJr169zK7zz58/X1QqlTz55JOyY8cOOX/+vOzevVsmTpwoU6ZMqbCW8q7nnTp1SlQqlRw8eFBESkazPPDAA+Li4iLffPONxMfHy7Fjx2TixIliZWVldr21oKBA+vXrJy4uLvLFF19IZGSknDt3TlasWCHdunWr8FwbjUYZOXKk2NraynvvvScHDx6U8+fPy2+//SZ33XWX6RgLFiwQOzs7+f333yU6OlomTJggjo6OZfqMlHeNUkRk9OjR0rlzZ1GpVHLhwoUy6wICAuSXX36RuLg42b9/v8yePVt+//33cp9LpKTPjFqtFo1GI9HR0SJS8vPVaDTi7e1ttu2NfQAmTJggPXr0kPj4eLl8+bIYDIZy+ywcPXrUNNqmPMOHDzf1B7iewWAQLy8v+eKLL8o9vkjJdfzWrVvLgAEDZNeuXRIXFyfbt2+XF154QRITE0VEpGvXrnLPPfdIVFSU/PXXX9KvXz+xtbWt8ByLlPSn8fDwkEceeUQOHTokZ86ckUWLFomDg4N89dVXpu1KR9Nc79NPPxV/f3/Tv5955hnx9/eXrVu3yokTJ2TYsGHSpEkTs/42t/rZ3eq6dqmLFy+KSqWSxYsXS1pammRnZ4vIrfsqGY1G6du3r3Tu3Fk2btwo8fHxsmfPHnnjjTdMv0c3KiwslDZt2ki/fv1k9+7dcu7cOfn5559NfTk2bNggKpVKlixZIrGxsTJjxgxxdHQs02fkxrpKTZ8+Xdq1aydWVlby559/llnn5uYmixcvlrNnz8rhw4flP//5j+l6/e0qLi6WDh06yMCBAyUyMlI2bNggTZs2Net/tX//fgkKCpKLFy+a7btlyxYBYPp9ul5GRoZ4enrK2LFj5eTJk7J8+XKxs7Mz65czc+ZMcXBwkGXLlklcXJxs2rRJAgMDzUYYZWdny9GjR02/W6V9Eq7/m/DTTz/J9u3b5dy5c7JmzRrx9/eXBx98sExNZ86cEZVKZTaKrlR0dLTodDp59tlnJSoqSk6ePCljxowRJycnuXTpkoiIbN26VVQqlbzzzjsSGxsrhw8floiICPH395e8vDwREfniiy9k7dq1EhsbK7GxsfLNN9+Ig4ODTJ8+3ex4BoNB/Pz8TH2ZrpeZmSmhoaHSsWNHOXv2rCQnJ5se13+eDR8+XNq3by979uyREydOyH333Sft2rWrcGRPeb9bhYWFpvPr7e0t//73v+Xo0aNm/YoOHDggVlZW8t5778mZM2fkxx9/FDs7O/nhhx9M26xatUqsra3l66+/ljNnzsjnn38uGo2mzPv5etXRZ6ROhhGDwSDFxcWmR2Fh4W2Hkfvuu08GDx5stiw9u0DiL+fIrj17BYAcO3ZMREpO7MyZMyU4OFhsbW2lRYsWMnHiRFNHxett3rxZIiIixMXFRWxsbCQ4OFj+/e9/m9705anogzsiIsKs81hRUZF8+OGH0r59e9FqteLo6CgRERGye/fuMvsWFBTInDlzpGPHjmJjYyOurq7Sp08fWbx4sWkIWXkMBoN89dVX0qNHD7GzsxNHR0cJCQmRzz77zPRLqdfr5dlnnxVXV1fx8PCQOXPmlNuBtaIPyvXr1wsAueOOO8qs0+v1MmPGDAkICBBra2vx9vaWBx54QI4fP15hzSIinTt3Fi8vL9O/r1y5IiqVSh599FGz7W4MAzExMdKrVy+xtbUtM7S3smEkJSVFrKyszDp4Xu/ZZ581dXCsqFNpcnKyjBs3Ttzd3UWn00nLli1lwoQJpl/YI0eOSPfu3cXGxkZat24tK1euvOk5vv71PfDAA+Lj4yP29vbSuXNnWbhwoVmIrkwYyc7OljFjxoidnZ14enrKBx98UOZD+FY/u8qGERGRWbNmiZeXl6hUKrOhvbfqOJ2VlSUvvPCC+Pj4iLW1tfj6+sro0aPLDLG+3vnz5+Whhx4SR0dHsbOzk+7du8v+/ftN62fMmCGenp7i5OQkkydPlueff77SYSQqKkoAiL+/f5nhnUajUebNmydBQUFibW0tTZs2lYiICFOnxOpw/vx5GTRokNja2oq7u7u88sorZr//pe/1G9/Xo0aNkt69e1f4vMeOHZO+ffuKTqeTZs2aydy5c83WFxUVydtvvy2BgYFiY2Mjvr6+8txzz5n9TpUe+8bH9T/Pzz77TJo3by7W1tbi5+cnb775ZrnDkqdNmya+vr5mQ3Ovt2nTJunTp49p6Pxdd90l+/btM9tm2bJl0rVrV7G3t5emTZvKsGHDzMLYf/7zH2nfvr3p72LXrl3lyy+/LHPMjRs3CgCJiYkpU0dFr/nGn0FmZqY8+eST4uzsLK6urvLAAw/c9D1c3u9WecPkAZi9d0VEfvvtN+nQoYPodDoJDg6Wr7/+uszzL1q0SFq1aiU2NjbSuXPncqd/uF51hBGVSOXb0PR6Pezs7LBmzRoEBgaiRYsWsLGxQXx8PAwGQ7mdqY4fPw5PT0+z4WZJSUnIyMhA+/btK3Vcg8GAo0ePomvXrlW+PTERERFVv4KCAsTHx5sywfWysrLg5ORkGtJcEYv6jGi1WoSEhOCvv/4yLRMRZGVlVTiXhb29PbKyssoUd7MOikRERNR4WDy0d8qUKfjpp5+Qk5ODgoICJCQkwGg0mjqMxcfH4+LFi6btPT09kZWVhZSUFOTn5+PSpUvIy8srM/kRERERNU4WD+0dOXIksrOzkZGRgXPnzsHOzg6tW7c29cC+cehhkyZN0KJFC1y6dAlJSUmwsbFBq1atbjnEjoiIiBoHi8MIAIwZM6bC60PXT4xUytXV9bYnGSIiIqKGqVHetZeIiIjqjtsKIw3xduBERERUedWRBap0mUar1UKtVuPSpUto2rQptFrtbU35fCulMzMWFBRwaC8REVEdICLQ6/W4fPky1Gq12T24LFWlMKJWq9GiRQskJyfj0qVLVT54ZRmNRqSnp+P8+fOVvscBERER1Tw7Ozv4+fnd1udzlcIIUNI64ufnh+Li4mq518fN5OTkYMiQITh06BDnJyEiIqojNBoNrKwqf5+4ilQ5jAAlN8mztrau9A24qkqv1+PChQvQarVlRu8QERFR/cZrHkRERKQohhEiIiJSFMMIERERKeq2+ozUltIbC994wz0iIiKqu0o/t0s/xytSL8JIdnY2AMDX11fhSoiIiMhS2dnZcHJyqnC9Sm4VV+oAo9GIS5cuwcHBoVonV8vKyoKvry8SExPh6OhYbc9L5nieaw/Pde3gea4dPM+1oybPs4ggOzsbPj4+N52HpF60jKjVajRv3rzGnt/R0ZFv9FrA81x7eK5rB89z7eB5rh01dZ5v1iJSih1YiYiISFEMI0RERKSoRh1GdDodZs6cCZ1Op3QpDRrPc+3hua4dPM+1g+e5dtSF81wvOrASERFRw9WoW0aIiIhIeQwjREREpCiGESIiIlIUwwgREREpqsGHkfnz5yMgIAA2NjYIDQ3FgQMHbrr9ypUrERwcDBsbG3Ts2BHr16+vpUrrN0vO88KFC9GvXz+4uLjAxcUF4eHht/y50D8sfU+XWr58OVQqFe6///6aLbCBsPQ8Z2RkYNKkSfD29oZOp0ObNm3496MSLD3P8+bNQ1BQEGxtbeHr64vJkyejoKCglqqtn3bt2oWhQ4fCx8cHKpUKa9asueU+O3bsQLdu3aDT6dCqVSssXry4ZouUBmz58uWi1Wrl22+/lVOnTsmECRPE2dlZUlNTy91+z549otFo5IMPPpCoqCh58803xdraWk6cOFHLldcvlp7nxx57TObPny9Hjx6V6Ohoefzxx8XJyUkuXrxYy5XXP5ae61Lx8fHSrFkz6devnwwfPrx2iq3HLD3PhYWF0r17dxk8eLDs3r1b4uPjZceOHRIZGVnLldcvlp7nH3/8UXQ6nfz4448SHx8vGzduFG9vb5k8eXItV16/rF+/XqZPny6rVq0SALJ69eqbbh8XFyd2dnYyZcoUiYqKks8//1w0Go1s2LChxmps0GGkZ8+eMmnSJNO/DQaD+Pj4yJw5c8rd/pFHHpEhQ4aYLQsNDZV//etfNVpnfWfpeb5RcXGxODg4yJIlS2qqxAajKue6uLhYevfuLd98842MHz+eYaQSLD3PX331lbRs2VL0en1tldggWHqeJ02aJHfddZfZsilTpkifPn1qtM6GpDJh5LXXXpP27dubLRs5cqRERETUWF0N9jKNXq/H4cOHER4eblqmVqsRHh6Offv2lbvPvn37zLYHgIiIiAq3p6qd5xvl5eWhqKgIrq6uNVVmg1DVcz1r1ix4eHjgqaeeqo0y672qnOe1a9ciLCwMkyZNgqenJzp06IDZs2fDYDDUVtn1TlXOc+/evXH48GHTpZy4uDisX78egwcPrpWaGwslPgvrxY3yqiI9PR0GgwGenp5myz09PXH69Oly90lJSSl3+5SUlBqrs76rynm+0euvvw4fH58yb34yV5VzvXv3bixatAiRkZG1UGHDUJXzHBcXh23btmH06NFYv349zp49i+eeew5FRUWYOXNmbZRd71TlPD/22GNIT09H3759ISIoLi7GM888gzfeeKM2Sm40KvoszMrKQn5+Pmxtbav9mA22ZYTqh7lz52L58uVYvXo1bGxslC6nQcnOzsbYsWOxcOFCuLu7K11Og2Y0GuHh4YGvv/4aISEhGDlyJKZPn44FCxYoXVqDsmPHDsyePRtffvkljhw5glWrVmHdunV49913lS6NblODbRlxd3eHRqNBamqq2fLU1FR4eXmVu4+Xl5dF21PVznOpjz76CHPnzsWWLVvQqVOnmiyzQbD0XJ87dw7nz5/H0KFDTcuMRiMAwMrKCjExMQgMDKzZouuhqrynvb29YW1tDY1GY1rWtm1bpKSkQK/XQ6vV1mjN9VFVzvNbb72FsWPH4umnnwYAdOzYEbm5uZg4cSKmT58OtZrfr6tDRZ+Fjo6ONdIqAjTglhGtVouQkBBs3brVtMxoNGLr1q0ICwsrd5+wsDCz7QFg8+bNFW5PVTvPAPDBBx/g3XffxYYNG9C9e/faKLXes/RcBwcH48SJE4iMjDQ9hg0bhjvvvBORkZHw9fWtzfLrjaq8p/v06YOzZ8+awh4AxMbGwtvbm0GkAlU5z3l5eWUCR2kAFN5mrdoo8llYY11j64Dly5eLTqeTxYsXS1RUlEycOFGcnZ0lJSVFRETGjh0rU6dONW2/Z88esbKyko8++kiio6Nl5syZHNpbCZae57lz54pWq5Wff/5ZkpOTTY/s7GylXkK9Yem5vhFH01SOpec5ISFBHBwc5Pnnn5eYmBj5/fffxcPDQ/7v//5PqZdQL1h6nmfOnCkODg6ybNkyiYuLk02bNklgYKA88sgjSr2EeiE7O1uOHj0qR48eFQDyySefyNGjR+XChQsiIjJ16lQZO3asafvSob2vvvqqREdHy/z58zm093Z9/vnn4ufnJ1qtVnr27Cl//fWXaV3//v1l/PjxZtv/9NNP0qZNG9FqtdK+fXtZt25dLVdcP1lynv39/QVAmcfMmTNrv/B6yNL39PUYRirP0vO8d+9eCQ0NFZ1OJy1btpT33ntPiouLa7nq+seS81xUVCRvv/22BAYGio2Njfj6+spzzz0n165dq/3C65Ht27eX+ze39NyOHz9e+vfvX2afLl26iFarlZYtW8p3331XozWqRNi2RURERMppsH1GiIiIqH5gGCEiIiJFMYwQERGRohhGiIiISFEMI0RERKQohhEiIiJSFMMIERERKYphhIiIiBTFMEJERESKYhghIiIiRTGMEBERkaIYRoiIiEhR/w+F+n/oDtc7mgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Logistic: f1=0.002 auc=0.194\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHGUlEQVR4nO3deXhU1eHG8XdmsrIkAUMWQjCArLJvKVBEMYqiuLRVLFTAKmoFFVIXcAGUyqKiUQGxbkCrBUXkB0JBiaIFadUgisii7AQTQCCBAFlm7u+PS/aZkIRZksn38zz3SebMuTNnLpC8nHPuORbDMAwBAAD4CauvGwAAAOBOhBsAAOBXCDcAAMCvEG4AAIBfIdwAAAC/QrgBAAB+hXADAAD8SoCvG+BtDodDhw4dUsOGDWWxWHzdHAAAUAmGYejkyZNq2rSprNaK+2bqXLg5dOiQ4uPjfd0MAABQDQcOHFCzZs0qrFPnwk3Dhg0lmRcnLCzMx60BAACVkZ2drfj4+KLf4xWpc+GmcCgqLCyMcAMAQC1TmSklTCgGAAB+hXADAAD8CuEGAAD4FcINAADwK4QbAADgVwg3AADArxBuAACAXyHcAAAAv0K4AQAAfoVwAwAA/IpPw80XX3yhIUOGqGnTprJYLFq2bNl5z1m3bp26d++u4OBgXXLJJZo/f77H2wkAAGoPn4abnJwcdenSRXPmzKlU/T179ui6667TFVdcoc2bN2vcuHG66667tGbNGg+3tJIOpklfzja/AgAAn/DpxpnXXnutrr322krXnzdvnlq0aKFZs2ZJktq3b6/169frxRdf1KBBgzzVzMr54G5py2JJkiGpoNNtyh9SOrRZLRaFBNqKHp/OK3D5chdS90yeXYYMp3Utsig0qHp1z+bb5TCc15WkekEBPq8bGmgr2lQtt8Auu8M9dUMCbLJazbp5BQ4VOBxuqRscYJOtGnXz7Q7l213XDbJZFWCzVrlugd2hvArqBtqsCqxGXbvDUG6B3WXdAKtVQQFVr+twGDrrpro2q0XBAebfd8MwdCbfPXW99e+enxGVq8vPCJM3fkb4Uq3aFXzjxo1KSkoqVTZo0CCNGzfO5Tm5ubnKzc0tepydne3+hh1MKwo2kmSRFPD9Iv3u6w7aokuKyq9o20Rv39G76HGPqWtd/lBMbNFYi+/pU/T4tzM/07GcPKd1OzcL1/Kxvy16nPTC50o/ccZp3dZRDfRJ8oCixzfMXq+fDp9yWjcuIlQbJgwsenzraxv1/cEsp3Ub1w/SpievKno88q2v9L89x5zWDQ20advUa4oe/+WfafpsxxGndSVp74zrir5Pfm+zVm3JcFn3x6cHFf2ge2zpD/pg00GXddOeSNJFDYIlSX/7aJv+8d99Luv+55ErFN+4niTp+Y936O9f7HZZ9+Pxl6lNdENJ0pzPftZLqT+5rPt/Y/qpS3yEJOntDXs0/d/bXdb91+jfqE+ri8zvv9qvSf+31WXdt0b11MB20ZKkZd+m6+El37usO2dYd13XOVaStGZrpsa8u8ll3ef+0Fm39IyXJH3x0xH9ef43Lus+feOlGtEnQZL01Z5j+uPr/3VZd+K17XTPgFaSpB/Ss3TjnA0u6z54ZWuNv6qNJOnnI6d09YtfuKx792Ut9djg9pKk9BNn1P/Zz1zWvf03F2vqTR0lScdy8tTjb2td1v1992aadWsXSdKZfLs6THLdezy4U4zmDu9R9LiiuvyMMPEzolht/hnhS76PV1WQkZGh6OjoUmXR0dHKzs7WmTPO/6FOnz5d4eHhRUd8vAcu+v6N5YosFqmXbaf73wsAAFTIYhgV9N95kcVi0YcffqibbrrJZZ02bdrojjvu0MSJE4vKVq1apeuuu06nT59WaGhouXOc9dzEx8crKytLYWFh7mn8wTTpjYGligxJZ0d9LKNp8f/Y6HL2fF26nE0MS1W9LsNSJn5GVK8uPyNMnhyWys7OVnh4eKV+f9eqYamYmBhlZmaWKsvMzFRYWJjTYCNJwcHBCg4O9mzDmvWQ2t8gbVteVGTpMkyhCYkVnlbyH+T5VKVuyR827qxb8odjbahb+MvH3XWDAqwKqmSnp6fqVuUHSFXqBpT4IebOujarpdJ/h6tS1+qhuhaLZ+pKnvt3z8+IqtflZ0TV61bl370v1fwWltCnTx+lpqaWKvvkk0/Up08fF2d40dV/M79aA6W7PpVuftW37QEAoI7yabg5deqUNm/erM2bN0syb/XevHmz9u/fL0maOHGiRowYUVT/3nvv1e7du/XII49o+/btmjt3rt577z2NHz/eF813zhZo9uQAAACf8Gm4+eabb9StWzd169ZNkpScnKxu3bpp0qRJkqRffvmlKOhIUosWLbRy5Up98skn6tKli2bNmqU33njD97eBAwCAGqPGTCj2lqpMSKqS4/uklzpLgfWkx39x3+sCAIAq/f6uVXNuAAAAzodwAwAA/ArhBgAA+BXCDQAA8CuEGwAA4FcINwAAwK8QbgAAgF8h3AAAAL9CuAEAAH6FcAMAAPwK4QYAAPgVwg0AAPArhBsAAOBXCDcAAMCvEG4AAIBfIdwAAAC/QrgBAAB+hXADAAD8CuEGAAD4FcINAADwK4QbAADgVwg3AADArxBuAACAXyHcAAAAv0K4AQAAfoVwAwAA/ArhBgAA+BXCDQAA8CuEGwAA4FcINwAAwK8QbgAAgF8h3AAAAL9CuAEAAH6FcAMAAPwK4QYAAPgVwg0AAPArhBsAAOBXCDcAAMCvEG4AAIBfIdwAAAC/QrgBAAB+hXADAAD8CuEGAAD4FcINAADwK4QbAADgVwg3AADArxBuAACAXyHcAAAAv0K4AQAAfoVwAwAA/ArhBgAA+BXCDQAA8CuEGwAA4FcINwAAwK8QbgAAgF8h3AAAAL9CuAEAAH6FcAMAAPwK4QYAAPgVwg0AAPArhBsAAOBXCDcAAMCv+DzczJkzRwkJCQoJCVFiYqK++uqrCuunpKSobdu2Cg0NVXx8vMaPH6+zZ896qbUAAKCm82m4Wbx4sZKTkzV58mRt2rRJXbp00aBBg3T48GGn9d99911NmDBBkydP1rZt2/Tmm29q8eLFeuyxx7zc8go47FJWuq9bAQBAneXTcPPCCy9o9OjRuuOOO9ShQwfNmzdP9erV01tvveW0/pdffql+/fpp2LBhSkhI0NVXX60//vGP5+3t8Yoflppf7blSSkdp00LftgcAgDrKZ+EmLy9PaWlpSkpKKm6M1aqkpCRt3LjR6Tl9+/ZVWlpaUZjZvXu3Vq1apcGDB7t8n9zcXGVnZ5c63C4rXfr06eLHhkNaMY4eHAAAfCDAV2989OhR2e12RUdHlyqPjo7W9u3bnZ4zbNgwHT16VL/97W9lGIYKCgp07733VjgsNX36dD311FNubXs5x3aZgaYkwy4d2y2Fx3n2vQEAQCk+n1BcFevWrdO0adM0d+5cbdq0SUuXLtXKlSs1depUl+dMnDhRWVlZRceBAwfc37DGrSRLmUtpsUmNW7r/vQAAQIV81nMTGRkpm82mzMzMUuWZmZmKiYlxes6TTz6p22+/XXfddZckqVOnTsrJydHdd9+txx9/XFZr+awWHBys4OBg93+AksLjpIGTpNQp5wos0pAUem0AAPABn/XcBAUFqUePHkpNTS0qczgcSk1NVZ8+fZyec/r06XIBxmazSZIMw/BcYyuj4++Kv++fLHUf4bu2AABQh/ms50aSkpOTNXLkSPXs2VO9e/dWSkqKcnJydMcdd0iSRowYobi4OE2fPl2SNGTIEL3wwgvq1q2bEhMT9fPPP+vJJ5/UkCFDikJOjRAS4esWAABQZ/k03AwdOlRHjhzRpEmTlJGRoa5du2r16tVFk4z3799fqqfmiSeekMVi0RNPPKH09HQ1adJEQ4YM0TPPPOOrj+CcxeLrFgAAUGdZDJ+P53hXdna2wsPDlZWVpbCwMPe98PF90kudze+vfkbqO9Z9rw0AQB1Xld/ftepuqVqDnhsAAHyGcOMRhBsAAHyFcOMJ9NwAAOAzhBuPINwAAOArhBtPoOcGAACfIdx4BOEGAABfIdx4Aj03AAD4DOEGAAD4FcKNJ9BzAwCAzxBuPIJwAwCArxBuPIGeGwAAfIZw4xGEGwAAfIVw4wn03AAA4DOEG48g3AAA4CuEG0+g5wYAAJ8h3HgE4QYAAF8h3HgCPTcAAPgM4cYjCDcAAPgK4cYT6LkBAMBnCDceQbgBAMBXCDeeQM8NAAA+Q7jxCMINAAC+QrjxBHpuAADwGcKNRxBuAADwFcKNJ9BzAwCAzxBuAACAXyHcAAAAv0K48QSGpQAA8BnCjUcQbgAA8BXCjSfQcwMAgM8QbjyCcAMAgK8QbjyBnhsAAHyGcOM2RonvCTcAAPgK4cZdjBLhhp4bAAB8hnDjNvTcAABQExBu3IWeGwAAagTCjUcQbgAA8BXCjbvQcwMAQI1AuHEb5twAAFATEG7cpWTPzZljvmsHAAB1HOHGXX5cVvz9svukTQt91hQAAOoywo07ZKVL66aXKDCkFePMcgAA4FWEG3c4tksyHKXLDLt0bLdv2gMAQB1GuHGHxq0kS5lLabFJjVv6pj0AANRhhBt3CI+TBkwofmyxSkNSzHIAAOBVhBt36XBD8fc3zZO6j/BdWwAAqMMIN+5S8lbw+hf5rh0AANRxhBuPYBE/AAB8hXADAAD8CuHGbYzzVwEAAB5HuPEENs4EAMBnCDcAAMCvEG7cxWBXcAAAagLCDQAA8CuEG7dhQjEAADUB4cYTmFAMAIDPEG4AAIBfIdy4CxOKAQCoEQg3AADArxBuAACAXyHcuE2JYSkmFAMA4DOEGwAA4FeqFW7sdrvefPNNDRs2TElJSRo4cGCpoyrmzJmjhIQEhYSEKDExUV999VWF9U+cOKExY8YoNjZWwcHBatOmjVatWlWdj+FeTCgGAKBGCKjOSQ8++KDmz5+v6667Th07dpSlmsMwixcvVnJysubNm6fExESlpKRo0KBB2rFjh6KiosrVz8vL01VXXaWoqCgtWbJEcXFx2rdvnyIiIqr1/h7zy/dS45ZSeJyvWwIAQJ1jMQyjykvrRkZGauHChRo8ePAFvXliYqJ69eql2bNnS5IcDofi4+N1//33a8KECeXqz5s3T88995y2b9+uwMDAar1ndna2wsPDlZWVpbCwsAtqfymHNkt/H1D82GKVhrwkdR/hvvcAAKCOqsrv72oNSwUFBemSSy6pVuMK5eXlKS0tTUlJScWNsVqVlJSkjRs3Oj1n+fLl6tOnj8aMGaPo6Gh17NhR06ZNk91ud/k+ubm5ys7OLnV4xKnM0o8Nh7RinJSV7pn3AwAATlUr3Pz1r3/VSy+9pGp0+hQ5evSo7Ha7oqOjS5VHR0crIyPD6Tm7d+/WkiVLZLfbtWrVKj355JOaNWuW/va3v7l8n+nTpys8PLzoiI+Pr3abK5TtJMQYdunYbs+8HwAAcKpac27Wr1+vzz77TP/+97916aWXlhsiWrp0qVsaV5bD4VBUVJT+/ve/y2azqUePHkpPT9dzzz2nyZMnOz1n4sSJSk5OLnqcnZ3tmYAT5mR+jcVmzr0BAABeU61wExERoZtvvvmC3jgyMlI2m02ZmaWHczIzMxUTE+P0nNjYWAUGBspmsxWVtW/fXhkZGcrLy1NQUFC5c4KDgxUcHHxBba2U+k1KP7bYpCEpTCoGAMDLqhVu3n777Qt+46CgIPXo0UOpqam66aabJJk9M6mpqRo7dqzTc/r166d3331XDodDVqs5orZz507FxsY6DTY+NW4LwQYAAB+4oEX8jhw5ovXr12v9+vU6cuRIlc9PTk7W66+/rgULFmjbtm36y1/+opycHN1xxx2SpBEjRmjixIlF9f/yl7/o2LFjevDBB7Vz506tXLlS06ZN05gxYy7kY7hJmflHBBsAAHyiWj03OTk5uv/++7Vw4UI5HA5Jks1m04gRI/TKK6+oXr16lXqdoUOH6siRI5o0aZIyMjLUtWtXrV69umiS8f79+4t6aCQpPj5ea9as0fjx49W5c2fFxcXpwQcf1KOPPlqdj+FZWekEHAAAfKBa69zcc889Wrt2rWbPnq1+/fpJMicZP/DAA7rqqqv06quvur2h7uKxdW7S06TXS6zOzDo3AAC4TVV+f1d7Eb8lS5bo8ssvL1X+2Wef6dZbb63WEJW3eCzc7Fgt/Wto6TKLjbk3AAC4gccX8Tt9+nS59WkkKSoqSqdPn67OS9Z+P3xQvox1bgAA8LpqhZs+ffpo8uTJOnv2bFHZmTNn9NRTT6lPnz5ua1ytkZUubXnfyRNW1rkBAMDLqjWh+KWXXtKgQYPUrFkzdenSRZL03XffKSQkRGvWrHFrA2uFY7tU7m4pSeo7liEpAAC8rFrhpmPHjvrpp5/0zjvvaPv27ZKkP/7xjxo+fLhCQ0Pd2sBaoXErcwKx4Sgus1ilxHt91yYAAOqoaoUbSapXr55Gjx7tzrbUXuFxUr/x0vpZxWVDXqLXBgAAH6h0uFm+fLmuvfZaBQYGavny5RXWveGGGy64YbVO22tLhxtuAQcAwCcqHW5uuukmZWRkKCoqqmi7BGcsFovsdrs72gYAAFBllQ43hSsRl/0ehaq8XBAAAPCAC9pbqqQTJ06466UAAACqrVrhZubMmVq8eHHR41tuuUWNGzdWXFycvvvuO7c1rlYpu9BzVrpv2gEAQB1XrXAzb948xcfHS5I++eQTrV27VqtXr9a1116rhx9+2K0NrLVSOkqbFvq6FQAA1DnVuhU8IyOjKNx89NFHuvXWW3X11VcrISFBiYmJbm1grZFTZj8twyGtGCe1upJbwgEA8KJq9dw0atRIBw4ckCStXr1aSUlJkiTDMOrunVLZB8uXsbcUAABeV62em9/97ncaNmyYWrdurV9//VXXXnutJOnbb7/VJZdc4tYG1hphTnpnLBb2lgIAwMuqFW5efPFFJSQk6MCBA3r22WfVoEEDSdIvv/yi++67z60NrNW4OxwAAK+rVrgJDAzUQw89VK58/PjxF9ygWsvp3VGGOSzFnBsAALyG7RfcJayp8/JDm6QW/b3bFgAA6jCLYZRdoMU5q9VatP2C1ep6HnJN334hOztb4eHhysrKUlhYmPteeN+X0tvXli+32KRxW+i9AQDgAlTl9zfbL3ha4R1ThBsAALzCbdsvwAWLjTumAADwomqFmwceeEAvv/xyufLZs2dr3LhxF9qm2snZ6J7FJg1JodcGAAAvqla4+eCDD9SvX79y5X379tWSJUsuuFF+Ia6XOdem+whftwQAgDqlWuHm119/VXh4eLnysLAwHT169IIb5ReC69NjAwCAD1Qr3FxyySVavXp1ufJ///vfatmyrs4vKTMsVZDnm2YAAFDHVWsRv+TkZI0dO1ZHjhzRwIEDJUmpqamaNWuWUlJS3Nm+2sue6+sWAABQJ1Ur3Pz5z39Wbm6unnnmGU2dOlWSlJCQoFdffVUjRtTROSZlJxTn5Uh7vpAat2J4CgAAL6r0In6uHDlyRKGhoUX7S9V0HlvE7x+/k3alli+3WKUhLzGxGACAC1CV39/VXuemoKBAa9eu1dKlS1WYjw4dOqRTp05V9yVrr4NpzoONJBkOacU4F3tPAQAAd6vWsNS+fft0zTXXaP/+/crNzdVVV12lhg0baubMmcrNzdW8efPc3c6abf/Gip9nlWIAALymWj03Dz74oHr27Knjx48rNDS0qPzmm29WaqqLHgx/1rzPeSpYWKUYAAAvqVa4+c9//qMnnnhCQUFBpcoTEhKUnl4Hh1+a9ZC6DKuggiH9wOKGAAB4Q7XCjcPhcLrz98GDB9WwYcMLblStdPOr0l2fSp1vc/78J1OYdwMAgBdUK9xcffXVpdazsVgsOnXqlCZPnqzBgwe7q221T7Me0m/uc/Gkw5x3AwAAPKpaE4qff/55XXPNNerQoYPOnj2rYcOG6aefflJkZKT+9a9/ubuNtUuj5s7L2R0cAACvqFa4iY+P13fffafFixfru+++06lTp3TnnXdq+PDhpSYY10lbPihfZrGyOzgAAF5S5UX88vPz1a5dO3300Udq3769p9rlMR5bxE8y59SkdDTXtinpxlelbhVNOAYAABXx6CJ+gYGBOnv2bLUb59eO7SofbCTpVIb32wIAQB1VrQnFY8aM0cyZM1VQUODu9tRujVuZQ1BlWas1+gcAAKqhWr91v/76a6Wmpurjjz9Wp06dVL9+/VLPL1261C2Nq3XC48x9pFaMM1cllkWSITnyfdwwAADqjmqFm4iICP3+9793d1v8Q/cRUqsrzdu+t34offOmdOqIr1sFAECdUaVw43A49Nxzz2nnzp3Ky8vTwIEDNWXKFO6QKis8zjwyvjcf5xz2bXsAAKhDqjTn5plnntFjjz2mBg0aKC4uTi+//LLGjBnjqbbVfvWjzK+nCDcAAHhLlcLNwoULNXfuXK1Zs0bLli3TihUr9M4778jhcHKHEKQGTcyvhBsAALymSuFm//79pbZXSEpKksVi0aFDh9zeML9Q2HOTnW6ugZOVLu35gj2mAADwoCrNuSkoKFBISEipssDAQOXnczeQU7vXmV/zTkkvXnqu0Di3YvFL5uRjAADgVlUKN4ZhaNSoUQoODi4qO3v2rO69995St4PX2VvBS8pKlz5+vERBiYWgDYd5u3irK9mSAQAAN6tSuBk5cmS5sj/96U9ua4xfcbVacSHDbt4uTrgBAMCtqhRu3n77bU+1w/8UrlbsKuCwSzgAAB5Rre0XUAmFqxXL4uRJC7uEAwDgIYQbT2p1pfPyFgOYTAwAgIcQbjzp2C6Vmkhc6Pheb7cEAIA6g3DjSa52Cc9Ol+zsqA4AgCcQbjypcN6NxWY+ttgka6C5S/gPS1jMDwAAD7AYhuFk3MR/ZWdnKzw8XFlZWQoLC/POm2alm7d9N24pvXm1lH3QLGcxPwAAKqUqv7/pufGG8DipRX/z+8JgI51bzO9B6WCab9oFAIAfItx407Fd5csMh/TGldKmhd5vDwAAfohw402uJhjLMLdjYA4OAAAXjHDjTUUTjJ1c9sLtGAAAwAUh3Hhb9xHSnWtVbuVitmMAAMAtCDe+0KzHua0ZzrFY2Y4BAAA3Idz4So+RUptrzO/7jOV2cAAA3KRGhJs5c+YoISFBISEhSkxM1FdffVWp8xYtWiSLxaKbbrrJsw30lFYDza+Hf/RtOwAA8CM+DzeLFy9WcnKyJk+erE2bNqlLly4aNGiQDh8+XOF5e/fu1UMPPaT+/ft7qaUe0Pw35tcDX0kOu2/bAgCAn/B5uHnhhRc0evRo3XHHHerQoYPmzZunevXq6a233nJ5jt1u1/Dhw/XUU0+pZctaPAk36lIpqKGUmy1t+ge3ggMA4AY+DTd5eXlKS0tTUlJSUZnValVSUpI2btzo8rynn35aUVFRuvPOO8/7Hrm5ucrOzi511Bi2gOJJxB89KKV0ZDE/AAAukE/DzdGjR2W32xUdHV2qPDo6WhkZGU7PWb9+vd588029/vrrlXqP6dOnKzw8vOiIj4+/4Ha7TVa6dGRH8WPDwWJ+AABcIJ8PS1XFyZMndfvtt+v1119XZGRkpc6ZOHGisrKyio4DBw54uJVVcGyXpDL7lrKYHwAAFyTAl28eGRkpm82mzMzMUuWZmZmKiYkpV3/Xrl3au3evhgwZUlTmcDgkSQEBAdqxY4datWpV6pzg4GAFBwd7oPVuULgdg+EoLmMxPwAALohPe26CgoLUo0cPpaamFpU5HA6lpqaqT58+5eq3a9dOW7Zs0ebNm4uOG264QVdccYU2b95cs4acKqNoO4YSqxVf/wKL+QEAcAF82nMjScnJyRo5cqR69uyp3r17KyUlRTk5ObrjjjskSSNGjFBcXJymT5+ukJAQdezYsdT5ERERklSuvNboPkJq3lf6+wAp75R0MtOcc0PAAQCgWnweboYOHaojR45o0qRJysjIUNeuXbV69eqiScb79++X1VqrpgZVXeQlUvM+0s+fSOumSZ/PMHt0Wl1pzstp3MoMO1nppR8DAIByLIZhGOev5j+ys7MVHh6urKwshYWF+bo5pqx08zbwknNvSrGYC/7t/68k49xeVC+xZQMAoM6oyu9vn/fcQGZvjMtgI0mGtL/Euj+Ft4xHXSrl59CTAwBACYSbmsDZXVPnY9ilN87tTUVPDgAARfx8MkstUXTXlM18bLFKslR4SiklF//LSpf2fMFCgACAOouem5qi+4hzE4h3m+vc7Eo1A4thN0NP56HS94vPPXbSy2PYpUXDpYzvzOfozQEA1FFMKK7JstKLw07R3VK7pcB60ptJ5x/GstikcVuYjwMAqPWq8vubYamaLDxOatG/OJwUPm7Wo8wwlk1qe13589nKAQBQBzEsVVuVHcaSpJ3/LrOVg5WtHAAAdQ49N7VZyZ6dspOSJSkgRAqooftqAQDgIYQbf9J9hDnH5vZlUmRbKf+0tOZxX7cKAACvItz4m/A4qdUV0k2vSrJI3y+Svn+f28MBAHUG4cZfNesh9R5tfr/0LmnBEHOLh00LfdsuAAA8jHDjz3reVfpxycX+AADwU4Qbf5aTWb6M28MBAH6OcOPPCvesKonbwwEAfo5w48+c3R4eWE/KPsQEYwCA32L7hbogK106/KO05gnp6PbicvafAgDUEmy/gNLC46TWV0k3vlK6nAnGAAA/RLipSwrOli9jgjEAwM8QbuoSZxOMJen4Xq83BQAATyHc1CXOJhhL0vKx0top0vF9TDQGANR6TCiui7LSzaGo8Hjpf/Ok/71a+nkmGgMAahgmFKNihbuJN06Qrp0hDZ5V+nkmGgMAajHCDaQmbcqXGXbp+/ekutWxBwDwA4QbuJ5onDpF+sfNUuaPZi8O83EAALVAgK8bgBqgcKLxinFmj43FJrUcIO35j7T7M+nVvucqGszHAQDUeIQbmLqPkFpdaU40btzSDDzHdkurHpZ+Xltcz3BIKx4064bH+a69AAC4wLAUihVONC4MLY1bSv0eLF/PcEj/N0Y6sqO4jGErAEANQc8NKlY4H8dwlC7f/Zk0J1Fqf73UpJ30n1lmHYatAAA+Rs8NKlZ24T+LTer/kNTuekmGtG2F9MVzxeGH28gBAD5Gzw3Oz9l8HEk6vE1aPUHava50/cL9qpiTAwDwAXpuUDll5+NIUlR76ca5zm8j37FSysvxXvsAADiHcIML42q/qv++Kr3SQ9r8ruRwMOEYAOA17C0F9yjcr6pxC+ngN9Ink6QT+8znwptJ2enmasdMOAYAVENVfn8TbuAZ+WfNTTk/f1bKLzM8ZbFJ47YwJwcAUGlsnAnfCwyRfjtOunle+ecMu7TrU683CQBQNxBu4FlxPZxPOF4+VnpvpHnHFQAAbkS4gWeVWyfHKsV2Nb//cZk0t4+05E7pyE4mHQMA3II5N/COognH59bJyfhB+nyGuQigJMki6dxfRSYdAwDKYM4Nap6y6+TEdJSG/lO65z9Sy4EqCjaSucrx8gekA1/7pKkAgNqNcAPfiu0s9R/v5AlDejNJev1K6ctXpBP7vd40AEDtxPYL8D1Xm3NKUvo35vHxE+bk5A43SR1ulBpdfG6oa5d5PreVAwDOYc4NaoZNC80NNw27Ofl4SIrU+mpzTs7WZdK+DSo1dBXeXMo6YJYxRwcA/B6L+FWAcFODlZ10XNLJTGnbcunH/5P2rlepoCOxMCAA+DkmFKN2crY5Z6GG0VLv0dKoj6RbF5Z/3rBL3/7D3OIBAFCnEW5Q+7haGHDddGnBEClji/fbBACoMQg3qH3KLQxok1pfIwWESHv/I712mTl/J+eo+TyLAwJAncKcG9ReZefonNhv7ka+9UPz+eBw6ZIrzZWQDQcTjwGgFmNCcQUIN3XA3g3S6glSxvfln7NYpXE/MPEYAGoZJhSjbkvoJ929TuoztvxzhsMctlo0XPrieXN38tPHytdjKAsAai16buC/stKllI7OFwcsq1ELqWk388g5Im2czVAWANQgDEtVgHBTx5RdHPDaGVJUB+nQt+aRvkk6vqfi12ANHQDwOcJNBQg3dVBFiwNK5rDUL99JhzZJP30i7d9Yvk7bwdLlE829sAAAXke4qQDhBhU631BW0+5Sj5FSx99LwQ292zYAqMOYUAxUl7M1dH4zRrr0ZskaaPburHhQmtVOWv6AOaxlGExABoAahJ4bwBlnQ1k5R6XN70qbFki//lxcNyxOyj4kNvEEAM9hWKoChBtcMMMwdylPW2DuWO7IK1PBIt0y35ynExDkgwYCgP8h3FSAcAO32rZSWjzM+XOB9aWE30qtBppHZGvJYvFu+wDAT1Tl93eAl9oE+KemXc2hqFITkC1SaCPpzDHppzXmIUlhzaRWl5tBp8XlUv2LzPKsdOnYLqlxK243BwA3oOcGuFBl19IZkiJ1/ZOU+YO5AvLuz6R9GyV7bomTLFJsF6l+E2nXWnOoi/k6AOASw1IVINzAI863lk7eaWn/l9Kuz8zj8FbXr9XrLin+N1J0B+mi1szbAQARbipEuEGNkP2L9L/XpA0vVlzPGiBFtjFXVY5qL0Vfan4f0bz0/B2GtgD4OebcADVdWKzUe7T05Uvl5+t0ukU6sU86vE3KzZYO/2geJQU1PBd2Oki5p6StHzC0BQDn1IhF/ObMmaOEhASFhIQoMTFRX331lcu6r7/+uvr3769GjRqpUaNGSkpKqrA+UGM5WzDwhpel378u3fmxNGG/NO4Hadh70pWTzdATdam5mGDeSengV1LafOmHJWawkcygtPwB6YtZ0i/fS/YCn308APAVnw9LLV68WCNGjNC8efOUmJiolJQUvf/++9qxY4eioqLK1R8+fLj69eunvn37KiQkRDNnztSHH36orVu3Ki7u/N3xDEuhxjnffJ2y7PnS0Z/M3pydq6Ut77uuG1hfiusuNespNetlHg3K/7sCgJquVs25SUxMVK9evTR79mxJksPhUHx8vO6//35NmDDhvOfb7XY1atRIs2fP1ogR5++KJ9zArzjdC8siNU+UMraaPTxlRVxcHHSa9ZJiOpmTlpm3A6AGqzVzbvLy8pSWlqaJEycWlVmtViUlJWnjRic7Mztx+vRp5efnq3Hjxk6fz83NVW5u8S242dnZF9ZooCYpHNoqeyt69xGSwy4d3Skd/Fo68JV08BvpyHZzPs+JfeZwliTZgqWwptLxvSraQuL6FHODUACohXwabo4ePSq73a7o6OhS5dHR0dq+fXulXuPRRx9V06ZNlZSU5PT56dOn66mnnrrgtgI1VvcRUqsryw9tWW3mpOOo9sUTjM9mmZt9HvzGDD0HvzYXGzy+p/j1DIe04gFp64fmCsvNepq7oYfQ0wmgdqjVd0vNmDFDixYt0rp16xQSEuK0zsSJE5WcnFz0ODs7W/Hx8d5qIuAd4XGVG0oKCZdaXWEekjkR+fvF0of3lK+7+zPzkCRZpCZtpbieUrMe5teoDpKtzI8QhrYA1AA+DTeRkZGy2WzKzMwsVZ6ZmamYmJgKz33++ec1Y8YMrV27Vp07d3ZZLzg4WMHBwW5pL+B3LBYpoX/5LSQsVumyh82Jy+nfSCf2m0NaR7ZLm/9p1gkINbefiOth9u4c3yelPmW+DrekA/Ahn4aboKAg9ejRQ6mpqbrpppskmROKU1NTNXbsWJfnPfvss3rmmWe0Zs0a9ezZ00utBfxURfN2Cp06LKWnmcNZ6d+YQ1u52dL+jeZRluGQVjwo1YuULu4rhUZ46cMAQA24W2rx4sUaOXKkXnvtNfXu3VspKSl67733tH37dkVHR2vEiBGKi4vT9OnTJUkzZ87UpEmT9O6776pfv35Fr9OgQQM1aNDgvO/H3VKAC1W5Jd3hkH792Qw6B7+Rdq8zh6NcaRBtrrQc2cYc3opsLUW2NScyV7RTOsNcAM6pNXdLSdLQoUN15MgRTZo0SRkZGeratatWr15dNMl4//79slqL1xp89dVXlZeXpz/84Q+lXmfy5MmaMmWKN5sO+JfKztuRJKtVatLGPLoOc3FLuqT60VJOpnTq3LH3P6WfD2pQHHQiW58LPm3MgPXdv8zeH4a5AFSRz3tuvI2eG8BDnO2O3n2EdDZb+vUn6chO89b0ozulIzvMXiLD7vy1LLbyz1ms0rgtUngzT38SADVQrVrEz9sqe3Hsdrvy8/O92DK4EhgYKJvN5utmoDKqMrRVkGfegn5kR+nQc/QnKT/H+TmB9czb0mM7SzGdza+RbcvftQXA7xBuKnC+i2MYhjIyMnTixAnvNw4uRUREKCYmRpaK5mfAPxiGOXn5jSRJlfjxZAs2NxCN7XIu8HQxb1MPqle+LnN4gFqrVs25qWkKg01UVJTq1avHL1MfMwxDp0+f1uHDhyVJsbGxPm4RPM5iMW8tv+Hl0sNc180yy3/5Xsr4/tzXLeYWE4e+NY+i17Cac3cKw05sZynzR2nNRObwAHUAPTcl2O127dy5U1FRUbrooot81EI48+uvv+rw4cNq06YNQ1R1yfmGuRwOc2jrl+9KBJ7vpZwj539ti1W6Y7UU37viO7YA1Aj03FRT4RybevWcdGfDpwr/TPLz8wk3dcn57uCyWqWLWplHx9+ZZYYhncwoEXa+k/b/T8o5XPpcwyG9dbUUHCZFXypFd5RiOkrRncwtK5wNawGoFQg3TjAUVfPwZ4JKs1iksFjzaDPILHN1q7o10PlihBarOS8nplNx4InpKDWMLd/LwzweoMYh3ADwf65WYe7yR/MurYwfpMwt5hyejB+k00fN29d//UnaurT4dUIblw47x/dKXzzHPB6ghiHcwC0uv/xyde3aVSkpKU6fHzVqlE6cOKFly5Y5rZ+QkKBx48Zp3LhxXmkv6iBXu6dHX2oeGmo+NgxzwcGiwPODlPmDeYv6mWPSni/MoyzDIS1/wNxzq9UVUv1Ir300AKURbvzEqFGjtGDBAk2fPl0TJkwoKl+2bJluvvlmXci8cbvdrueee07z58/Xvn37FBoaqtatW2v06NG66667KvUaL7300gW1AXCLyqzCbLFIDWPMo3VScXn+WenINjPsZGyR9q2XMreWOdmQlp77N9EwtsQ8no7mnVsXtZKszBkDPI1w40dCQkI0c+ZM3XPPPWrUqJHbXvepp57Sa6+9ptmzZ6tnz57Kzs7WN998o+PHj1f6NcLDw93WHsAnAkOkpt3MQ3Ixj8dirqCcdUA6+Yt5/PxJ8dMBoeZk5ZhzYSe6o9lrFFLizg/m8AAXjHBTSafzClw+Z7VYFBJoc2vdekFV/6NJSkrSzz//rOnTp+vZZ591We+DDz7QpEmT9PPPPys2Nlb333+//vrXv7qsv3z5ct1333265ZZbisq6dOlSYVtWrlypYcOGae7cuRo+fHi5YSmg1qtoN/Xck+a6Ohnfm0NaGT9Ih3+U8k9LhzaZR0kRF5uTlw2HtOPfkgzm8AAXgHBTSR0mrXH53BVtm+jtO3oXPe4xda3O5DvfMyexRWMtvqdP0ePfzvxMx3LyytXbO+O6KrfRZrNp2rRpGjZsmB544AE1a1Z+D560tDTdeuutmjJlioYOHaovv/xS9913ny666CKNGjXK6evGxMTo008/1X333acmTZqctx3vvvuu7r33Xr377ru6/vrrq/w5gFrD1Tye4IZS80TzKOSwm/UythQHnswfpOx06cQ+8yjJcEjL75d+WivFdZeatDM3Fo242LwFHoBLhBs/c/PNN6tr166aPHmy3nzzzXLPv/DCC7ryyiv15JNPSpLatGmjH3/8Uc8995zLcPPCCy/oD3/4g2JiYnTppZeqb9++uvHGG3XttdeWqztnzhw9/vjjWrFihQYMGODWzwbUSJXdTd1qO7cDeuviNXkk6fQxM/D8+H/SN+X/zWrb/5lHoYDQczuynws7TdqZR6ME1/N5GOpCHUO4qaQfnx7k8jlrmXUv0p5MclGzfN31j15xYQ1zYubMmRo4cKAeeuihcs9t27ZNN954Y6myfv36KSUlRXa73ekCeR06dNAPP/ygtLQ0bdiwQV988YWGDBmiUaNG6Y033iiqt2TJEh0+fFgbNmxQr1693P65AL9Ur7HUcoB00SVS2tul5/BYrNJvxkon04s3GC04Y67I/Mt3pV/HFmxuOdGkrRTVrjj07N0grRzP7eqoUwg3lVSVOTCeqltZl112mQYNGqSJEye67I2pKqvVql69eqlXr14aN26c/vnPf+r222/X448/rhYtWkiSunXrpk2bNumtt95Sz549WXgPqIqK5vAUsheYw1dHtkuHt5mB58j2c6HnrHnreuYW1+9hOKQVD0oh4VJ8otQgmq0n4JcIN35qxowZ6tq1q9q2bVuqvH379tqwYUOpsg0bNlR5z6YOHTpIknJycorKWrVqpVmzZunyyy+XzWbT7NmzL+ATAHWQqzk8hWwBxdtNtCsxL89hPxd6zoWdwq+ZP0r23NKvYTik984FpsD65vs0bmF+vajVucctpQYx55/bw3AXaijCjZ/q1KmThg8frpdffrlU+V//+lf16tVLU6dO1dChQ7Vx40bNnj1bc+fOdflaf/jDH9SvXz/17dtXMTEx2rNnjyZOnKg2bdqoXbt2peq2adNGn332mS6//HIFBAS4XNQPgAuVncNTktVWHEralpgLd+KA9FLn8ttOhMWZt6nn57ju7QkILR18Soafhk2lzf80e4EY7kINRLjxY08//bQWL15cqqx79+567733NGnSJE2dOlWxsbF6+umnKxy+GjRokP71r39p+vTpysrKUkxMjAYOHKgpU6YoIKD8X6G2bdvq008/LerBmTVrlrs/GoDKiIh3PdRVkCed2G/2Eh3bde7rbunXXWZ5wRnp8FbzKMsWXLpHqHC4K7Kt1KwnCxXC5yxGHVs2tqIt08+ePas9e/aoRYsWCgkJ8VEL4Qx/NsAFyEp3PdTljD2/RPDZXSb47JMcrtfyki3IvF29VG/Pud6f8Obm0BpQDRX9/i6Lv2UA4O+qOtRlCyye21OWvUA6+I309jWSyvzf2Boo2fOKNx0tyxogRTQvDj4lj4jmUkCwWY+5PLhAhBsAQOXZAqSLfyPd8HL54a6uw81FCUv1+Owp/r7gbPH3ZVms5tYVAaHm3V8yJFmk3yZLvUebd3axeCEqiXADAKg6V3d2RTQ3j5aXl67vcEinMpwMdZ37mp9jDoWVYkjrZ5mHLcicCB3ezHz98GZSeHzx47A4c/+v86FXqE4g3AAAqqcqw11WqxTW1DwSflv6OcOQTh2Wtn4orX7UyckWc7jr+B7zcKV+lDmJuij4xJ97fK5s2wrpo3Hc4VUHEG4AAL5lsUgNo6X2Q6Q1E8us0myTHvjWrJN10Ly9PevcceKAWZZ1wNyUNOeweaSnnf89DYe0/AFJFvMOr0YJUmCopz4hvIxwAwCoGVyt0tzoYvP5iObSxU7OMwzpzHFzWKsw7GQdPPf43Pc5R5ydKC0fW/ywQYx5Z1ejFmbYKfl9/UjXqzkz1FXjEG4AADXH+VZpdsZiMffoqtdYatrVeZ1fd0mze5ZZ0NBi7sOVdUjKzTLnBJ3KkPZvLH9+UAMz6DROMMNOoxZm+Dn0rfTp3xjqqmEINwCAmqU6qzSfz0WtXC9oWNjzc3yPeXfX8T3S8b3Ssb3m99mHpLxTldu7a/kD0tGfpdjO5no/jS6W6jdhDy8vI9wAAOoGV71CJXt+4nqUPy//rDnEVRR+9prfZ2yVsg+UqWxIX75UuiiwXnHQaZRQ/vvgBsV1GeJyC8INKiUhIUHjxo3TuHHjqnX+/PnzNW7cOJ04ccKt7QKAKqlOr1BgiNSkjXmUlJUupXQsP9TV/kZzYvOJfWavT/5p6cg283Cm3kVmyJHMYS4ZZuBKmir1HUuvTzWw/UIJtXmJ/1GjRunEiRNatmyZR17/yJEjql+/vurVq3feus6C0JkzZ3Ty5ElFRUVV6/1r858NAD+2aaHzoa5CBbnmhObje6Tj+8zAc3yf2ftzYp85HFaRgFApsvW5FaMvKT4atzR7msry454ftl+oKfzoL1mTJk0u6PzQ0FCFhnKbJQA/c74J0AHBrreykKSz2WbI2b5KWjet/PMFZ6SM782jrNDGJQJPS3N16LQFTG6WxFrW52MYUl5O1Y+vXje7KxcMMb9+9XrVX8NNnWqff/65evfureDgYMXGxmrChAkqKCje+O7kyZMaPny46tevr9jYWL344ou6/PLLS/W8JCQkKCUl5dwlMTRlyhQ1b95cwcHBatq0qR544AFJ0uWXX659+/Zp/PjxslgsspzrTp0/f74iIiJKtWvFihXq1auXQkJCFBkZqZtvvtktnxcAvCo8TmrRv3r/iQ0Jk2I6Sd3+ZAaSkiw2adRK6Y+LpKufkXrcISX0lxo2NZ8/c0w6+JX03bvmHVvfvF08RGY4pOX3S+/cKn38pPk7aOfH0uHt5u8XZ7LSpT1fmF9rOXpuzif/tDSt6YW9huGQVj1kHlXx2CEpqP4FvXV6eroGDx6sUaNGaeHChdq+fbtGjx6tkJAQTZkyRZKUnJysDRs2aPny5YqOjtakSZO0adMmde3a1elrfvDBB3rxxRe1aNEiXXrppcrIyNB3330nSVq6dKm6dOmiu+++W6NHj3bZrpUrV+rmm2/W448/roULFyovL0+rVq26oM8KALWWqzV+yq7mXCgv59z2FT+bx76N0q7U8vV+WmMeZdWLLN4qI6K5dPIXacsSmfN9KtHrU8NHJgg3fm7u3LmKj4/X7NmzZbFY1K5dOx06dEiPPvqoJk2apJycHC1YsEDvvvuurrzySknS22+/raZNXQe6/fv3KyYmRklJSQoMDFTz5s3Vu3dvSVLjxo1ls9nUsGFDxcTEuHyNZ555RrfddpueeuqporIuXbq46VMDQC1UlTV+guqbPT4xnczHziY3W6zSZY9IZ7PMu71O7DeHwHKzpdNHzePQpvKvXdjr8+0/paj253Zub3Xuawtpy/vSigfLD3/VoMBDuDmfwHpmD0pVZB+S5vQuv4T4mP+Z+6pU5b0v0LZt29SnT5+i4SFJ6tevn06dOqWDBw/q+PHjys/PLwonkhQeHq62bdu6fM1bbrlFKSkpatmypa655hoNHjxYQ4YMUUBA5f86bd68ucKeHQCok6q7xo+rnh9nvS9nTpQIO/vNXp/ty8vXO/A/86iI4TCDzqmj0mdTiwNPnzFS4l98FnIIN+djsVR9aCiytfO/ZJGtPdFCr4uPj9eOHTu0du1affLJJ7rvvvv03HPP6fPPP1dgYGClXoPJxQDgZpXt+QmNMI/YzubjDjdKOz4q3+tz9TPm3VzHdhXv4J6bVf71DIf06VOlH3/5ivTlbOmGl30yqZlw4ynVWULcA9q3b68PPvhAhmEU9d5s2LBBDRs2VLNmzdSoUSMFBgbq66+/VvPmzSVJWVlZ2rlzpy677DKXrxsaGqohQ4ZoyJAhGjNmjNq1a6ctW7aoe/fuCgoKkt1ur7BdnTt3Vmpqqu644w73fVgAqOuq0/NT2V4fw5Ayt0qv9S+zto8rhvmara70+u9Awo0neWIJ8QpkZWVp8+bNpcruvvtupaSk6P7779fYsWO1Y8cOTZ48WcnJybJarWrYsKFGjhyphx9+WI0bN1ZUVJQmT54sq9VaaiirpPnz58tutysxMVH16tXTP//5T4WGhurii81FqBISEvTFF1/otttuU3BwsCIjI8u9xuTJk3XllVeqVatWuu2221RQUKBVq1bp0Ucfdft1AQCcR2X+Q26xSDEdywehpMnS2inOA49hN1+TcIPqWrdunbp161aq7M4779SqVav08MMPq0uXLmrcuLHuvPNOPfHEE0V1XnjhBd177726/vrrFRYWpkceeUQHDhxwuVheRESEZsyYoeTkZNntdnXq1EkrVqzQRRddJEl6+umndc8996hVq1bKzc2Vs3UiL7/8cr3//vuaOnWqZsyYobCwsAp7igAAHlbZ/5A7C0KhjYonGZdksZl1vIwViktgFVxTTk6O4uLiNGvWLN15552+bo4k/mwAoMbLSpf+N8+cayNHxZOaq4EVilEl3377rbZv367evXsrKytLTz/9tCTpxhtv9HHLAAC1RnicdPVUKfFen883JdxAkvT8889rx44dCgoKUo8ePfSf//zH6VwZAAAq5OX5ps4QbqBu3bopLS3N180AAMAt2FsKAAD4FcKNE3VsjnWtwJ8JAKCyCDclFK6ue/r0aR+3BGUV/plUdgVkAEDdxZybEmw2myIiInT48GFJUr169VwuZAfvMAxDp0+f1uHDhxURESGbzebrJgEAajjCTRmFO1kXBhzUDBERERXuMg4AQCHCTRkWi0WxsbGKiopSfn6+r5sDmUNR9NgAACqLcOOCzWbjFyoAALUQE4oBAIBfIdwAAAC/QrgBAAB+pc7NuSlcDC47O9vHLQEAAJVV+Hu7Mou61rlwc/LkSUlSfHy8j1sCAACq6uTJkwoPD6+wjsWoY+vaOxwOHTp0SA0bNnT7An3Z2dmKj4/XgQMHFBYW5tbXRjGus3dwnb2D6+w9XGvv8NR1NgxDJ0+eVNOmTWW1Vjyrps713FitVjVr1syj7xEWFsY/HC/gOnsH19k7uM7ew7X2Dk9c5/P12BRiQjEAAPArhBsAAOBXCDduFBwcrMmTJys4ONjXTfFrXGfv4Dp7B9fZe7jW3lETrnOdm1AMAAD8Gz03AADArxBuAACAXyHcAAAAv0K4AQAAfoVwU0Vz5sxRQkKCQkJClJiYqK+++qrC+u+//77atWunkJAQderUSatWrfJSS2u3qlzn119/Xf3791ejRo3UqFEjJSUlnffPBaaq/n0utGjRIlksFt10002ebaCfqOp1PnHihMaMGaPY2FgFBwerTZs2/OyohKpe55SUFLVt21ahoaGKj4/X+PHjdfbsWS+1tnb64osvNGTIEDVt2lQWi0XLli077znr1q1T9+7dFRwcrEsuuUTz58/3eDtloNIWLVpkBAUFGW+99ZaxdetWY/To0UZERISRmZnptP6GDRsMm81mPPvss8aPP/5oPPHEE0ZgYKCxZcsWL7e8dqnqdR42bJgxZ84c49tvvzW2bdtmjBo1yggPDzcOHjzo5ZbXLlW9zoX27NljxMXFGf379zduvPFG7zS2Fqvqdc7NzTV69uxpDB482Fi/fr2xZ88eY926dcbmzZu93PLaparX+Z133jGCg4ONd955x9izZ4+xZs0aIzY21hg/fryXW167rFq1ynj88ceNpUuXGpKMDz/8sML6u3fvNurVq2ckJycbP/74o/HKK68YNpvNWL16tUfbSbipgt69extjxowpemy3242mTZsa06dPd1r/1ltvNa677rpSZYmJicY999zj0XbWdlW9zmUVFBQYDRs2NBYsWOCpJvqF6lzngoICo2/fvsYbb7xhjBw5knBTCVW9zq+++qrRsmVLIy8vz1tN9AtVvc5jxowxBg4cWKosOTnZ6Nevn0fb6U8qE24eeeQR49JLLy1VNnToUGPQoEEebJlhMCxVSXl5eUpLS1NSUlJRmdVqVVJSkjZu3Oj0nI0bN5aqL0mDBg1yWR/Vu85lnT59Wvn5+WrcuLGnmlnrVfc6P/3004qKitKdd97pjWbWetW5zsuXL1efPn00ZswYRUdHq2PHjpo2bZrsdru3ml3rVOc69+3bV2lpaUVDV7t379aqVas0ePBgr7S5rvDV78E6t3FmdR09elR2u13R0dGlyqOjo7V9+3an52RkZDitn5GR4bF21nbVuc5lPfroo2ratGm5f1AoVp3rvH79er355pvavHmzF1roH6pznXfv3q1PP/1Uw4cP16pVq/Tzzz/rvvvuU35+viZPnuyNZtc61bnOw4YN09GjR/Xb3/5WhmGooKBA9957rx577DFvNLnOcPV7MDs7W2fOnFFoaKhH3peeG/iVGTNmaNGiRfrwww8VEhLi6+b4jZMnT+r222/X66+/rsjISF83x685HA5FRUXp73//u3r06KGhQ4fq8ccf17x583zdNL+ybt06TZs2TXPnztWmTZu0dOlSrVy5UlOnTvV10+AG9NxUUmRkpGw2mzIzM0uVZ2ZmKiYmxuk5MTExVaqP6l3nQs8//7xmzJihtWvXqnPnzp5sZq1X1eu8a9cu7d27V0OGDCkqczgckqSAgADt2LFDrVq18myja6Hq/H2OjY1VYGCgbDZbUVn79u2VkZGhvLw8BQUFebTNtVF1rvOTTz6p22+/XXfddZckqVOnTsrJydHdd9+txx9/XFYr//d3B1e/B8PCwjzWayPRc1NpQUFB6tGjh1JTU4vKHA6HUlNT1adPH6fn9OnTp1R9Sfrkk09c1kf1rrMkPfvss5o6dapWr16tnj17eqOptVpVr3O7du20ZcsWbd68uei44YYbdMUVV2jz5s2Kj4/3ZvNrjer8fe7Xr59+/vnnovAoSTt37lRsbCzBxoXqXOfTp0+XCzCFgdJgy0W38dnvQY9OV/YzixYtMoKDg4358+cbP/74o3H33XcbERERRkZGhmEYhnH77bcbEyZMKKq/YcMGIyAgwHj++eeNbdu2GZMnT+ZW8Eqo6nWeMWOGERQUZCxZssT45Zdfio6TJ0/66iPUClW9zmVxt1TlVPU679+/32jYsKExduxYY8eOHcZHH31kREVFGX/729989RFqhape58mTJxsNGzY0/vWvfxm7d+82Pv74Y6NVq1bGrbfe6quPUCucPHnS+Pbbb41vv/3WkGS88MILxrfffmvs27fPMAzDmDBhgnH77bcX1S+8Ffzhhx82tm3bZsyZM4dbwWuiV155xWjevLkRFBRk9O7d2/jvf/9b9NyAAQOMkSNHlqr/3nvvGW3atDGCgoKMSy+91Fi5cqWXW1w7VeU6X3zxxYakcsfkyZO93/Bapqp/n0si3FReVa/zl19+aSQmJhrBwcFGy5YtjWeeecYoKCjwcqtrn6pc5/z8fGPKlClGq1atjJCQECM+Pt647777jOPHj3u/4bXIZ5995vTnbeG1HTlypDFgwIBy53Tt2tUICgoyWrZsabz99tseb6fFMOh/AwAA/oM5NwAAwK8QbgAAgF8h3AAAAL9CuAEAAH6FcAMAAPwK4QYAAPgVwg0AAPArhBsAAOBXCDcAIMlisWjZsmWSpL1798pisWjz5s0+bROA6iHcAPC5UaNGyWKxyGKxKDAwUC1atNAjjzyis2fP+rppAGqhAF83AAAk6ZprrtHbb7+t/Px8paWlaeTIkbJYLJo5c6avmwaglqHnBkCNEBwcrJiYGMXHx+umm25SUlKSPvnkE0mSw+HQ9OnT1aJFC4WGhqpLly5asmRJqfO3bt2q66+/XmFhYWrYsKH69++vXbt2SZK+/vprXXXVVYqMjFR4eLgGDBigTZs2ef0zAvAOwg2AGueHH37Ql19+qaCgIEnS9OnTtXDhQs2bN09bt27V+PHj9ac//Umff/65JCk9PV2XXXaZgoOD9emnnyotLU1//vOfVVBQIEk6efKkRo4cqfXr1+u///2vWrdurcGDB+vkyZM++4wAPIdhKQA1wkcffaQGDRqooKBAubm5slqtmj17tnJzczVt2jStXbtWffr0kSS1bNlS69ev12uvvaYBAwZozpw5Cg8P16JFixQYGChJatOmTdFrDxw4sNR7/f3vf1dERIQ+//xzXX/99d77kAC8gnADoEa44oor9OqrryonJ0cvvviiAgIC9Pvf/15bt27V6dOnddVVV5Wqn5eXp27dukmSNm/erP79+xcFm7IyMzP1xBNPaN26dTp8+LDsdrtOnz6t/fv3e/xzAfA+wg2AGqF+/fq65JJLJElvvfWWunTpojfffFMdO3aUJK1cuVJxcXGlzgkODpYkhYaGVvjaI0eO1K+//qqXXnpJF198sYKDg9WnTx/l5eV54JMA8DXCDYAax2q16rHHHlNycrJ27typ4OBg7d+/XwMGDHBav3PnzlqwYIHy8/Od9t5s2LBBc+fO1eDBgyVJBw4c0NGjRz36GQD4DhOKAdRIt9xyi2w2m1577TU99NBDGj9+vBYsWKBdu3Zp06ZNeuWVV7RgwQJJ0tixY5Wdna3bbrtN33zzjX766Sf94x//0I4dOyRJrVu31j/+8Q9t27ZN//vf/zR8+PDz9vYAqL3ouQFQIwUEBGjs2LF69tlntWfPHjVp0kTTp0/X7t27FRERoe7du+uxxx6TJF100UX69NNP9fDDD2vAgAGy2Wzq2rWr+vXrJ0l68803dffdd6t79+6Kj4/XtGnT9NBDD/ny4wHwIIthGIavGwEAAOAuDEsBAAC/QrgBAAB+hXADAAD8CuEGAAD4FcINAADwK4QbAADgVwg3AADArxBuAACAXyHcAAAAv0K4AQAAfoVwAwAA/Mr/A00vEFQ7nGS+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+------------------+---------------------+---------------------+\n", + "| Confusion Matrix | Positive prediction | Negative prediction |\n", + "+------------------+---------------------+---------------------+\n", + "| Positive class | True positive (TP) | False negative (FN) |\n", + "| Negative class | False positive (FP) | True negative (TN) |\n", + "+------------------+---------------------+---------------------+\n", + "+------------------+---------------------+---------------------+\n", + "| Confusion Matrix | Positive prediction | Negative prediction |\n", + "+------------------+---------------------+---------------------+\n", + "| Positive class | 4 | 4880 |\n", + "| Negative class | 3 | 56616 |\n", + "+------------------+---------------------+---------------------+\n", + "ROC AUC: 0.5003830075360833\n", + "Accuracy = 0.920605498918752\n", + "Precision = 0.5714285714285714\n", + "Recall = 0.000819000819000819\n", + "F1 Score = 0.0016356573297894093\n", + "Fbeta Score = (0.49, 0.92, 0.91)\n", + " model tn fp fn tp FP+10*FN accuracy ROC_AUC \\\n", + "0 RFC_newFEATURE_001 56616 3 4880 4 48803 0.920605 0.500383 \n", + "\n", + " precision recall F1_Score Fbeta_macro Fbeta_micro Fbeta_weighted \n", + "0 0.571429 0.000819 0.001636 0.49 0.92 0.91 \n", + "---------------------------------\n", + "start find_optimal_business_score\n", + "prediction proba 61503\n", + "Y_true 61503\n", + "Series([], Name: best, dtype: object)\n", + "0 1\n", + "Name: best, dtype: object\n", + "best b score 36741 1 0.1\n", + "Name: threshold, dtype: float64\n", + " threshold tn fp fn tp FP+10*FN accuracy ROC_AUC \\\n", + "0 0.0 0 56619 0 4884 56619 0.079411 0.500000 \n", + "1 0.1 36738 19881 1686 3198 36741 0.649334 0.651827 \n", + "2 0.2 52686 3933 3638 1246 40313 0.876900 0.592827 \n", + "3 0.3 55991 628 4521 363 45838 0.916281 0.531616 \n", + "4 0.4 56550 69 4827 57 48339 0.920394 0.505226 \n", + "5 0.5 56614 5 4879 5 48795 0.920589 0.500468 \n", + "\n", + " precision recall F1_Score Fbeta_macro Fbeta_micro Fbeta_weighted \\\n", + "0 0.079411 1.000000 0.147137 0.150668 0.079411 0.023929 \n", + "1 0.138568 0.654791 0.228731 0.534326 0.649334 0.668162 \n", + "2 0.240587 0.255119 0.247640 0.591790 0.876900 0.877552 \n", + "3 0.366297 0.074324 0.123574 0.531957 0.916281 0.905051 \n", + "4 0.452381 0.011671 0.022754 0.498384 0.920394 0.905420 \n", + "5 0.500000 0.001024 0.002043 0.492133 0.920589 0.905030 \n", + "\n", + " best \n", + "0 0 \n", + "1 1 \n", + "2 0 \n", + "3 0 \n", + "4 0 \n", + "5 0 \n", + "Artifact PATH RFC_newFEATURE_001_artifactPATH\n", + "{'TN': 36738, 'FP': 19881, 'FN': 1686, 'TP': 3198, 'FP_10_FN': 36741, 'Accuracy': 0.6493341788205453, 'F1': 0.2287308228730823, 'Precision': 0.138567528922397, 'Recall': 0.6547911547911548, 'ROC_AUC': 0.6518273052607817, 'threshold': 0.1, 'time_in_s': 13614.84244298935}\n", + "{'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100}\n", + "Active run_id: ce6238f4e7664792abd37182bebc6061\n" + ] + } + ], + "source": [ + "run_name = \"RFC_newFEATURE_001\"\n", + "RFC_model_001, best_RFC_params, time_RFC = RFC_model(new_X_train, Y_train)\n", + "RFC_metrics, best_metrics_RFC = generate_model_report(RFC_model_001, run_name, new_X_test, Y_test, time_RFC)\n", + "run_MLflow(experiment_name, run_name, RFC_metrics, \n", + " best_RFC_params, RFC_model_001, new_X_train)" + ] + }, + { + "cell_type": "markdown", + "id": "ce809a7d", + "metadata": {}, + "source": [ + "### Second attempt to improve feature selection and model improvement" + ] + }, + { + "cell_type": "code", + "execution_count": 253, + "id": "c1d66850", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "length important features 96\n", + "(246008, 96)\n", + " 0 1 2 3 4 5 6 7 8 \\\n", + "0 0.0 0.0 1.0 0.0 202500.0 406597.5 24700.5 351000.0 0.018801 \n", + "1 0.0 0.0 0.0 0.0 270000.0 1293502.5 35698.5 1129500.0 0.003541 \n", + "2 1.0 1.0 1.0 0.0 67500.0 135000.0 6750.0 135000.0 0.010032 \n", + "3 0.0 0.0 1.0 0.0 135000.0 312682.5 29686.5 297000.0 0.008019 \n", + "4 0.0 0.0 1.0 0.0 121500.0 513000.0 21865.5 513000.0 0.028663 \n", + "\n", + " 9 ... 86 87 88 89 90 91 92 93 94 95 \n", + "0 9461.0 ... 0.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 \n", + "1 16765.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 \n", + "2 19046.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "3 19005.0 ... 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "4 19932.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", + "\n", + "[5 rows x 96 columns]\n", + "length important features 96\n", + "(61503, 96)\n", + " 0 1 2 3 4 5 6 7 8 9 \\\n", + "0 0 0 1 1 180000.0 545040.0 36553.5 450000.0 0.010643 15037 \n", + "1 0 1 1 1 337500.0 790830.0 62613.0 675000.0 0.010006 13347 \n", + "2 0 0 1 1 63000.0 310500.0 15232.5 310500.0 0.026392 16263 \n", + "3 0 0 0 0 112500.0 942300.0 36643.5 675000.0 0.072508 16629 \n", + "4 0 1 1 0 180000.0 272520.0 19957.5 225000.0 0.008575 10763 \n", + "\n", + " ... 86 87 88 89 90 91 92 93 94 95 \n", + "0 ... False False False False False False True True True False \n", + "1 ... False True False False False False True False True False \n", + "2 ... False False False False True False False False False False \n", + "3 ... False True False False True False True False True False \n", + "4 ... False False False False False False False False False False \n", + "\n", + "[5 rows x 96 columns]\n" + ] + }, + { + "ename": "NameError", + "evalue": "name 'MinMaxScaler' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[253], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m new_X_train_002 \u001b[38;5;241m=\u001b[39m select_columns(X_train, feature_names, shap_df, \u001b[38;5;241m0.002\u001b[39m)\n\u001b[1;32m 2\u001b[0m new_X_test_002 \u001b[38;5;241m=\u001b[39m select_columns(X_test, feature_names, shap_df, \u001b[38;5;241m0.002\u001b[39m)\n\u001b[0;32m----> 4\u001b[0m X_train_002_scaled, X_test_002_scaled \u001b[38;5;241m=\u001b[39m \u001b[43mscale_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnew_X_train_002\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnew_X_test_002\u001b[49m\u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "Cell \u001b[0;32mIn[252], line 3\u001b[0m, in \u001b[0;36mscale_data\u001b[0;34m(df_train, df_test)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mscale_data\u001b[39m(df_train, df_test):\n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m# Scale the domainnomial features\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m scaler \u001b[38;5;241m=\u001b[39m \u001b[43mMinMaxScaler\u001b[49m(feature_range \u001b[38;5;241m=\u001b[39m (\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m1\u001b[39m))\n\u001b[1;32m 5\u001b[0m df_train \u001b[38;5;241m=\u001b[39m scaler\u001b[38;5;241m.\u001b[39mfit_transform(df_train)\n\u001b[1;32m 6\u001b[0m df_test \u001b[38;5;241m=\u001b[39m scaler\u001b[38;5;241m.\u001b[39mtransform(df_test)\n", + "\u001b[0;31mNameError\u001b[0m: name 'MinMaxScaler' is not defined" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[LightGBM] [Info] Number of positive: 15953, number of negative: 180854\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.142028 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 10307\n", + "[LightGBM] [Info] Number of data points in the train set: 196807, number of used features: 96\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000\n", + "[LightGBM] [Info] Start training from score 0.000000\n", + "[CV 4/5] END boosting_type=gbdt, class_weight=balanced, learning_rate=0.05, metric=binary_logloss, n_estimators=10000, num_leaves=31, objective=binary, reg_alpha=0.1, reg_lambda=0.1, subsample=0.8;, score=0.886 total time= 5.6min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:97: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, warn=True)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:132: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[LightGBM] [Info] Number of positive: 15953, number of negative: 180853\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.138505 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 10304\n", + "[LightGBM] [Info] Number of data points in the train set: 196806, number of used features: 96\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000\n", + "[LightGBM] [Info] Start training from score 0.000000\n", + "[CV 2/5] END boosting_type=gbdt, class_weight=balanced, learning_rate=0.05, metric=binary_logloss, n_estimators=10000, num_leaves=31, objective=binary, reg_alpha=0.1, reg_lambda=0.1, subsample=0.8;, score=0.883 total time= 7.1min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:97: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, warn=True)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:132: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[LightGBM] [Info] Number of positive: 15952, number of negative: 180854\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.066573 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 10240\n", + "[LightGBM] [Info] Number of data points in the train set: 196806, number of used features: 96\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=-0.000000\n", + "[LightGBM] [Info] Start training from score -0.000000\n", + "[CV 1/5] END boosting_type=gbdt, class_weight=balanced, learning_rate=0.05, metric=binary_logloss, n_estimators=10000, num_leaves=31, objective=binary, reg_alpha=0.1, reg_lambda=0.1, subsample=0.8;, score=0.889 total time= 7.1min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:97: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, warn=True)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:132: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[LightGBM] [Info] Number of positive: 15953, number of negative: 180853\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.044952 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 10221\n", + "[LightGBM] [Info] Number of data points in the train set: 196806, number of used features: 96\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000\n", + "[LightGBM] [Info] Start training from score 0.000000\n", + "[CV 3/5] END boosting_type=gbdt, class_weight=balanced, learning_rate=0.05, metric=binary_logloss, n_estimators=10000, num_leaves=31, objective=binary, reg_alpha=0.1, reg_lambda=0.1, subsample=0.8;, score=0.884 total time= 7.1min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:97: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, warn=True)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:132: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[LightGBM] [Info] Number of positive: 15953, number of negative: 180854\n", + "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.180802 seconds.\n", + "You can set `force_col_wise=true` to remove the overhead.\n", + "[LightGBM] [Info] Total Bins 10238\n", + "[LightGBM] [Info] Number of data points in the train set: 196807, number of used features: 96\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000\n", + "[LightGBM] [Info] Start training from score 0.000000\n", + "[CV 5/5] END boosting_type=gbdt, class_weight=balanced, learning_rate=0.05, metric=binary_logloss, n_estimators=10000, num_leaves=31, objective=binary, reg_alpha=0.1, reg_lambda=0.1, subsample=0.8;, score=0.887 total time= 7.4min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:97: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, warn=True)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:132: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)\n" + ] + } + ], + "source": [ + "new_X_train_002 = select_columns(X_train, feature_names, shap_df, 0.002)\n", + "new_X_test_002 = select_columns(X_test, feature_names, shap_df, 0.002)\n", + "\n", + "X_train_002_scaled, X_test_002_scaled = scale_data(new_X_train_002, new_X_test_002 )\n" + ] + }, + { + "cell_type": "code", + "execution_count": 228, + "id": "db117fe4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", "output_type": "stream", "text": [ - "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n" + "\n", + "---------------------------------\n", + "start generate_model_report\n" ] }, { - "name": "stderr", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABam0lEQVR4nO3deVhUZf8G8HvYBlB2ZBVBUVzRXBHN1EJJfbXll1umtulrmZWUlpla9qZlVvaWZZmllntlmpqWC5aKO7grsomigKjswsDM9/cHLydHQBkEDsv9ua65mDnLzHfODDP3POc5z9GIiICIiIhIJWZqF0BERET1G8MIERERqYphhIiIiFTFMEJERESqYhghIiIiVTGMEBERkaoYRoiIiEhVDCNERESkKgu1CygPg8GAy5cvw87ODhqNRu1yiIiIqBxEBFlZWfDy8oKZWdntH7UijFy+fBk+Pj5ql0FEREQVcPHiRTRu3LjM+bUijNjZ2QEoejL29vYqV0NERETlkZmZCR8fH+V7vCy1IowU75qxt7dnGCEiIqpl7tbFgh1YiYiISFUMI0RERKQqhhEiIiJSFcMIERERqYphhIiIiFTFMEJERESqYhghIiIiVTGMEBERkaoYRoiIiEhVJoeRv/76C4MHD4aXlxc0Gg1+/fXXu64THh6OTp06QavVonnz5li6dGkFSiUiIqK6yOQwkpOTgw4dOmDhwoXlWj4+Ph6DBg1C3759ERUVhVdffRXPP/88tm3bZnKxREREVPeYfG6aAQMGYMCAAeVeftGiRWjatCk+/vhjAEDr1q2xZ88efPrppwgNDTX14YmIiKiOqfIT5UVERCAkJMRoWmhoKF599dUy18nPz0d+fr5yOzMzs6rKIyIiqjey8gqQnJGHlMx8JGfmIenGTeToCnFTp8cLffzh5WijSl1VHkaSk5Ph7u5uNM3d3R2ZmZm4efMmbGxKPvG5c+fi3XffrerSiIiI6qSUzDwcTriBk5czcOZKJq7n6BB/NQdZ+YVlrvNYJ++6G0YqYtq0aQgLC1NuZ2ZmwsfHR8WKiIiIap6rWfnYF5uGy+l5uJx+Exeu5yI2NRtJ6TfLXMfe2gIeDtZwt7eGp4M1HGwsYWNpDjc7bTVWbqzKw4iHhwdSUlKMpqWkpMDe3r7UVhEA0Gq10GrV2yhEREQ1zYVrOfjt2GVEp2QjOSMPyZl5SLyeW+qyZhqglYc92nrZw8LcDD7ONujfxh1ejjawtap57RBVXlFwcDC2bNliNO3PP/9EcHBwVT80ERFRrWUwCNYevoj9cddw/FIG4tJySl3Oz8UW5mYadPZ1QscmTvBv1BCtPe1gZ21ZzRVXnMlhJDs7GzExMcrt+Ph4REVFwdnZGU2aNMG0adOQlJSE5cuXAwAmTJiAL774AlOnTsWzzz6LnTt3Yu3atdi8eXPlPQsiIqI6IDu/EAfjr+HMlSx8FR6L7Fv6eFiYadDFzwk9/F3h59oAXv/b1eLjbKtixZXD5DBy+PBh9O3bV7ld3Ldj7NixWLp0Ka5cuYLExERlftOmTbF582ZMnjwZn332GRo3boxvv/2Wh/USEVG9l51fiMjEGzh2MR1/nknFsYvpJZbp2MQRIa3dMTrYF/a1qLXDFBoREbWLuJvMzEw4ODggIyMD9vb2apdDRERkkrwCPWKvZuPCtVwkXMvByaQMnL6ciYRrpff5GBToiTZe9ght64Hmbg2rudrKU97v75rXi4WIiKiWupadjyMXbuB6jg4pmflIycrDxeu5OBh/HfmFhlLXsbUyx0Ot3XGfjyMCvR3QxdcJZmaaaq5cXQwjRERE90BEsPNsKpbuS8Df59PKXM7R1hJNXRvAz6UBvB1t4NzACm287NGpiROsLOr3eWsZRoiIiMpJRJCWrUNqVh5OXc5E3NUc/BqZhOTMPKPlWrrboZOvI9zsrOFmr0V7b0e087aHRlO/WjzKi2GEiIioDPmFeuyNScOhhBv4IeKC0dEtt7KyMMO/Aj3xSkgLNHG2ZegwEcMIERHR/4gIYlKzsSHqMrafScHZ5KxSl3NtaAXXhlqk5xZg+qDWeKi1W40cTKy24JYjIqJ6S0SwP+461h25iAvXchGdnFXq+VsGtPNA35ZuaNqoAdp5OcDGylyFausuhhEiIqpXUjLz8NORS/jvjvOws7ZEWna+0XxLcw0eaNEID7fzQGBjBzR2skVDLb8uqxK3LhER1Wl6g2DT8cvYeTYVpy5nIvZqNopH2Mr/XxCxNNdgTLAfhnZpjGauDev90S3VjWGEiIjqHF2hAccupWPLiSv4fm9Cifnd/JzxQIArnBto8Xgnb1hbcreLmhhGiIio1tMVGnA44Tq2nUpG1MV0nE/NRq5Ob7TMS32bo4V7Q3T2dUJjp9p/Ppe6hGGEiIhqHb1BcOFaDnacScWOsyk4lZRZouOpcwMrBDdzQccmjujbyg3+jWrvsOp1HcMIERHVeNdzdPjl6CWcvpyJXyKToNEAt59ZzbmBFfq1dkevAFe0cLNDC7eG9W5Y9dqKYYSIiGoUvUFwLScf8VdzcCD+OvbGpOFA/HWjZYqDSM/mLujfxgOdfZ3QxtOe4aOWYhghIiLVXc/R4YeIC/gl8hIuXs+FoYzzyYe0dscTnRvD29EGrTztYGnOo17qAoYRIiJShYhgd/RVrDiQiF1nU1F4SwLRaACXBlp0a+qE4GYu6NrUGQFudmz5qKMYRoiIqNpcvJ6LY5fScSj+Ov48nYLLGf+cYC7Q2wHP9PRDz+aucGlgBQu2etQbDCNERFRlDAbBtlPJ+ON0CjafuAJdocFovkYDjOjqg2d6NkWAu51KVZLaGEaIiKhS3dTpsTv6Kn4+egnh51JRoC/ZAeTJoCbo6e+KXgGusLe2VKFKqkkYRoiIqFLoDYKx3x3Enpg0o+nmZhq0cGuI9x9rh+aN7OBgy/BBxhhGiIiowvQGwU9HLuLXyMs4mZShDDxmbWmGp3s0Re+ARmjrbc/WD7ojhhEiIjLZhWs5WHkwEesOX8L1HJ0yvYGVOf6vc2PMGtwW5jzyhcqJYYSIiMpFRBARew1L9sRjx9lUZbq1pRlcG2rx0RMd0NXPiUfBkMkYRoiI6I5y8guxIeoy3lp/wmj6/c1d8VT3JniotTsHH6N7wjBCREQl5BfqsWxfArafTsXRxBtGA5KFtHbDWwNboxlPPEeVhGGEiIgAADdydNhxtih8/H7iCm7kFijzGjvZ4OG2Hpj0UAs42LAzKlUuhhEionosPVeHP0+nYNPxK9gbk2bUAuJur0UPf1e80MefA5JRlWIYISKqR65l52N/3HWcvJyBPefTcPJyhnIGXAAIcG+Izr5O6N/GA71auLIzKlULhhEiojos42YBjl9Kx9EL6Yi8eAMH4q7jZoHeaJlWHnYYFOiJQe092Q+EVMEwQkRUx8RdzcZvx67g+KV0o0NwizV2skFQUxfc38IFPf1d4WZvrUKVRP9gGCEiqgMMBsHWU8lYHpGA/XHXS8zv4e+C0LYe8G/UEMH+LhyQjGoUhhEioloqOSMPURdv4MiFG9hxJhVxaTkAADMN0LGJE5o422J4Vx8ENXWGRsPwQTUXwwgRUS0Sk5qNbaeS8cepZBy7lFFifv827nhnSFt4OdqoUB1RxTCMEBHVYPmFehxOuIH9cdewPOICMm7+M/aHRgO09rBHBx9HBDV1xv0tXOHaUKtitUQVwzBCRFQDRadkYXlEAn4/kYxrt5yIDgB6BzTCw+088FBrN7jZsfMp1X4MI0RENYDBIIi6lI79cdew/XQKIi+mK+N/NLLTooe/C7r6OeOBFo3QxMVW3WKJKhnDCBGRivacT8OC7dG4eCMXKZn5RvP6t3HHsC4+6NOyEQcfozqNYYSIqBpl5RVg3eFLOJ+ajcTrOdgbc81ofgu3hhjRrQkGtPNgJ1SqNxhGiIiqwd6YNHy49SxOXc6E/pbzvxR7NaQFXujjD62FuQrVEamLYYSIqIqICP46n4ZF4bGIiPunBaSZawP4ONuiT8tG6N7MBa087DgOCNVrDCNERJUsr0CPv8+nYdzyw8o0M03RUTDTB7VBczee/4XoVgwjRESVwGAQhEenYnnEBeyLvQZdoUGZ93hHb7we2pJ9QIjKwDBCRFRBBoPgzzMpWHf4IrafMT4hnZOtJXoHNEJIG3f8q72XShUS1Q4MI0REJrqWnY/tZ1Lwxa4YXLx+02iecwMrPN7RG9MHtWY/EKJyYhghIiqHAr0BW05cwd6YNGw8dhl5Bf/shvlXe0/0a+OOQYGeHA+EqAIYRoiI7uBwwnX8GpWEH/cnGk33crDGiG5NMKyLDzwcOCQ70b1gGCEiuk1+oR7rjybh4z+jcTXrn1FRHW0t0dXPGWOD/dC9mTNbQYgqCcMIEdEtVh9MxLxt53D9tpPTfT6yI0LbesDKggGEqLIxjBARoWiY9nlbz+GH/ReUaRN6+6NXC1f08HdhZ1SiKsQwQkT11smkDOyOvoqI2GvYF5uG4lHa/VxssfnlXmig5UckUXXgfxoR1Ss3dXpsPXUFv59Ixh+nU4zm+TjbILSNB94Y0AqW7A9CVG0YRoioztMbBJGJN7Du8CVsPnEF2fmFRvPHBvviqe6+aOFup1KFRPUbwwgR1VknkzLwZXgMDsZfR1r2Px1Szc00aOVhh9f7t0TfVm4qVkhEAMMIEdUxeQV6nLmSiY+2ncO+2GtG8/q1cceIrj7o09IN5mbskEpUUzCMEFGdkFegx5I98Vi4Kwa5Oj0AwNJcg0BvBwS422Hm4DawteJHHlFNxP9MIqr1IhNv4JXVUUi8nqtM69/GHTP+1QY+zrYqVkZE5cEwQkS11vmULPT79C/ltpWFGeb9X3s8cp8XxwUhqkUYRoio1skv1OPbv+OxYHu00fS9bzyIRnZalaoiooqq0IH0CxcuhJ+fH6ytrREUFISDBw/ecfkFCxagZcuWsLGxgY+PDyZPnoy8vLwKFUxE9ZOIIDolC1+Gx6DPR+H4aNs5FOgFfVo2wtJnuiJ+7kAGEaJayuSWkTVr1iAsLAyLFi1CUFAQFixYgNDQUJw7dw5ubiUPkVu5ciXefPNNfPfdd+jRoweio6Px9NNPQ6PR4JNPPqmUJ0FEdVd+oR4Ld8bgvztjjKbbWVvg7UGtMayLD3fJENVyGhERU1YICgpC165d8cUXXwAADAYDfHx8MGnSJLz55pslln/ppZdw5swZ7NixQ5n22muv4cCBA9izZ0+5HjMzMxMODg7IyMiAvb29KeUSUS2UX6jHnvNp+O+O8zh2KcNoXvvGDhgV1ARDOnjDxspcpQqJqDzK+/1tUsuITqfDkSNHMG3aNGWamZkZQkJCEBERUeo6PXr0wI8//oiDBw+iW7duiIuLw5YtWzB69OgyHyc/Px/5+f+ctjszM9OUMomoltIVGvDqmkhsO5UCvcH4d1JYvwA83dMP9taWKlVHRFXFpDCSlpYGvV4Pd3d3o+nu7u44e/Zsqes8+eSTSEtLw/333w8RQWFhISZMmIC33nqrzMeZO3cu3n33XVNKI6Ja7rdjlzFpVaRy29HWEo/e542gps64v4Ur7BhCiOqsKj+aJjw8HHPmzMGXX36JoKAgxMTE4JVXXsF7772HGTNmlLrOtGnTEBYWptzOzMyEj49PVZdKRNXMYBBsO5WMZREJ2B93XZn+7wea4Y2HW8GMo6QS1QsmhRFXV1eYm5sjJcX4TJcpKSnw8PAodZ0ZM2Zg9OjReP755wEAgYGByMnJwfjx4zF9+nSYmZU8oEer1UKrZa94orrsalY+hnyxB1cy/jmyLtDbAavGd0dDLUcdIKpPTDq018rKCp07dzbqjGowGLBjxw4EBweXuk5ubm6JwGFuXtTpzMS+s0RUB4gIvvkrFj0/3KkEkQcCGuGzEffht0n3M4gQ1UMm/9eHhYVh7Nix6NKlC7p164YFCxYgJycHzzzzDABgzJgx8Pb2xty5cwEAgwcPxieffIKOHTsqu2lmzJiBwYMHK6GEiOqHv6Kv4svwGGWXTIfGDujf1gMT+zZXuTIiUpPJYWT48OG4evUqZs6cieTkZNx3333YunWr0qk1MTHRqCXk7bffhkajwdtvv42kpCQ0atQIgwcPxvvvv195z4KIarTd0Vfx3x3nceTCDWXalNCWeKG3P/uFEJHp44yogeOMENVOhxKuY/62czgQ/0/nVDutBb57piu6+jmrWBkRVYcqGWeEiKg8TlzKwFvrT+BE0j8Dlj0Z1ATDu/igg4+jeoURUY3EMEJElSb2aja+3BWL309eQa5ODwB4uK0HhnVtjAdbud9lbSKqrxhGiOieiQje23QG3+2NV6a187bH9IFtEOzvomJlRFQbMIwQ0T2JvZqN9zefwc6zqQCKQsjDbT3wQp/mMGfnVCIqB4YRIqqQhLQcrD50EYt2xyrTpoS25GG6RGQyhhEiMklyRh5WHkzEf3ecN5q+enx3dG/GXTJEZDqGESIqFxHBjwcSMePXk8q0RnZa/PuBZniquy+sLTmIIRFVDMMIEd1Rrq4QW04k46vwGMRezQEAWFmYYe5jgXjkPi9YmJt0VgkiohIYRoioVNn5hVjydzwW7Y7FzYKiw3TNzTR4obc/XnqwOVtCiKjSMIwQkUJEsO7IJfx0+BIOJvwzaqq3ow2G3OeF5+9vCpeGPKM2EVUuhhEiAgDkFejx+rpj2HT8itH0IR28sGD4fTyHDBFVGYYRonrOYBD8dPQSpv50XJn2WEdvjAn2RfvGjhwrhIiqHMMIUT2Wk1+I8T8cxt6Ya8q09x5th9HdfVWsiojqG4YRonoqOSMPE1cexZELN2CmAYZ18cFz9zdFC3c7tUsjonqGYYSontkXk4avdsfi7/NpAACNBvh6dBf0a8MT2RGROhhGiOqJFQcuYMX+RJy+kqlMa+HWEKODfRlEiEhVDCNEdVxqVh6mrz+JP0+nKNNae9rjncFtEMTh24moBmAYIarDzlzJxDPfH0JyZh4AoKW7HX58PgiN7DhWCBHVHAwjRHXU4YTreOb7Q8jKL0Qz1waYNaQtegc0UrssIqISGEaI6piL13Mx5ruDiE/LUaatnRAMV46cSkQ1FMMIUR2yISoJ0345gVydXpm2PewBBhEiqtEYRojqgMvpNzH+h8M4mVR0pEwbT3uM7eGL4V2bqFwZEdHdMYwQ1WJJ6Tfx3Z54/LD/AnSFBgBAoLcD1r/YAxbmZipXR0RUPgwjRLXU1pPJmPDjEeV2F18nDO/qg8c6ejOIEFGtwjBCVMuICKb+dBzrjlxSpk16sDnC+gVAo+FJ7Yio9mEYIaolMnILsOpQIpbvS8DljKJxQ/q3ccc7Q9rCy9FG5eqIiCqOYYSohsvMK8Div+KwZE+8cpSMpbkG7z3SDiO6sYMqEdV+DCNENZTBIPjvzvP45q84o0N1X36oBf79QDM00PLfl4jqBn6aEdVARy5cx/T1J3E2OUuZ9lT3JnjloQAO5U5EdQ7DCFENsz/uGkZ9ewB6g8DSXANrC3P88HwQ7vNxVLs0IqIqwTBCVEPk6gqxbN8FfLj1LADA0dYSW195AB4O1ipXRkRUtRhGiGqAP04l493fTiMp/SaAooHL1v47GDZW5ipXRkRU9RhGiFSScbMAO86k4Ju/4oz6hrzWLwCjuvsyiBBRvcEwQqSCrLwC9J0fjus5OqPpu6f0ga9LA5WqIiJSB8MIUTUTEYxbflgJIv3buOPxTt7o38YDZmYcQZWI6h+GEaJqkpadjy0nrmDWxlMQKZq2enx3dG/mom5hREQqYxghqgY/HbmEdzeeQlZ+oTJtVFATBhEiIjCMEFWp7PxCPLZwL86nZgMAmjjb4ukefhjW1QcNOYIqEREAhhGiKnEjR4ev/4rDmkOJuJFbAAAY0dUH7z8WCHP2CyEiMsIwQlTJUjPz0G3ODqNpS8Z2wUOt3VWqiIioZmMYIapE0SlZGLPkoHL7ic6N8f5j7aC14JghRERlYRghqiQnkzLw+Ff7oCs0wMfZBkuf6Qb/Rg3VLouIqMZjGCG6R9EpWZjy03Ecu5iuTFv5fHf4ONuqVxQRUS3CMEJ0DzZEJeGV1VFG035/pReDCBGRCRhGiCogI7cA/T7djdSsfGXaF092xKBAT2g0PFqGiMgUDCNEJtp0/DJeWhmp3PZ2tMHWV3vBztpSxaqIiGovhhEiE5xLzjIKIh/+XyCGd22iYkVERLUfwwhROYWfS8XkNVHK7a2v9kIrD3v1CiIiqiMYRojK4bW1x/Dz0UsAinbLLB7ThUGEiKiSMIwQ3UFWXgH+9fkeXLiWCwB4MqgJ3hzQCvbsH0JEVGkYRojKsCEqCe9tOo20bB0AIKS1G+Y8FqhyVUREdQ/DCNFt0rLz8cgXe5GUfhNA0W6Z9x5tiwdb8dwyRERVgWGE6H9EBL8dv4KXV/1ztMzIbk0w819tYGPFc8sQEVUVhhEiFAWRmRtO4Yf9F5Rpn424D4/c561iVURE9QPDCNV7ubpCjPr2ACIT06HRAAPaeWBssB+CmrmoXRoRUb3AMEL1WkxqNiavicKJpAwAwNzHAjGiGwcxIyKqTmYVWWnhwoXw8/ODtbU1goKCcPDgwTsun56ejokTJ8LT0xNarRYBAQHYsmVLhQomqixv/3oCIZ/sVoLI9IGtGUSIiFRgcsvImjVrEBYWhkWLFiEoKAgLFixAaGgozp07Bzc3txLL63Q69OvXD25ubvjpp5/g7e2NCxcuwNHRsTLqJzJZgd6AF348iu1nUgAAAe4N8d+RHTmIGRGRSjQiIqasEBQUhK5du+KLL74AABgMBvj4+GDSpEl48803Syy/aNEifPTRRzh79iwsLSs2UFRmZiYcHByQkZEBe3t+YdC9mfDDEWw9lQwAaObaANvDesPMjGfaJSKqbOX9/jZpN41Op8ORI0cQEhLyzx2YmSEkJAQRERGlrrNx40YEBwdj4sSJcHd3R7t27TBnzhzo9foyHyc/Px+ZmZlGF6LKMH/bOSWIdPZ1ws7X+zCIEBGpzKTdNGlpadDr9XB3Nx78yd3dHWfPni11nbi4OOzcuROjRo3Cli1bEBMTgxdffBEFBQWYNWtWqevMnTsX7777rimlEZXJYBD8fjIZE1ceVaZ19nXCTxOCVayKiIiKVfnRNAaDAW5ubvjmm29gbm6Ozp07IykpCR999FGZYWTatGkICwtTbmdmZsLHx6eqS6U6KCUzD6+ujkJE3DVlmmtDLX6aEAyNhi0iREQ1gUlhxNXVFebm5khJSTGanpKSAg8Pj1LX8fT0hKWlJczN/xnBsnXr1khOToZOp4OVlVWJdbRaLbRarSmlEZUQEXsNIxfvV26Pf6AZngryRRMXWxWrIiKi25nUZ8TKygqdO3fGjh07lGkGgwE7duxAcHDpTd49e/ZETEwMDAaDMi06Ohqenp6lBhGiynDhWo5REJk+sDXeGtiaQYSIqAYyeZyRsLAwLF68GMuWLcOZM2fwwgsvICcnB8888wwAYMyYMZg2bZqy/AsvvIDr16/jlVdeQXR0NDZv3ow5c+Zg4sSJlfcsiG6xO/oqBn++R7m99t/BGPdAMxUrIiKiOzG5z8jw4cNx9epVzJw5E8nJybjvvvuwdetWpVNrYmIizMz+yTg+Pj7Ytm0bJk+ejPbt28Pb2xuvvPIK3njjjcp7FkT/81V4LD7cWtSZ2sJMgz8mP4BmjRqqXBUREd2JyeOMqIHjjFB5RCbewGNf7gMAeDlYY/PLveDUgLsCiYjUUt7vb56bhuqEXyOT8Pq6Y8rtv994EOYcP4SIqFZgGKFaTUTwZXgsPtp2DgDg6WCNVeO6M4gQEdUiDCNUaxkMgik/HcfPRy8p0za/3AvO3DVDRFSrMIxQrbT20EV883ccYlKzAQAjuvpg2oDWcLCt2PmPiIhIPQwjVKvkFejx8qpI/HG6aOA9KwszzH0sEP/XubHKlRERUUUxjFCtoTcIXln9TxAJbuaCL0d14hEzRES1HMMI1RqTVh3FtlMpsDDT4D+PtsOIbk3ULomIiCqBySOwEqlh++kUbDmRDAB4a2BrBhEiojqEYYRqvJNJGXh++WEAQEt3Ozx7f1OVKyIiosrEMEI1Wk5+IZ7+/iAAwNvRBqvGd1e5IiIiqmwMI1RjiQheXHEUadk6AMB/R97HMUSIiOogdmClGmnT8ct4aWWkcnvluCB09nVWsSIiIqoqbBmhGueHiASjIPLWwFbo4e+qYkVERFSV2DJCNcrJpAzM3HhKub311V5o5cEzNRMR1WUMI1RjXMm4iX99vgcAYG9tgSMz+sHSnI13RER1HT/pqUYQEby6Okq5vWlSLwYRIqJ6gp/2pDq9QTDtlxM4EH8dALDy+SA0cbFVuSoiIqouDCOkutm/ncLqQxcBAIMCPdGjOTurEhHVJwwjpKrwc6lYFnEBADCyWxMsHNVJ5YqIiKi6sQMrqeb9zaex+O94AEADK3PMeaydyhUREZEa2DJCqth2KlkJIh2bOGLrqw9Ao9GoXBUREamBLSNU7c5cyUTYmigAQBdfJ6ybEMwgQkRUjzGMULW6mpWPAZ/9DQDo5ueMFeOCGESIiOo57qaharPiwAV0fX+7cnvm4DYcS4SIiNgyQtXj+73xePe308rtL57siHbeDipWRERENQXDCFW5iNhreG9TURBp62WPZc92g2tDrcpVERFRTcEwQlXqalY+Jq48CoMAvVq4Ytkz3WBmxj4iRET0D4YRqjInkzIweskB3MgtQBNnW3w2oiODCBERlcAwQlUiNTNPOQOvlYUZFo/pAucGVipXRURENRHDCFU6EUG3OTsAAFbmZtgztS/c7K1VroqIiGoqHldJlUpXaMCY7w4qt+c90Z5BhIiI7ohhhCqNiGDSqqP4+3waACC4mQse7eitclVERFTTcTcNVYoCvQHDvo5AZGI6AODFPv6YEtpS3aKIiKhWYBihe6YrNKDPR7twOSMPAOBur8XUh1upXBUREdUWDCN0z97bdFoJIguf7IRB7T1VroiIiGoT9hmhexKZeAM/7L8AAHi6hx+DCBERmYxhhCpMV2jAlJ+OAwA0GuDtQa1VroiIiGojhhGqkNir2fi/r/YhJjUbAPDzCz1gwTPwEhFRBbDPCJnsZFKGMrqq1sIM7z3SDp2aOKlcFRER1VYMI2SS8ylZShABgK+e6oQHW7mrWBEREdV2bFencivQG/D4l/uU2/OHdmAQISKie8aWESq32b+dRlZ+IQBg7b+D0a2ps8oVERFRXcCWESqXrSeTlUN4X+rbnEGEiIgqDcMI3VVqVh4m/HgEAODrYovX+geoXBEREdUlDCN0V/0++Uu5vmFiT2g0GhWrISKiuoZhhO5o1oaTyLhZAAAY2a0JHG2tVK6IiIjqGoYRKlPUxXQsiyjqJ2JtaYa5jweqXBEREdVFDCNUKhHB3C1nlNtRM/urWA0REdVlDCNUqtWHLuJA/HVoLcyw980HYW1prnZJRERURzGMUAnxaTmY9ssJAMBT3X3h7WijckVERFSXMYyQkZs6PfrOD1duT3qwuXrFEBFRvcAwQoqTSRloPXOrcnvJ2C48eoaIiKocwwgBKOqwOnrJAeX2E50b46HWPO8MERFVPZ6bhgAAaw5dxI3covFE3nu0HUZ391W5IiIiqi/YMkLIyC3Am//rsDq8iw+DCBERVSuGkXouO78QL6+OVG7PGtJGxWqIiKg+qlAYWbhwIfz8/GBtbY2goCAcPHiwXOutXr0aGo0Gjz76aEUelirZ4YTr6PXhTuyOvgpzMw1Wj+8OWyvuuSMiouplchhZs2YNwsLCMGvWLBw9ehQdOnRAaGgoUlNT77heQkICXn/9dfTq1avCxVLlKdAb8MSiCKWfyMInO6F7MxeVqyIiovrI5DDyySefYNy4cXjmmWfQpk0bLFq0CLa2tvjuu+/KXEev12PUqFF499130axZs3sqmCrH6kMXlevLnu2Gh9t5qFgNERHVZyaFEZ1OhyNHjiAkJOSfOzAzQ0hICCIiIspcb/bs2XBzc8Nzzz1XrsfJz89HZmam0YUqz7XsfHy2/TyAojPx9g5opHJFRERUn5kURtLS0qDX6+Hubjz+hLu7O5KTk0tdZ8+ePViyZAkWL15c7seZO3cuHBwclIuPj48pZdJdzNhwEmnZ+bDTWuDtQa3VLoeIiOq5Kj2aJisrC6NHj8bixYvh6upa7vWmTZuGjIwM5XLx4sW7r0Tlkl+ox9aTRcHxjQGt0EDLDqtERKQuk76JXF1dYW5ujpSUFKPpKSkp8PAo2ecgNjYWCQkJGDx4sDLNYDAUPbCFBc6dOwd/f/8S62m1Wmi1WlNKo3K4lp2PkE92wyCAtaUZRnRlixMREanPpJYRKysrdO7cGTt27FCmGQwG7NixA8HBwSWWb9WqFU6cOIGoqCjlMmTIEPTt2xdRUVHc/VLNXloZqRw982pIACzMOcwMERGpz+Q2+rCwMIwdOxZdunRBt27dsGDBAuTk5OCZZ54BAIwZMwbe3t6YO3curK2t0a5dO6P1HR0dAaDEdKpaU386hoi4awCAF/v4Y0Lvki1SREREajA5jAwfPhxXr17FzJkzkZycjPvuuw9bt25VOrUmJibCzIy/uGuSi9dzsfbwJeX2lNCWKlZDRERkTCMionYRd5OZmQkHBwdkZGTA3t5e7XJqlQK9AaMWH8DBhOsAgP3THoKHg7XKVRERUX1Q3u9vHkpRx/X8YCdSs/IBAN+O6cIgQkRENQ73p9RhX++OVYLIyw+1QEgb97usQUREVP0YRuqoAr0Bi/+OBwB0b+aMsH4BKldERERUOoaROuimTo9HF+5FWnZRq8icxwJVroiIiKhs7DNSx1y8note83Yptxc+2QnNGjVUsSIiIqI7Y8tIHZJfqMe45YeV2yO6+mBQe08VKyIiIro7tozUESKCiSsicTY5CwDw7pC2GNvDT92iiIiIyoEtI3XEtlMp2H6m6JxBM/7VhkGEiIhqDYaROiAtOx8TfjwCAHj+/qZ47v6mKldERERUfgwjdcCoxQcAAOZmGozv3UzlaoiIiEzDMFLLHUq4jnMpRf1E5v1fe7jZcYRVIiKqXRhGarmpPx0HAHT1c8L/dW6scjVERESmYxipxVYcuID4tBwAwKzBbVWuhoiIqGIYRmqpnPxCzN1yFgDg7WiDdt4OKldERERUMQwjtZDeIOg+Zwey8wsBACvHBalcERERUcUxjNQyIoKhi/Yh639BZPrA1vB1aaByVURERBXHMFLL/HTkEo4mpgMAwvoFYNwDPJSXiIhqN4aRWkRvECzcFQMAGNTeExN6+6tcERER0b1jGKklsvIK8MSifUi4lgtHW0vM+7/2sLLgy0dERLUfv81qiY//iEbk/3bPTAltiQZanuOQiIjqBoaRWuBwwnUs3ZcAAOjbshFGBfmqWxAREVElYhipBYqDiIe9NZaM7apuMURERJWMYaSG23T8MjYdvwIA+O/IjjAz06hcERERUeViGKnBUjLzMHlNFADg4bYe6NbUWd2CiIiIqgDDSA32+c7zKNALgKJWESIiorqIYaSGys4vxI/7EwEA3z/dlYfxEhFRncVvuBrqo61nlesPBDRSsRIiIqKqxTBSA+08m4JlERcAAB8P7QBzdlolIqI6jGGkhskr0GPGr6cAAK4NtXi8k7fKFREREVUthpEa5uVVkUhKv4kGVubYNOl+aDRsFSEiorqNYaQGib2ajT9OpwAAFozoCA8Ha5UrIiIiqnoMIzXI3C1nlOv92rirWAkREVH1YRipIX45egnbz6QCANZNCFa5GiIiourDMFIDHIi7hrC1xwAAz93fFF39ONIqERHVHwwjKsvJL8Twb/YDABxtLfHWwNYqV0RERFS9GEZU9sP+C8r1lc9355giRERU7zCMqCgnvxAf/F400up7j7ZDGy97lSsiIiKqfgwjKtp5NlW5/mS3JipWQkREpB6GEZXoDYJJqyIBAH1bNuLuGSIiqrcYRlTywe//jCkyfVAbFSshIiJSF8OICjLzCrD473gAQCM7LZq7NVS5IiIiIvUwjKhg9m+nAQCuDa2w542+KldDRESkLoaRavbbscv46cglAMDYYD9oLcxVroiIiEhdDCPVKL9Qr3RaBYBJD7VQsRoiIqKagWGkGn209ZxyPXJGPxUrISIiqjkYRqrJtex8fLunqNOql4M1nBpYqVwRERFRzcAwUk3e+V+nVQDY8kovFSshIiKqWRhGqsGRCzfw27HLAIDR3X3haMtWESIiomIMI9XgzZ+PK9ffHdJWxUqIiIhqHoaRKrb5+BWcT80GAKx8PghmHPadiIjICMNIFUrP1eGlVUcBAGYaoEdzV5UrIiIiqnkYRqrQE4siIFJ0/Y/JvdUthoiIqIZiGKki8Wk5iPnf7pnHO3rz/DNERERlYBipIiO+iVCufzysg4qVEBER1WwMI1XgRo4OKZn5AIAX+/hDo2GnVSIiorIwjFSBN245lDesX4CKlRAREdV8FQojCxcuhJ+fH6ytrREUFISDBw+WuezixYvRq1cvODk5wcnJCSEhIXdcvi44mZQBABjexQcW5sx7REREd2LyN+WaNWsQFhaGWbNm4ejRo+jQoQNCQ0ORmppa6vLh4eEYOXIkdu3ahYiICPj4+KB///5ISkq65+JrouSMPFzOyAMATBvYSuVqiIiIaj6NSPHBp+UTFBSErl274osvvgAAGAwG+Pj4YNKkSXjzzTfvur5er4eTkxO++OILjBkzplyPmZmZCQcHB2RkZMDe3t6Ucqvd27+ewI/7E9HKww5bX31A7XKIiIhUU97vb5NaRnQ6HY4cOYKQkJB/7sDMDCEhIYiIiLjDmv/Izc1FQUEBnJ2dy1wmPz8fmZmZRpfaQG8QbD2ZAgB4qLWbytUQERHVDiaFkbS0NOj1eri7uxtNd3d3R3Jycrnu44033oCXl5dRoLnd3Llz4eDgoFx8fHxMKVM1aw5dRFp20VE04x/wV7kaIiKi2qFae1d+8MEHWL16NdavXw9ra+syl5s2bRoyMjKUy8WLF6uxyop7a/0JAEBnXyc42FiqXA0REVHtYGHKwq6urjA3N0dKSorR9JSUFHh4eNxx3fnz5+ODDz7A9u3b0b59+zsuq9VqodVqTSlNdVcybirXR3f3VbESIiKi2sWklhErKyt07twZO3bsUKYZDAbs2LEDwcHBZa43b948vPfee9i6dSu6dOlS8WprsA1Rl5Xrj3b0VrESIiKi2sWklhEACAsLw9ixY9GlSxd069YNCxYsQE5ODp555hkAwJgxY+Dt7Y25c+cCAD788EPMnDkTK1euhJ+fn9K3pGHDhmjYsG6cr+Vadj4W7owBAMx74s6tPkRERGTM5DAyfPhwXL16FTNnzkRycjLuu+8+bN26VenUmpiYCDOzfxpcvvrqK+h0OjzxxBNG9zNr1iy8884791Z9DbFkTzyy8gsBAEM6eKlcDRERUe1i8jgjaqjp44w89HE4Yq/mYOa/2uDZ+5uqXQ4REVGNUCXjjFBJZ5MzEXs1BwD7ihAREVUEw8g9euOnf06K59zASsVKiIiIaieGkXtQqDfg2KWik+I925O7Z4iIiCqCYeQe7IlJU66/8lALFSshIiKqvRhG7sHCXUWH847o6gMHW464SkREVBEMIxW082wKDiXcAAAeQUNERHQPGEYqaFF4HABgcAcvBLjbqVwNERFR7cUwUgHJGXk4mHAdAPB6/wCVqyEiIqrdGEYq4POd5wEArTzs4OvSQOVqiIiIajeGERPpDYLfjhWdFC/Q20HlaoiIiGo/hhETbTlxBZl5ReeheXtQG5WrISIiqv0YRky062wqgKJWER7OS0REdO8YRkyQnJGHXyKTAACjg31VroaIiKhuYBgxwX82n1auD27vpWIlREREdQfDSDnpDYJNx68AAMYG+8LGylzlioiIiOoGhpFy+mx7tHL9rUGtVayEiIiobmEYKQeRf1pF+rZsBK0FW0WIiIgqC8NIOaw6eBFxaTkAgLcGslWEiIioMjGMlMOm45eV6y14HhoiIqJKxTByF8cupmNf7DUAwOaX71e5GiIiorqHYeQuXlxxFADgbq9FWy8O/05ERFTZGEbu4HqODknpNwEAcx8PVLkaIiKiuolh5A4W/x2nXH+wlbuKlRAREdVdDCN38FV4LICiw3mJiIioajCMlOGmTq9cH9rFR8VKiIiI6jaGkTJsPJakXH+4rYeKlRAREdVtDCNlWB5xAQDg42wDMzONytUQERHVXQwjpdAbBKcuZwIApoa2UrkaIiKiuo1hpBS37qLp14ZH0RAREVUlhpFSzNlyFgDg2tAK1pY8KR4REVFVYhgpha7QAAC4v7mrypUQERHVfQwjt0nLzkfGzQIAwPRBbVSuhoiIqO5jGLnN/riik+L5N2qARnZalashIiKq+xhGbvN3dBoAoA1PikdERFQtGEZuISL4/eQVAMBDrdxUroaIiKh+YBi5RVxaDjLzCgHwkF4iIqLqwjByi99PXFGuN9BaqFgJERFR/cEwcotd564CAEJacxcNERFRdWEYuUVqVh4AwMPBWuVKiIiI6g+Gkf/JyC3Axes3AQATevurXA0REVH9wTDyPwfii8YXsbY0Q2MnW5WrISIiqj8YRv5n66lkAEADK3ZcJSIiqk4MI/9zKikTADCqu6/KlRAREdUvDCMAsvMLcS4lCwAwrEtjlashIiKqX+55n4Rer0dBQUFl1FImnU4HX19f6HQ65OXlVfr9H4m/Bm87c7g21MLFWlMlj0FERFTXWFpawtzc/J7vRyMiUpEVRQTJyclIT0+/5yLuxmAw4OLFi/Dx8YGZWeU35mTlFSDjZiFsrczh3MCq0u+fiIiornJ0dISHhwc0Gk2JeZmZmXBwcEBGRgbs7e3LvI8Kt4wUBxE3NzfY2tqWWkRl0ev1uHnzJvz8/Colgd3uwrUcaAv0cGmohWtDnqmXiIjobkQEubm5SE1NBQB4enpW+L4qFEb0er0SRFxcXCr84KY8HgBYW1tXSRgxsyiARvTQarWwtuaAZ0REROVhY2MDAEhNTYWbm1uFv6MrtM+juI+IrW3tH4+j0GBAXoEBAGBnbalyNURERLVLcRa4l/6j99QBoyp3zVSXmzo9BAJzjQbWlpXf6kJERFSXVUYWqPeH9ubqinYBofbnKiIiolqp3oeRnPxCAIA9d9HUSU8//TQeffTROy4THh4OjUZTLUeG1WZ9+vTBq6++Wmcfj4jUUy/DSEREBMzNzTFo0CAUGoqObG6gLdpFc6cvJj8/PyxYsMBo2q5duzBw4EC4uLjA1tYWbdq0wWuvvYakpKQyH9/Pzw8ajQYajQa2trYIDAzEt99+W2I5vV6PTz/9FIGBgbC2toaTkxMGDBiAvXv3llhWp9Nh3rx56NChA2xtbeHq6oqePXvi+++/v+N+PBHBN998g6CgIDRs2BCOjo7o0qULFixYgNzc3DLXqy0+++wzLF26VLldFV9w//73v2Fubo5169ZV6v2aqqzgVdPDVk2vrzZJTEzEoEGDYGtrCzc3N0yZMgWFhYVlLl+87Uu7HDp0CACQl5eHp59+GoGBgbCwsCgz3Ofn52P69Onw9fWFVquFn58fvvvuO6Nl0tPTMXHiRHh6ekKr1SIgIABbtmxR5r/zzjsl6mjVqpXRffTp06fEMhMmTDBa5tChQ3jooYfg6OgIJycnhIaG4tixY3d8HI1GgwYNGhjdz7p169CqVStYW1sjMDDQqFYASElJwdNPPw0vLy/Y2tri4Ycfxvnz542WSU5OxujRo+Hh4YEGDRqgU6dO+Pnnn42WGTJkCJo0aQJra2t4enpi9OjRuHz5cqnbOSYmBnZ2dnB0dCwxb8GCBWjZsiVsbGzg4+ODyZMnG42b9ddff2Hw4MHw8vKCRqPBr7/+WuI+srOz8dJLL6Fx48awsbFBmzZtsGjRolJrqUz1MowsWbIEkyZNwl9//YXEi5cAoEL9Rb7++muEhITAw8MDP//8M06fPo1FixYhIyMDH3/88R3XnT17Nq5cuYKTJ0/iqaeewrhx4/D7778r80UEI0aMwOzZs/HKK6/gzJkzCA8Ph4+PD/r06WP0JtLpdAgNDcUHH3yA8ePHY9++fTh48CAmTpyIzz//HKdOnSqzjtGjR+PVV1/FI488gl27diEqKgozZszAhg0b8Mcff5i8TW6tqSZwcHAo9Z+2suTm5mL16tWYOnVqiQ/e0tSU7aIGvV4Pg8GgdhmVrqa8pnq9HoMGDYJOp8O+ffuwbNkyLF26FDNnzixznR49euDKlStGl+effx5NmzZFly5dlPu1sbHByy+/jJCQkDLva9iwYdixYweWLFmCc+fOYdWqVWjZsqUyX6fToV+/fkhISMBPP/2Ec+fOYfHixfD29ja6n7Zt2xrVs2fPnhKPNW7cOKNl5s2bp8zLzs7Gww8/jCZNmuDAgQPYs2cP7OzsEBoaqvwwe/3110s87zZt2mDo0KHK/ezbtw8jR47Ec889h8jISDz66KN49NFHcfLkSQBFn9GPPvoo4uLisGHDBkRGRsLX1xchISHIyclR7mfMmDE4d+4cNm7ciBMnTuDxxx/HsGHDEBkZqSzTt29frF27FufOncPPP/+M2NhYPPHEEyWed0FBAUaOHIlevXqVmLdy5Uq8+eabmDVrFs6cOYMlS5ZgzZo1eOutt5RlcnJy0KFDByxcuLDM1zEsLAxbt27Fjz/+iDNnzuDVV1/FSy+9hI0bN5a5TqWQCrh586acPn1abt68WZHVTVZYWCiHDh2SwsLCe76vrKwsadiwoZw9e1aGDhsmk6a+Lccu3hC93iAiIrt27RIAcuPGjRLr+vr6yqeffioiIhcvXhQrKyt59dVXS32c0tYv7X6KOTs7y+TJk5Xbq1evFgCycePGEus//vjj4uLiItnZ2SIi8uGHH4qZmZkcPXq0xLI6nU5Z7nZr1qwRAPLrr7+WmGcwGCQ9PV1ERHr37i2vvPKK0fxHHnlExo4da/ScZs+eLaNHjxY7OzsZO3asBAcHy9SpU43WS01NFQsLC9m9e7eIiOTl5clrr70mXl5eYmtrK926dZNdu3aVWq+IyGuvvSaDBg1Sbn/66acCQH7//Xdlmr+/vyxevFhERMaOHSuPPPKIch2A0SU+Pl55zbdv3y6dO3cWGxsbCQ4OlrNnz5ZZR7GlS5dK9+7dJT09XWxtbSUxMdFofvHj/+c//xFPT0/x8/MTEZHExEQZOnSoODg4iJOTkwwZMkTi4+OV9Q4ePCghISHi4uIi9vb28sADD8iRI0fuWMutz/VWt7+nZ82aJR06dJDly5eLr6+v2Nvby/DhwyUzM1NZJzs7W0aPHi0NGjQQDw8PmT9/fon3wd1eu++//14cHBxkw4YN0rp1azE3Nzd6jiIi8fHxJV6T4vdV7969ZdKkSTJlyhRxcnISd3d3mTVrltH6N27ckOeee05cXV3Fzs5O+vbtK1FRUXfcThcvXpQRI0aIk5OT2NraSufOnWX//v1lbsNXXnlFevfurdzu3bu3TJw4UV555RVxcXGRPn36yMiRI2XYsGFG6+l0OnFxcZFly5aJiIher5c5c+aIn5+fWFtbS/v27WXdunV3rNUUW7ZsETMzM0lOTlamffXVV2Jvby/5+fnlug+dTieNGjWS2bNnlzq/rPfY77//Lg4ODnLt2rUy7/urr76SZs2aiU6nK3OZ4vfmnZT2eXSrQ4cOCQCj/8Xjx48LADl//nyp60RFRQkA+euvv5Rpw4YNM/qsEREJCgqSf//73yIicu7cOQEgJ0+eVObr9Xpp1KiR8vkjItKgQQNZvny50f04OzsbLXO7DRs2iEajKbGtpk6dKk899ZTyv3WriRMnyoMPPmg0LSwsTHr27FnqYwCQ9evXl5jetm3bEq9/p06dZPr06WXWe6dMkJGRIQAkIyOjzPVFRCqtZUREkKsrrLJLXmHp9y8mDiC7du1atGrVCi1btsTQEU/i1zUrAABmZqb1YF23bh10Oh2mTp1a6vzy/ho3GAz4+eefcePGDVhZ/TP668qVKxEQEIDBgweXWOe1117DtWvX8OeffwIAVqxYgZCQEHTs2LHEspaWliWaHoutWLECLVu2xCOPPFJinkajgYODQ7meQ7H58+ejQ4cOiIyMxIwZMzBq1CisXr3a6DVas2YNvLy8lGT/0ksvISIiAqtXr8bx48cxdOjQUps6i/Xu3Rt79uxRxp7ZvXs3XF1dER4eDgBISkpCbGws+vTpU2Ldzz77DMHBwUa/qnx8fJT506dPx8cff4zDhw/DwsICzz777F2f85IlS/DUU0/BwcEBAwYMMNolVGzHjh04d+4c/vzzT2zatAkFBQUIDQ2FnZ0d/v77b+zduxcNGzbEww8/rPzKzsrKwtixY7Fnzx7s378fLVq0wMCBA5GVlXXXmsojNjYWv/76KzZt2oRNmzZh9+7d+OCDD5T5U6ZMwe7du5UWsvDwcBw9etToPsrz2uXm5uLDDz/Et99+i1OnTsHNzc3oPnx8fJQm63PnzuHKlSv47LPPlPnLli1DgwYNcODAAcybNw+zZ89W3vcAMHToUKSmpuL333/HkSNH0KlTJzz00EO4fv16qc87OzsbvXv3RlJSEjZu3Ihjx45h6tSpJrfYLFu2DFZWVti7dy8WLVqEUaNG4bfffkN2drayzLZt25Cbm4vHHnsMADB37lwsX74cixYtwqlTpzB58mQ89dRT2L17d5mPM2HCBDRs2PCOl2IREREIDAyEu7u7Mi00NBSZmZl3bB291caNG3Ht2jU888wzJm2PjRs3okuXLpg3bx68vb0REBCA119/HTdv3jRaJjg4GBMnToS7uzvatWuHOXPmKP/Lxc6fPw8vLy80a9YMo0aNQmJiYonHW7FiBVxdXdGuXTtMmzbNaJdyy5Yt4eLigiVLlkCn0+HmzZtYsmQJWrduDT8/v1Lr//bbbxEQEGDU4hAREVGiJSg0NBQREREAinZLATAam8rMzAxardaoNadHjx5Ys2YNrl+/DoPBgNWrVyMvL6/UzygAuH79OlasWIEePXrA0vKfvow7d+7EunXrymzV6NGjB44cOYKDBw8CAOLi4rBlyxYMHDiw1OXL0qNHD2zcuBFJSUkQEezatQvR0dHo37+/SfdjsjtGlTJ8++238scff8jhw4fl9OnTkp2dLTn5BeL7xqZqv+TkF5hUe48ePWTBggUiIpKakSNOzi6y7OdNyvzytoy88MILYm9vX5HNJ76+vmJlZSUNGjQQCwsLASDOzs5Gqb1Vq1al/gIREbl+/boAkA8//FBERGxsbOTll182uY7WrVvLkCFD7rpceVtGHn30UaNliltBbv21ERwcLG+88YaIiFy4cEHMzc0lKSnJaL2HHnpIpk2bVmotN27cEDMzMzl06JAYDAZxdnaWuXPnSlBQkIiI/Pjjj+Lt7a0sf/svudKey60tI8U2b94sAO7Y+hcdHS2WlpZy9epVERFZv369NG3aVAwGg9Hju7u7G/0y/eGHH6Rly5ZGy+Xn54uNjY1s27at1MfS6/ViZ2cnv/32W5n1mNIyYmtra9QSMmXKFGUbZmVliZWVlaxdu1aZf+3aNbGxsVG2XXleu++//14A3LWloqz/ud69e8v9999vNK1r167K++fvv/8We3t7ycvLM1rG399fvv7661If6+uvvxY7O7syf8GXt2WkY8eORssUFBSIq6ur0S/gkSNHyvDhw0WkqBXJ1tZW9u3bZ7Tec889JyNHjiy1FhGRlJQUOX/+/B0vxcaNGyf9+/c3Wj8nJ0cAyJYtW8p8jFsNGDBABgwYUOb8st5joaGhotVqZdCgQXLgwAHZvHmz+Pr6ytNPP60s07JlS9FqtfLss8/K4cOHZfXq1eLs7CzvvPOOssyWLVtk7dq1cuzYMdm6dasEBwdLkyZNjN6rX3/9tWzdulWOHz+u/L8/9thjRvWcOHFC/P39xczMTMzMzKRly5aSkJBQ6nO6efOmODk5KZ+nxSwtLWXlypVG0xYuXChubm4iUtSK1KRJExk6dKhcv35d8vPz5YMPPhAARq/DjRs3pH///gJALCwsxN7evtT/86lTp4qtra0AkO7du0taWpoyLy0tTXx8fJQW5dJaRkREPvvsM7G0tFS+VyZMmFDqcxYpu2UkLy9PxowZo9RrZWWltO6VRZWWkTVr1uDDDz+Eo6Mj/P39YWNjg+jo6Co/WV5lOHfuHA4ePIiRI0cWTdCYo//gx/DLqh9Mvi8Ruadjq6dMmYKoqCjs3LkTQUFB+PTTT9G8efMSj1HeWiqiouuVpXgfc7FGjRqhf//+WLGiqPUpPj4eERERGDVqFADgxIkT0Ov1CAgIMPqlt3v3bsTGxpb6GI6OjujQoQPCw8Nx4sQJWFlZYfz48YiMjER2djZ2796N3r17V6j+9u3bK9eLhzUuHua4NN999x1CQ0Ph6uoKABg4cCAyMjKwc+dOo+UCAwONWr2OHTumdEIrfs7Ozs7Iy8tTnndKSgrGjRuHFi1awMHBAfb29sjOzi71V2JF+Pn5wc7Ozuj5Fj/X2NhY6HQ6BAUFKfOdnZ2N9v+X97WzsrIy2q6mun3dW+s8duwYsrOz4eLiYlRDfHx8me+fqKgodOzYEc7OzhWuCQA6d+5sdNvCwgLDhg1T3us5OTnYsGGD8l6PiYlBbm4u+vXrZ1Tr8uXLy6wVANzc3NC8efM7XirLpUuXsG3bNjz33HMmr2swGKDRaLBixQp069YNAwcOxCeffIJly5YprSMGgwFubm745ptv0LlzZwwfPhzTp0836hw5YMAADB06FO3bt0doaCi2bNmC9PR0rF27Vllm/PjxCA0NRWBgIEaNGoXly5dj/fr1yna8efMmnnvuOfTs2RP79+/H3r170a5dOwwaNMiopabY+vXrlZZIU1haWuKXX35BdHQ0nJ2dYWtri127dmHAgAFG51CbMWMG0tPTsX37dhw+fBhhYWEYNmwYTpw4YXR/U6ZMQWRkJP744w+Ym5tjzJgxymf0uHHj8OSTT+KBBx4os57w8HDMmTMHX375JY4ePYpffvkFmzdvxnvvvWfS8/r888+xf/9+bNy4EUeOHMHHH3+MiRMnYvv27Sbdj6lMHg7+k08+wdChQ9GwYUNYW1vD19cXGRkZyMm4gdOzQ0ssHxcXD4PBgObN/ZVp586eg42tLZo08SmxfGn0ej2OHTuODh3alxhq1saEjqdLlixBYWEhvLy8lGkiAiutFhkZGcqHPgBkZGSU2NWSnp6u7LoICAhARkYGrly5UqHx+F1dXZUPk3Xr1iEwMBBdunRBmzZtlPs/c+ZMqesWTw8ICFD+nj171uQayruemZlZieBSWvgsbXfQqFGj8PLLL+Pzzz/HypUrERgYiMDAQABFTebm5uY4cuRIidf11ubn2/Xp0wfh4eHQarXo3bs3nJ2d0bp1a+zZswe7d+/Ga6+9dtfnVJpbm0SLg2ZZzfd6vR7Lli1DcnIyLCwsjKZ/9913eOihh5Rpt2+X7OxsdO7cWfniulWjRo0AAGPHjsW1a9fw2WefKUcnBAcH37GzpL29PS5cuFBienp6OszNzY3quPW5Fj9fU3ZVlPe1s7GxuafQfqc6s7Oz4enpqeyiu1VZu0mLh64uy72+13v37o3U1FT8+eefsLGxwcMPP6zUCgCbN28u0WFTqy37fFgTJkzAjz/+eMeai+/bw8NDaaIvlpKSosy7m++//x4uLi4YMmTIXZe9naenJ7y9vY127bZu3RoigkuXLqFFixbw9PQscYbX1q1bIzk5GTqdziiwF3N0dERAQABiYmLKfOzi0BwTEwN/f3+sXLkSCQkJiIiIUELBypUr4eTkhA0bNmDEiBFG63/77bf417/+ZbR7CyjaZsXbr1hKSorRtuzcuTOioqKQkZEBnU6HRo0aISgoSPlhFhsbiy+++AInT55E27ZtAQAdOnTA33//jYULFxoFMVdXV7i6uiIgIACtW7eGj48P9u/fj+DgYOzcuRMbN27E/PnzARR9bxkMBlhYWOCbb77Bs88+ixkzZmD06NF4/vnnART9CMrJycH48eMxffr0cp1k9ubNm3jrrbewfv16DBo0CEDRD4KoqCjMnz//jh2Y75VJLSM6nQ5HjhxBcHCwMk2j0cDe3h65ubmwtbIocTHobsLdxdFompuLI/T5pS9va2UBawszaM01RhdrC02py5b3g66wsBDLly/Hxx9/jKioKERFRWHN1r+wdtvf8PDwxKpVqwAALVq0gJmZGY4cOWK0flxcHDIyMpQA8MQTT8DKysqoF/etTDlM0cfHB8OHD8e0adOUaSNGjMD58+fx22+/lVj+448/houLC/r16wcAePLJJ7F9+3aj3tnFCgoKjHp23+rJJ59EdHQ0NmzYUGKeiCAjIwNA0RfklStXlHl6vV7pUX43jzzyCPLy8rB161asXLlS+aUIAB07doRer0dqamqJX3t3+vAs7jeyY8cOZb9rnz59sGrVKkRHR5e5LxYo+qV++z7qitiyZQuysrIQGRmpvJ+ioqKwatUq/PLLL3d8/Tt16oTz58+X+qu3+MN87969ePnllzFw4EC0bdsWWq0WaWlpd6ypZcuWOHXqlLIvu9jRo0fRtGnTEl/sZfH394elpSUOHDigTLtx4waio6OV2xV97UpT/CVk6uvSqVMnJQzeXkNxa9Xtij9Yy+pTcvt7HShqTSmPHj16wMfHB2vWrMGKFSswdOhQZZu3adMGWq0WiYmJJWq9td/S7WbPnm30/irtUiw4OBgnTpwwas37888/YW9vr/zIKYuI4Pvvv8eYMWPK/T65Vc+ePXH58mWjPjPR0dEwMzND48aNlWViYmKMQm90dDQ8PT1LDSJAUdCKjY294w++4m1QvExubi7MzMyMvhuKb98euOPj47Fr165SW4OCg4OxY8cOo2l//vmn0fdfMQcHBzRq1Ajnz5/H4cOHlX54xX1Zbg8C5ubmdwz/xfOK/5cjIiKMXvPZs2fDzs4OUVFRSp+k4ud9++MA5W8FLygoQEFBgcn1Voo77sS5TVJSkgCQffv2Ge0funjxopw+fbrUdQ4fPmy070ukaD9oZGTkHR/n0KFDJS73cjTN+vXrxcrKSjlCRETk7JUMOXbxhrwa9pp06dJFmT5+/Hjx8/OTDRs2SFxcnOzevVu6d+8u3bt3N9rPv3DhQtFoNPLss89KeHi4JCQkyJ49e2T8+PESFhZWZi2lHU1z6tQp0Wg0cujQIREpOprlscceEycnJ/n2228lPj5ejh07JuPHjxcLCwujfX15eXnSq1cvcXJyki+++EKioqIkNjZW1qxZI506dSpzWxsMBhk+fLjY2NjI+++/L4cOHZKEhAT57bff5MEHH1QeY9GiRWJrayubNm2SM2fOyLhx48Te3r5En5Hbn1OxUaNGSYcOHUSj0ciFCxdKzPPz85Off/5Z4uLi5MCBAzJnzhzZtGlTqfclUtRnxszMTMzNzeXMmTMiUvT6mpubi6enp9Gyt+/jHjdunHTt2lXi4+Pl6tWrotfrS+2zEBkZqRxtU5pHHnlE6Q9wK71eLx4eHvLFF1+U+vgiRfvxW7RoIX369JG//vpL4uLiZNeuXTJp0iS5ePGiiIh07NhR+vXrJ6dPn5b9+/dLr169xMbGpsxtLFK0b9rNzU2GDRsmhw8flvPnz8uSJUvEzs5OvvrqK2W50o5Y+PTTT8XX11e5PWHCBPH19ZUdO3bIiRMnZMiQIdKwYUOj/jZ3e+3K2q99u0uXLolGo5GlS5dKamqqZGVlicjd+yoZDAa5//77pUOHDrJt2zaJj4+XvXv3yltvvaX8H90uPz9fAgICpFevXrJnzx6JjY2Vn376SenLsXXrVtFoNLJs2TKJjo6WmTNnir29fYk+I2UdzTF9+nRp06aNWFhYyN9//11inouLiyxdulRiYmLkyJEj8t///leWLl16121UHoWFhdKuXTvp37+/REVFydatW6VRo0ZG/a8OHDggLVu2lEuXLhmtu337dgGg/D/d7tSpUxIZGSmDBw+WPn36SGRkpNHnSlZWljRu3FieeOIJOXXqlOzevVtatGghzz//vLJMYmKi2NnZyUsvvSTnzp2TTZs2iZubm/znP/9RlnnttdckPDxceS1DQkLE1dVVUlNTRUQkJiZGZs+eLYcPH5b4+HjZsGGDNGvWTB544AHlPs6cOSNarVZeeOEFOX36tJw8eVKeeuopcXBwkMuXLxs9r7ffflu8vLxK/W7Zu3evWFhYyPz58+XMmTMya9YssbS0lBMnTijLrF27Vnbt2iWxsbHy66+/iq+vrzz++OPKfJ1OJ82bN5devXrJgQMHJCYmRubPny8ajUY2b94sIiL79++Xzz//XCIjIyUhIUF27NghPXr0EH9//xL9oYqV9r81a9YssbOzk1WrVklcXJz88ccf4u/vb3SUV1ZWlvLaAZBPPvlEIiMjjT6Xe/fuLW3btpVdu3ZJXFycfP/992JtbS1ffvllqbWIVE6fkRoZRvR6vRQWFiqX/Pz8ew4j//rXv2TgwIFG09Ky8uRqVp7s379fAMixY8dEpGjDzpo1S1q1aiU2NjbStGlTGT9+vNJR8VZ//vmnhIaGipOTk1hbW0urVq3k9ddfL/Gmv1VZX9yhoaFGnccKCgrko48+krZt24qVlZXY29tLaGio7Nmzp8S6eXl5MnfuXAkMDBRra2txdnaWnj17ytKlS6WgoOxOvnq9Xr766ivp2rWr2Nrair29vXTu3Fk+++wzyc3NFZGif6gXXnhBnJ2dxc3NTebOnVtqB9ayvii3bNkiAIw+MIrpdDqZOXOm+Pn5iaWlpXh6espjjz0mx48fL7NmEZEOHTqIh4eHcvvatWui0WhkxIgRRsvdHgbOnTsn3bt3FxsbmxKH9pY3jCQnJ4uFhYVRB89bvfDCC0oHx7I6/F25ckXGjBkjrq6uotVqpVmzZjJu3DjlH/bo0aPSpUsXsba2lhYtWsi6devuuI1vfX6PPfaYeHl5SYMGDaRDhw6yePFioxBdnjCSlZUlTz31lNja2oq7u7vMmzevxJfw3V678oYREZHZs2eLh4eHaDQao0N779ZxOjMzUyZNmiReXl5iaWkpPj4+MmrUqBKHWN8qISFB/u///k/s7e3F1tZWunTpIgcOHFDmz5w5U9zd3cXBwUEmT54sL730UrnDyOnTpwWA+Pr6Gm1zkaLwtGDBAmnZsqVYWlpKo0aNJDQ0VOmUWBkSEhJkwIABYmNjI66urvLaa68Z/f8Xv9dvf1+PHDlSevToUeb9+vr6ljgE+/bfsmfOnJGQkBCxsbGRxo0bS1hYmPIZUmzfvn0SFBSkvOfff/99o8/14cOHi6enp1hZWYm3t7cMHz5cYmJilPmJiYnywAMPiLOzs2i1WmnevLlMmTKlxBfdH3/8IT179lQOnX/wwQclIiLCaBm9Xi+NGzeWt956q8znvXbtWgkICBArKytp27atEiCKffbZZ9K4cWOxtLSUJk2ayNtvv13iMOro6Gh5/PHHxc3NTWxtbaV9+/ZGHZ2PHz8uffv2VZ6Tn5+fTJgwoURgvFVp/1sFBQXyzjvviL+/v1hbW4uPj4+8+OKLRp9rxa//7Zdb/6euXLkiTz/9tHh5eYm1tbW0bNlSPv744xLv51tVRhjRiJS/F6NOp4OtrS1+/fVX+Pv7o2nTprC2tkZ8fDz0en2pnamOHz8Od3d3o/1xSUlJSE9PV/ah3Y1er0dkZCQ6duxY4dMTExERUeXLy8tDfHy8kglulZmZCQcHB2RkZCh9MktjUp8RKysrdO7cGfv371emiQgyMzPLHMuiQYMGyMzMLFHcnTooEhERUf1h8qG9YWFhWLt2LbKzs5GXl4fExEQYDAalw1h8fDwuXbqkLO/u7o7MzEwkJyfj5s2buHz5MnJzc0sMfkRERET1k8mH9g4fPhxZWVlIT09HbGwsbG1t0aJFC6UH9u2HHjZs2BBNmzbF5cuXkZSUBGtrazRv3vyuh9gRERFR/WByGAGAp556qsz9Q7cOjFTM2dn5ngcZIiIiorqpXp61l4iIiGqOewojdfF04ERERFR+lZEFKrSbxsrKCmZmZrh8+TIaNWoEKyurexry+W6KR2bMy8vjob1EREQ1gIhAp9Ph6tWrMDMzK3Mk3fKoUBgxMzND06ZNceXKFVy+fLnCD15eBoMBaWlpSEhIKNf4+kRERFQ9bG1t0aRJk3v6fq5QGAGKWkeaNGmCwsLCSjnXx51kZ2dj0KBBOHz4MMcnISIiqiHMzc1hYVH+88SVpcJhBCg6SZ6lpWWFTqxkCp1OhwsXLsDKyqrE0TtERERUu3GfBxEREamKYYSIiIhUxTBCREREqrqnPiPVpfjEwrefcI+IiIhqruLv7eLv8bLUijCSlZUFAPDx8VG5EiIiIjJVVlYWHBwcypyvkbvFlRrAYDDg8uXLsLOzq9TB1TIzM+Hj44OLFy/C3t6+0u6XjHE7Vx9u6+rB7Vw9uJ2rR1VuZxFBVlYWvLy87jgOSa1oGTEzM0Pjxo2r7P7t7e35Rq8G3M7Vh9u6enA7Vw9u5+pRVdv5Ti0ixdiBlYiIiFTFMEJERESqqtdhRKvVYtasWdBqtWqXUqdxO1cfbuvqwe1cPbidq0dN2M61ogMrERER1V31umWEiIiI1McwQkRERKpiGCEiIiJVMYwQERGRqup8GFm4cCH8/PxgbW2NoKAgHDx48I7Lr1u3Dq1atYK1tTUCAwOxZcuWaqq0djNlOy9evBi9evWCk5MTnJycEBISctfXhf5h6nu62OrVq6HRaPDoo49WbYF1hKnbOT09HRMnToSnpye0Wi0CAgL4+VEOpm7nBQsWoGXLlrCxsYGPjw8mT56MvLy8aqq2dvrrr78wePBgeHl5QaPR4Ndff73rOuHh4ejUqRO0Wi2aN2+OpUuXVm2RUoetXr1arKys5LvvvpNTp07JuHHjxNHRUVJSUkpdfu/evWJubi7z5s2T06dPy9tvvy2WlpZy4sSJaq68djF1Oz/55JOycOFCiYyMlDNnzsjTTz8tDg4OcunSpWquvPYxdVsXi4+PF29vb+nVq5c88sgj1VNsLWbqds7Pz5cuXbrIwIEDZc+ePRIfHy/h4eESFRVVzZXXLqZu5xUrVohWq5UVK1ZIfHy8bNu2TTw9PWXy5MnVXHntsmXLFpk+fbr88ssvAkDWr19/x+Xj4uLE1tZWwsLC5PTp0/L555+Lubm5bN26tcpqrNNhpFu3bjJx4kTltl6vFy8vL5k7d26pyw8bNkwGDRpkNC0oKEj+/e9/V2mdtZ2p2/l2hYWFYmdnJ8uWLauqEuuMimzrwsJC6dGjh3z77bcyduxYhpFyMHU7f/XVV9KsWTPR6XTVVWKdYOp2njhxojz44ING08LCwqRnz55VWmddUp4wMnXqVGnbtq3RtOHDh0toaGiV1VVnd9PodDocOXIEISEhyjQzMzOEhIQgIiKi1HUiIiKMlgeA0NDQMpenim3n2+Xm5qKgoADOzs5VVWadUNFtPXv2bLi5ueG5556rjjJrvYps540bNyI4OBgTJ06Eu7s72rVrhzlz5kCv11dX2bVORbZzjx49cOTIEWVXTlxcHLZs2YKBAwdWS831hRrfhbXiRHkVkZaWBr1eD3d3d6Pp7u7uOHv2bKnrJCcnl7p8cnJyldVZ21VkO9/ujTfegJeXV4k3PxmryLbes2cPlixZgqioqGqosG6oyHaOi4vDzp07MWrUKGzZsgUxMTF48cUXUVBQgFmzZlVH2bVORbbzk08+ibS0NNx///0QERQWFmLChAl46623qqPkeqOs78LMzEzcvHkTNjY2lf6YdbZlhGqHDz74AKtXr8b69ethbW2tdjl1SlZWFkaPHo3FixfD1dVV7XLqNIPBADc3N3zzzTfo3Lkzhg8fjunTp2PRokVql1anhIeHY86cOfjyyy9x9OhR/PLLL9i8eTPee+89tUuje1RnW0ZcXV1hbm6OlJQUo+kpKSnw8PAodR0PDw+TlqeKbedi8+fPxwcffIDt27ejffv2VVlmnWDqto6NjUVCQgIGDx6sTDMYDAAACwsLnDt3Dv7+/lVbdC1Ukfe0p6cnLC0tYW5urkxr3bo1kpOTodPpYGVlVaU110YV2c4zZszA6NGj8fzzzwMAAgMDkZOTg/Hjx2P69OkwM+Pv68pQ1nehvb19lbSKAHW4ZcTKygqdO3fGjh07lGkGgwE7duxAcHBwqesEBwcbLQ8Af/75Z5nLU8W2MwDMmzcP7733HrZu3YouXbpUR6m1nqnbulWrVjhx4gSioqKUy5AhQ9C3b19ERUXBx8enOsuvNSrynu7ZsydiYmKUsAcA0dHR8PT0ZBApQ0W2c25ubonAURwAhadZqzSqfBdWWdfYGmD16tWi1Wpl6dKlcvr0aRk/frw4OjpKcnKyiIiMHj1a3nzzTWX5vXv3ioWFhcyfP1/OnDkjs2bN4qG95WDqdv7ggw/EyspKfvrpJ7ly5YpyycrKUusp1Bqmbuvb8Wia8jF1OycmJoqdnZ289NJLcu7cOdm0aZO4ubnJf/7zH7WeQq1g6naeNWuW2NnZyapVqyQuLk7++OMP8ff3l2HDhqn1FGqFrKwsiYyMlMjISAEgn3zyiURGRsqFCxdEROTNN9+U0aNHK8sXH9o7ZcoUOXPmjCxcuJCH9t6rzz//XJo0aSJWVlbSrVs32b9/vzKvd+/eMnbsWKPl165dKwEBAWJlZSVt27aVzZs3V3PFtZMp29nX11cAlLjMmjWr+guvhUx9T9+KYaT8TN3O+/btk6CgINFqtdKsWTN5//33pbCwsJqrrn1M2c4FBQXyzjvviL+/v1hbW4uPj4+8+OKLcuPGjeovvBbZtWtXqZ+5xdt27Nix0rt37xLr3HfffWJlZSXNmjWT77//vkpr1IiwbYuIiIjUU2f7jBAREVHtwDBCREREqmIYISIiIlUxjBAREZGqGEaIiIhIVQwjREREpCqGESIiIlIVwwgRERGpimGEiIiIVMUwQkRERKpiGCEiIiJVMYwQERGRqv4fmQ44ZwV8oLgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", "output_type": "stream", "text": [ - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n" + "Logistic: f1=0.000 auc=0.202\n" ] }, { - "name": "stderr", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABBGUlEQVR4nO3dfVxUZf7/8feA3GgKaiooUqh5k3mDtyy6pRll2Vr23S0r17usttQ2ZbvxHtISrVTa1CyzdHcrbc3M0tWMstJsLRV/ZmaWmregZoJBgsD5/cE6is4gM5yZYc68no/HPHTOXOeczxxh5u11rnMum2EYhgAAACwiyNcFAAAAmIlwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALKWarwvwtpKSEh0+fFi1atWSzWbzdTkAAKACDMPQqVOn1KhRIwUFld83E3Dh5vDhw4qNjfV1GQAAwA0HDhxQ48aNy20TcOGmVq1akkoPTkREhI+rAQAAFZGbm6vY2Fj793h5Ai7cnD0VFRERQbgBAMDPVGRICQOKAQCApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApfg03Hz22Wfq27evGjVqJJvNpuXLl19ynXXr1qljx44KCwvTVVddpYULF3q8TgAA4D98Gm7y8vLUvn17zZkzp0Lt9+7dq1tvvVXXX3+9MjMzNWrUKN1///1as2aNhyutoJxD0t7PSv8EAAA+4dOJM2+55RbdcsstFW4/b948NWnSRDNmzJAkXX311Vq/fr1mzZql3r17e6rMivnqNWnV3ySjRIYtSIW3zFJx/J/LNAmy2RQeEmx/nl9Y5HRzlWn7W2GxDBkO29pkU/VQ99qePlOsEsNxW0mqEVrN522rhwTbJ1UrKCpWcYk5bcOrBSsoqLRtYVGJikpKTGkbVi1YwW60PVNcojPFztuGBgepWnCQy22LiktUWE7bkOAghbjRtrjEUEFRsdO21YKCFFrN9bYlJYZOm9Q2OMimsGqlP++GYei3M+a09dbvPZ8RFWvLZ0Qpb3xG+JJfzQq+ceNGJSUllVnWu3dvjRo1yuk6BQUFKigosD/Pzc01v7CcQ/ZgI0k2o0TBK0erx7IgZelye7PrW9bX60O72p93mvKR0w/FhCZ1teQvifbnv5/+iU7kFTps265xpFaM/L39edLMT3Xo5G8O2zZvUFNrk3vYn982e712H/3VYduY2tW1YUwv+/O7Xt6o/3cwx2HbupeFasvEG+3PB7+2Sf/de8Jh2+ohwdo55Wb784f/tVmf7DrmsK0k7Zt2q/3vyW9natX2LKdtv53c2/5BN27ZN3pny0GnbTdPSNLlNcMkSU9/sFP//PInp20/f+J6xdatIUl6/sNdeuWzPU7bfjj6OrWIqiVJmvPJD3ohY7fTtu+N6K72sbUlSa9v2Ku0/3zntO1bD/xOic1Kf57e2rRfk97b4bTta0M6q1erKEnS8q2H9PjS/+e07Zx7O+rWdg0lSWt2ZGvEm1uctn3uT+10Z+dYSdJnu4/pvoVfO207+fZrNCgxTpK0ae8J3TP/S6dtx97SSn/p0UyS9M2hHN0+Z4PTto/e0Fyjb2whSfrh2K+6adZnTts+eF1TjetztSTp0MnfdO2znzhtO/B3V2pKvzaSpBN5her09EdO2/6xY2PNuKu9JOm3M8VqPcl573GfttGaO6CT/Xl5bfmMKMVnxDn+/BnhS76PVy7IyspSVFRUmWVRUVHKzc3Vb785/kVNS0tTZGSk/REb64GDfuJHe7A5q5qtRHFB2ebvCwAAlMtmGOX033mRzWbTu+++q379+jlt06JFCw0dOlRjx461L1u1apVuvfVW5efnq3r16het46jnJjY2Vjk5OYqIiDCn+JxDUnqbMgHHsAXr9IitMiJi7MvocvZ8W7qcS3FayvW2nJYqxWeEe235jCjlydNSubm5ioyMrND3t1+dloqOjlZ2dtnekOzsbEVERDgMNpIUFhamsLAwzxYWGSN1Hy2tLx0LJFuwbH3TVb3eleWudv4v5KW40vb8Dxsz257/4egPbc9++ZjdNrRakEIr2OnpqbaufIC40rbaeR9iZrYNDrJV+GfYlbZBHmprs3mmreS533s+I1xvy2eE621d+b33papf4XkSExOVkZFRZtnatWuVmJjoZA0vavm/gdE1o6RR26WOg3xbDwAAAcqn4ebXX39VZmamMjMzJZVe6p2Zman9+/dLksaOHatBg86FhIceekh79uzRE088oe+++05z587V22+/rdGjR/uifMdCqpf25AAAAJ/wabj5+uuv1aFDB3Xo0EGSlJycrA4dOmjSpEmSpCNHjtiDjiQ1adJEK1eu1Nq1a9W+fXvNmDFDr776qu8vAwcAAFVGlRlQ7C2uDEhyyYGvpAVJUp046dFt5m0XAAC49P3tV2NuAAAALoVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALMXn4WbOnDmKi4tTeHi4EhIStGnTpnLbp6enq2XLlqpevbpiY2M1evRonT592kvVAgCAqs6n4WbJkiVKTk5WSkqKtmzZovbt26t37946evSow/ZvvvmmxowZo5SUFO3cuVMLFizQkiVLNG7cOC9XDgAAqiqfhpuZM2fqgQce0NChQ9W6dWvNmzdPNWrU0Guvveaw/RdffKHu3bvr3nvvVVxcnG666Sbdc8895fb2FBQUKDc3t8wDAABYl8/CTWFhoTZv3qykpKRzxQQFKSkpSRs3bnS4Trdu3bR582Z7mNmzZ49WrVqlPn36ON1PWlqaIiMj7Y/Y2Fhz3wgAAKhSqvlqx8ePH1dxcbGioqLKLI+KitJ3333ncJ17771Xx48f1+9//3sZhqGioiI99NBD5Z6WGjt2rJKTk+3Pc3NzCTgAAFiYzwcUu2LdunWaOnWq5s6dqy1btmjZsmVauXKlpkyZ4nSdsLAwRURElHkAAADr8lnPTb169RQcHKzs7Owyy7OzsxUdHe1wnYkTJ2rgwIG6//77JUlt27ZVXl6eHnzwQY0fP15BQX6V1QAAgAf4LA2EhoaqU6dOysjIsC8rKSlRRkaGEhMTHa6Tn59/UYAJDg6WJBmG4bliAQCA3/BZz40kJScna/DgwercubO6du2q9PR05eXlaejQoZKkQYMGKSYmRmlpaZKkvn37aubMmerQoYMSEhL0ww8/aOLEierbt6895Pjcmd+knENSZIyvKwEAICD5NNz0799fx44d06RJk5SVlaX4+HitXr3aPsh4//79ZXpqJkyYIJvNpgkTJujQoUOqX7+++vbtq2eeecZXb+GcXf8p/fPXbCm9jdT3BanjIN/WBABAALIZAXY+Jzc3V5GRkcrJyTFvcHHOodJAY5ScW2YLlkZtpwcHAAATuPL9zQhcM5z4sWywkSSjWDqxxzf1AAAQwAg3ZqjbTLJdcChtwVLdpr6pBwCAAEa4MUNkjNR9dNllfdM5JQUAgA8QbszS8payzxlMDACATxBuPMLm6wIAAAhYhBtPuHD8DQAA8Bq+hQEAgKUQbsxy9iZ+Uull4Fv+4btaAAAIYIQbM+QckjbMKrvs/VGlywEAgFcRbszATfwAAKgyCDdm4CZ+AABUGYQbM3ATPwAAqgzCjVnOv4lfyGXcxA8AAB8h3HhCULCvKwAAIGARbjyhpJgrpQAA8BHCjSecyZPS23CvGwAAfIBwY5a8Y2WfGyXc6wYAAB8g3JjFUYjhXjcAAHgd4cYsji775l43AAB4HeHGLAe/vmCBjXvdAADgA4QbMziaW8pmk5rd4Jt6AAAIYIQbMzicW6qE8TYAAPgA4cYMzC0FAECVQbgxA3NLAQBQZRBuAACApRBuzOBoQDE38AMAwCcIN2ZwOKCYG/gBAOALhBszOBxQHMSAYgAAfIBwYwZHA4oNQ/oxwzf1AAAQwAg3Zmnc+YIFBuNuAADwAcKNWZg4EwCAKoFwYxYmzgQAoEog3Jjlsvpln9uCuZEfAAA+UM3XBVjWqO0EGwAAfICeG0/J2u7rCgAACEiEG7N8+mzZ52/1l169yTe1AAAQwAg3Zji4WfrhQwfL/yvtWu39egAACGCEGzPs3+j8tR/Weq8OAABAuDHFFYnOX7vqRu/VAQAACDemaNxJatLDwfIEqeXN3q8HAIAARrgxy++Gl31++1zpfgfjcAAAgEcRbkxjlH363ghpyz98UwoAAAGMcGOW/J8vWGBIK/7KxJkAAHgZ4cYsx753sNCQDmzyeikAAAQywo1ZCnIdL88/4d06AAAIcIQbs4TVcry8Rl3v1gEAQIAj3JilXvOLl9lsUmxX79cCAEAAI9yYpcblFy9rdw8zgwMA4GWEG7NcdLWUpP+3hKulAADwMsKNWXKPXLzMKJZO7PF+LQAABDDCjVmqhTleHlLDu3UAABDgCDdmKSpwvPxMvnfrAAAgwBFuzELPDQAAVQLhxiy/HnW8/OR+79YBAECAI9yYxubrAgAAgAg35rmsvuPlta/wbh0AAAQ4n4ebOXPmKC4uTuHh4UpISNCmTeVPNHny5EmNGDFCDRs2VFhYmFq0aKFVq1Z5qdpyFP/meDkDigEA8CqfhpslS5YoOTlZKSkp2rJli9q3b6/evXvr6FHH41cKCwt14403at++fVq6dKl27dql+fPnKyamCtwF+MQ+x8sPb/FqGQAABDqbYRiGr3aekJCgLl26aPbs2ZKkkpISxcbG6pFHHtGYMWMuaj9v3jw999xz+u677xQSElKhfRQUFKig4Nxl2rm5uYqNjVVOTo4iIiLMeSM5h6RZ10hydCiDpNHfMA0DAACVkJubq8jIyAp9f/us56awsFCbN29WUlLSuWKCgpSUlKSNGzc6XGfFihVKTEzUiBEjFBUVpTZt2mjq1KkqLi52up+0tDRFRkbaH7Gxsaa/F534UY6DjSSVcJdiAAC8yGfh5vjx4youLlZUVFSZ5VFRUcrKynK4zp49e7R06VIVFxdr1apVmjhxombMmKGnn37a6X7Gjh2rnJwc++PAgQOmvg9JUt1mcn61VJBUt6n5+wQAAA5V83UBrigpKVGDBg30yiuvKDg4WJ06ddKhQ4f03HPPKSUlxeE6YWFhCgtzcoM9s0TGSG3vlLa/ffFr0e04JQUAgBf5LNzUq1dPwcHBys7OLrM8Oztb0dHRDtdp2LChQkJCFBwcbF929dVXKysrS4WFhQoNDfVozeWq28Tx8qxM6eBmqXEnr5YDAECg8tlpqdDQUHXq1EkZGRn2ZSUlJcrIyFBiYqLDdbp3764ffvhBJSUl9mXff/+9GjZs6NtgI0mXNXD+2vdrvFcHAAABzqeXgicnJ2v+/PlatGiRdu7cqYcfflh5eXkaOnSoJGnQoEEaO3asvf3DDz+sEydO6NFHH9X333+vlStXaurUqRoxYoSv3sI5Neo6fy3Yw6fFAACAnU/H3PTv31/Hjh3TpEmTlJWVpfj4eK1evdo+yHj//v0KCjqXv2JjY7VmzRqNHj1a7dq1U0xMjB599FE9+eSTvnoL5+SfcP5a9dpeKwMAgEDn0/vc+IIr18m75D9PSv+d5/i1PjOlrsPM2xcAAAHGle9vt3puiouLtXDhQmVkZOjo0aNlxsBI0scff+zOZgEAACrNrXDz6KOPauHChbr11lvVpk0b2WzMiK3ql/u6AgAAIDfDzeLFi/X222+rT58+Ztfjv4oLfV0BAMBFxcXFOnPmjK/LwP+EhoaWGWvrLrfCTWhoqK666qpK79xSgsu5FL28K6kAAF5nGIaysrJ08uRJX5eC8wQFBalJkyaVvr2LW+Hmb3/7m1544QXNnj2bU1Jn5R93/lpsV+/VAQC4pLPBpkGDBqpRowbfZVVASUmJDh8+rCNHjuiKK66o1L+JW+Fm/fr1+uSTT/Sf//xH11xzzUUzdC9btsztgvwXvxgA4A+Ki4vtwebyyxkvWZXUr19fhw8fVlFR0UXZwhVuhZvatWvrjjvucHunllTeqacDm6RIjhcAVAVnx9jUqFHDx5XgQmdPRxUXF3s/3Lz++utu79CyGFAMAH6FU1FVj1n/JpW6Q/GxY8e0a9cuSVLLli1Vv359U4ryS8HlJEzG3AAA4DVuXW+Vl5en++67Tw0bNtR1112n6667To0aNdKwYcOUn59vdo3+wVnPTb2rpcgY79YCAIAH9OzZU6NGjXL6+pAhQ9SvXz+n7ePi4pSenu6x+s5yK9wkJyfr008/1fvvv6+TJ0/q5MmTeu+99/Tpp5/qb3/7m9k1+gdns4If3ykd3OzdWgAAljRkyBDZbDZNmzatzPLly5dX+pROcXGxpk2bplatWql69eqqW7euEhIS9Oqrr1Z4Gy+88IIWLlxYqTrM4NZpqXfeeUdLly5Vz5497cv69Omj6tWr66677tJLL71kVn3+o3od569tXyo17uS9WgAAlhUeHq7p06frL3/5i+rUKee7x0VPPfWUXn75Zc2ePVudO3dWbm6uvv76a/3yyy8V3kZkZKRp9VSGWz03+fn59pm7z9egQYPAPS1VHltAzU0KAPCgpKQkRUdHKy0trdx277zzjq655hqFhYUpLi5OM2bMKLf9ihUrNHz4cN15551q0qSJ2rdvr2HDhumxxx5zus7KlSsVGRmpN954Q9LFp6V8xa1wk5iYqJSUFJ0+fdq+7LffftNTTz2lxMRE04rzL+UEmDZ3eq8MAIDb8guLnD5Onyk2va07goODNXXqVL344os6ePCgwzabN2/WXXfdpbvvvlvbt29XamqqJk6cWO4po+joaH388cc6duxYhep48803dc899+iNN97QgAED3HkrHuPWaakXXnhBvXv3VuPGjdW+fXtJ0rZt2xQeHq41a9aYWqAl1Ir2dQUAgApoPcn5d9j1Levr9aHnrn7tNOUj/XZBiDkroUldLfnLuf/s/376JzqRd/GFJ/um3epWnXfccYfi4+OVkpKiBQsWXPT6zJkzdcMNN2jixImSpBYtWujbb7/Vc889pyFDhjjc5syZM/WnP/1J0dHRuuaaa9StWzfdfvvtuuWWWy5qO2fOHI0fP17vv/++evTo4dZ78CS3em7atGmj3bt3Ky0tTfHx8YqPj9e0adO0e/duXXPNNWbX6B+Mcnpudq32Xh0AgIAwffp0LVq0SDt37rzotZ07d6p79+5llnXv3l27d+9WcbHjQNa6dWt98803+vLLL3Xffffp6NGj6tu3r+6///4y7ZYuXarRo0dr7dq1VTLYSJW4z02NGjX0wAMPmFmLnysn3ORle68MAIDbvp3c2+lrQRdcjbR5YlKF265/8vrKFebAddddp969e2vs2LFOe2NcFRQUpC5duqhLly4aNWqU/vWvf2ngwIEaP368mjRpIknq0KGDtmzZotdee02dO3eukjdDrHC4WbFihW655RaFhIRoxYoV5ba97bbbKl2Y3zFKnL/W3PkvCwCg6qgRWvH/83uqrSumTZum+Ph4tWzZsszyq6++Whs2bCizbMOGDWrRooWCg4MrvP3WrVtLKr2/3VnNmjXTjBkz1LNnTwUHB2v27NmVeAeeUeGj3a9fP2VlZalBgwbljoS22WxOu7wsrbzTUrWipZxD0okfpbrNuKkfAMAUbdu21YABA/T3v/+9zPK//e1v6tKli6ZMmaL+/ftr48aNmj17tubOnet0W3/605/UvXt3devWTdHR0dq7d6/Gjh2rFi1aqFWrVmXatmjRQp988ol69uypatWqeeXGfK6o8JibkpISNWjQwP53Z4+ADDaSyj0t9VGqNKu1tKivNOsaacs/vFYVAMDaJk+erJKSsmcPOnbsqLfffluLFy9WmzZtNGnSJE2ePLnc01e9e/fW+++/r759+6pFixYaPHiwWrVqpQ8//FDVql3cF9KyZUt9/PHHeuutt6rcDXxthlFel0PFnTx5UrVr1zZjUx6Vm5uryMhI5eTkKCIiwrwNb14kvf/XCja2SaN30IMDAD5w+vRp7d27V02aNFF4eLivy8F5yvu3ceX7262rpaZPn64lS5bYn995552qW7euYmJitG3bNnc2aQGuZERD+u8rHqsEAIBA5la4mTdvnmJjYyVJa9eu1UcffaTVq1frlltu0eOPP25qgX6jvAHFjnyRLr16k0dKAQAgkLk1fDsrK8sebj744APddddduummmxQXF6eEhARTC/Qb7pzdO/jf0nvgtLzZ/HoAAAhQbvXc1KlTRwcOHJAkrV69WklJpdf6G4YRuAOKM990b73PZppbBwAAAc6tnpv/+7//07333qvmzZvr559/tt+aeevWrbrqqqtMLdAvHNwsHfravXVPHTa3FgAAApxb4WbWrFmKi4vTgQMH9Oyzz6pmzZqSpCNHjmj48OGmFugX9m90f90IrpgCAMBMboWbkJAQh1Ogjx49utIF+aUrKjETevHFE6kBAAD3Mf2CGRp3kq7oJu3/wvV1cxxPVw8AANzD9Atm6TLMvXBTLdT8WgAACGBMv+BruQeldx/2dRUAACguLq5S80QtXLiwSsxW4Nal4DDZtjdLr7gCAKAcQ4YMKffsSWV99dVXevDBByvU1lEQ6t+/v77//nsPVOYat8LNX//614tmIJWk2bNna9SoUZWtyT9Vdoqu5fTeAAB8q379+qpRo4bb61evXt1+lseX3Ao377zzjrp3737R8m7dumnp0qWVLiogHd8l5RzydRUAAFflHJL2fubzz/BPP/1UXbt2VVhYmBo2bKgxY8aoqKjI/vqpU6c0YMAAXXbZZWrYsKFmzZqlnj17lumUOL83xjAMpaam6oorrlBYWJgaNWqkv/61dILonj176qefftLo0aNls9lks9kkOT4t9f7776tLly4KDw9XvXr1dMcdd3j0OEhuhpuff/5ZkZGRFy2PiIjQ8ePHK11UwHr9Fl9XAACByTCkwjzXH5vmS+ltpEV9S//cNN/1bVS251/SoUOH1KdPH3Xp0kXbtm3TSy+9pAULFujpp5+2t0lOTtaGDRu0YsUKrV27Vp9//rm2bNnidJvvvPOOZs2apZdfflm7d+/W8uXL1bZtW0nSsmXL1LhxY02ePFlHjhzRkSNHHG5j5cqVuuOOO9SnTx9t3bpVGRkZ6tq1a6Xf76W4dZ+bq666SqtXr9bIkSPLLP/Pf/6jpk2bmlJYQDr5U2nyj+TGfgDgVWfypamNKrcNo0Ra9VjpwxXjDkuhl1Vq13PnzlVsbKxmz54tm82mVq1a6fDhw3ryySc1adIk5eXladGiRXrzzTd1ww03SJJef/11NWrk/D3v379f0dHRSkpKUkhIiK644gp7MKlbt66Cg4NVq1YtRUdHO93GM888o7vvvltPPfWUfVn79u0r9V4rwq1wk5ycrJEjR+rYsWPq1auXJCkjI0MzZsyo1ChrqHQiza7DfF0FAMCP7Ny5U4mJifbTQ5LUvXt3/frrrzp48KB++eUXnTlzpkyvSWRkpFq2bOl0m3feeafS09PVtGlT3XzzzerTp4/69u2ratUqHh0yMzP1wAMPuPemKsGtcHPfffepoKBAzzzzjKZMmSKp9DzdSy+9pEGDBplaoKXUbiKd3Ft+m582EG4AwNtCapT2oLgi97A0p2tpj81ZtmBpxH+lCBd6gULcH8DrSbGxsdq1a5c++ugjrV27VsOHD9dzzz2nTz/9VCEhIRXaRvXq1T1cpWNuXwr+8MMP6+DBg8rOzlZubq727NlDsLmUbo9cus1J7lgMAF5ns5WeGnLlUa+51PeF0kAjlf7ZN710uSvbOa+3xV1XX321Nm7cKOO88TsbNmxQrVq11LhxYzVt2lQhISH66quv7K/n5ORc8rLt6tWrq2/fvvr73/+udevWaePGjdq+fbskKTQ09JL3tmvXrp0yMjIq8c7c41bPjSQVFRVp3bp1+vHHH3XvvfdKkg4fPqyIiAj7RJqB5bwBYbagsklekhQktby5dPbwbW96tTIAgId0HCQ1u0E6sUeq29QrYyZzcnKUmZlZZtmDDz6o9PR0PfLIIxo5cqR27dqllJQUJScnKygoSLVq1dLgwYP1+OOPq27dumrQoIFSUlIUFBRU5lTW+RYuXKji4mIlJCSoRo0a+te//qXq1avryiuvlFR6xuazzz7T3XffrbCwMNWrV++ibaSkpOiGG25Qs2bNdPfdd6uoqEirVq3Sk08+afpxOZ9bPTc//fST2rZtq9tvv10jRozQsWPHJEnTp093OKFmwOn7wgVJ3Cbd9kLpD/0dL0n3fyxFXuF43UP/LR13AwDwD5ExUpNrvXYxyLp169ShQ4cyjylTpmjVqlXatGmT2rdvr4ceekjDhg3ThAkT7OvNnDlTiYmJ+sMf/qCkpCR1795dV199tcLDwx3up3bt2po/f766d++udu3a6aOPPtL777+vyy+/XJI0efJk7du3T82aNVP9+vUdbqNnz57697//rRUrVig+Pl69evXSpk2bzD8oF7AZhuvXoPXr10+1atXSggULdPnll2vbtm1q2rSp1q1bpwceeEC7d+/2RK2myM3NVWRkpHJychQREWHehv/f29Ky/w2aSs0pverpwP/+AWO7XvxD/2wLKT/b+fYaJ0j3f2hefQAASdLp06e1d+9eNWnSxOkXeyDIy8tTTEyMZsyYoWHDqsZYz/L+bVz5/nbrtNTnn3+uL774QqGhZSd9jIuL06FD3IhOUmmYiSznRkX5l7gf0MH/9eC0vNncugAAAWnr1q367rvv1LVrV+Xk5Gjy5MmSpNtvv93HlZnPrdNSzibIPHjwoGrVqlXpogJDBSYYXTPh0m0AAKig559/Xu3bt1dSUpLy8vL0+eefOxwr4+/c6rm56aablJ6erldeeUWSZLPZ9OuvvyolJUV9+vQxtUDLql5f+u1Y+W1yDninFgCA5XXo0EGbNwfGJM1u9dw8//zz2rBhg1q3bq3Tp0/r3nvvtZ+Smj59utk1WtNNT126TSi9YAAAuMqtnpvY2Fht27ZNS5Ys0bZt2/Trr79q2LBhGjBggM9u2ONzro7L7jBAWpdWfu/Mb8ekv3eWej/N2BsAMJkb19PAw8z6N3E53Jw5c0atWrXSBx98oAEDBmjAgAGmFBKQRn8jvdpbOvil8zYndktv9Zcaxkt/+dRrpQGAVZ29u25+fn7g/oe8iiosLJQkBQcHV2o7LoebkJAQnT59ulI7xXnuXyOl1pF04U3/LnAkU1r1uNTnOW9UBQCWFRwcrNq1a+vo0aOSpBo1aji9kR28p6SkRMeOHVONGjVcmr/KEbfWHjFihKZPn65XX3210gVAUnht6fSJS7fb9IrUfRSzhgNAJZ2dyfpswEHVEBQUpCuuuKLSYdOtZPLVV18pIyNDH374odq2bavLLis7VfuyZcsqVVTAKTlT8baLbpf++rXnagGAAGCz2dSwYUM1aNBAZ8648BkMjwoNDVVQkNvTXtq5FW5q166tP/7xj5XeOf6nVkPp51MVa3ui6t79GQD8TXBwcKXHd6DqcSnclJSU6LnnntP333+vwsJC9erVS6mpqQzIqrRLjLe5UGpk6RQPAADgIi71/TzzzDMaN26catasqZiYGP3973/XiBEjPFWbn6nE5WuFv7m+ztMN3d8fAAAW5lK4+cc//qG5c+dqzZo1Wr58ud5//3298cYbKilxsecBZXVw43L6onzpYGDcaRIAAFe4FG72799fZnqFpKQk2Ww2HT582PTCAkqv8VJoTdfX+5C5pwAAuJBL4aaoqOiiKchDQkIqPdJ8zpw5iouLU3h4uBISErRp06YKrbd48WLZbDb169evUvuvEsYdkq57Qqp/demfqTnSPUvKX2f/F96pDQAAP+LSgGLDMDRkyBCFhYXZl50+fVoPPfRQmcvBXbkUfMmSJUpOTta8efOUkJCg9PR09e7dW7t27VKDBg2crrdv3z499thjuvbaa115C1Vbr/Glj7Na3lx6Z+Ijmc7XmdtNShzh3qktAAAsyKWem8GDB6tBgwaKjIy0P/785z+rUaNGZZa5YubMmXrggQc0dOhQtW7dWvPmzVONGjX02muvOV2nuLhYAwYM0FNPPaWmTZu6tD+/c6kpF47ukN4bLr0Q75VyAACo6lzquXn99ddN3XlhYaE2b96ssWPH2pcFBQUpKSlJGzdudLre5MmT1aBBAw0bNkyff/55ufsoKChQQUGB/Xlubm7lC/e6EEmXOPX3y15p6xv04AAAAl7lbwNYCcePH1dxcbGioqLKLI+KilJWVpbDddavX68FCxZo/vz5FdpHWlpamV6l2NjYStftkCdnl71/TcXavTfcczUAAOAnfBpuXHXq1CkNHDhQ8+fPV7169Sq0ztixY5WTk2N/HDhwwMNVekDjThVvm+raaUEAAKzGp7Ne1qtXT8HBwcrOzi6zPDs72z6p2fl+/PFH7du3T3379rUvO3uPnWrVqmnXrl1q1qxZmXXCwsLKDID2W3E9pX3rKtY2NVIKjZBumcZpKgBAwPFpz01oaKg6deqkjIwM+7KSkhJlZGQoMTHxovatWrXS9u3blZmZaX/cdtttuv7665WZmem5U05VwZD3XGtfmMtAYwBAQPJpz40kJScna/DgwercubO6du2q9PR05eXlaejQoZKkQYMGKSYmRmlpaQoPD1ebNm3KrF+7dm1Jumi5JaXmSM82l/KPVnwdBhoDAAKMz8NN//79dezYMU2aNElZWVmKj4/X6tWr7YOM9+/fb8r055bxxO7SaRde7VXxdd4bLv2yr+w9dAAAsCibYXjyMp+qJzc3V5GRkcrJyVFERIR5G858S1r+UOnfvTVjtzuDh5vfLPV4wrVBygAA+Jgr3990iZjGBxkxNUcKcnGw9O7Vpb0+C27yTE0AAPgY4cbfTToqt/4ZD/xXmtHK9HIAAPA1wo0VpP4itf4/KaSGa+udOiJ9MdszNQEA4CM+H1AMk9z1v6kxcg5Js1pXfL0Px0vhEVLHQZ6pCwAAL6PnxmoiY6TWd7i2zopHpFd7e6YeAAC8jHBjRXctlMLruLbOwS9Lr746uNkjJQEA4C2EG6sas0+66RmpQRspOLzi673aS1p0m8fKAgDA0wg3ZqmKtwvqNlIavkGamO3avXf2firNuXj6CwAA/AHhJpC4EnCOfSulunhqCwCAKoBwE2hcuntySek4nK1veKwcAADMRrgJRK5OD/HecGlKlGdqAQDAZISbQJWaI9VtUfH2xafdm8sKAAAvI9wEsr9+5XovzsLbPVMLAAAmIdzAtYCzb53HygAAwAyEG9NUwUvBXZGaI9VsWMG2nJ4CAFRdhBuc89h3Fe/FmdbUs7UAAOAmwg0uVpGAc/pnz9cBAIAbCDdwrCIBh9NTAIAqiHAD5yoacJhsEwBQhRBuUL7Gv7t0m1d7Se8+7PlaAACoAMINynf/moq12/am9EZ/z9YCAEAFEG7MUhVnBTdLRa+g2r2acTgAAJ8j3KBiXLnRHwEHAOBDhBtUnKsBJzVSmtnGc/UAAOAA4QaucXUuqtwDpSHni9meqQcAgAsQbuA6VwOOJH04/lxvzvOtzK8JAID/IdzAPak5kkLcW/fXI4zLAQB4DOEG7ks9LsUPrMT6BBwAgPkIN6ax8KXg5ek3W7JVc3/9s6eq0uNNKwkAENgq8a0E/E/Kz9LykVLmP93fxsm9jntyqtWQJhxxf7sAgIBDzw3M0W926Tic2+dKtePM225RPj07AACXEG5grg4DpFHbSoPObS+at92zPTupkdLWN8zbLgDAcjgtBc/pOEhqdoN0Yo9Ut6k0q7U5231veOnDGXcuVQcAWAbhBp4VGVP6kEpDhzeukDp/HzUbSo995/l9AgCqDE5LwbtSc6QaDby3v7P31Emt6719AgB8ip4bs1h5VnCzPbH73N9Ta8s7l9EXl4aciFgp+Rsv7A8A4CuEG/hW6snSP3MOnRubExnjudNXZ+e6umeJ1PJmz+wDAOBTnJZC1RAZIzW5tuz4nHuWeG5/b/XnDskAYFH03KDqannzuSuf0uNLLwc329mAw80CAcAyCDfwD6MyL142JUoqPm3O9s/eLFCSFCSl/mLOdgEAXke4gf+amO14+byeUtbWSmy4pDToxA8svfMyAMCvEG5gPQ+tO/f3yoyryfznufmymt8sDfDgGCAAgGkIN6bhUvAq6eyYncoOHt692vE2ojuUDVMAAJ/jaikEhtQcKaSm+dvN2loaeiZ78caEAIByEW4QOMYfKg05tZuYv+2SgtKQM6+n+dsGALiE01IIPOdfefVqb+ngl+Zt+2xPzlmNfyfdv8a87QMALolwg8B2fvCY1lQ6/bO52z/45bmww2zlAOAVhBvgrDF7Sv/01J2LHW03rLY09ifP7A8AAhThBrjQ+T0snp6ioeBk2X2ERkjjDnh2nwBgcYQbszAruDU5O5XkqdBTmMtpLACoJMIN4A6z7p9T7j4u2DZhBwAqhHADVIY3Qo59X+fto/X/SXe97vl9AoAfItwAZji/V2X5yHPTNnjKt8uk1GUXL2eaCAAg3ACm6zf73ISbM9tIuV4cIOxomghOZwEIMIQbwJOSv3G8/OmGUlG+d2pggDKAAEO4AXxhwpGyz709Zse+jMADwHqqxNxSc+bMUVxcnMLDw5WQkKBNmzY5bTt//nxde+21qlOnjurUqaOkpKRy23sPl4KjElJzPDfvVbn7jbz4MTXWuzUAgMl83nOzZMkSJScna968eUpISFB6erp69+6tXbt2qUGDi2daXrdune655x5169ZN4eHhmj59um666Sbt2LFDMTExPngHgInOn/dKkp6qLxmF3q3h/HvtOEOPD4AqzGYYvr37XEJCgrp06aLZs0sHYJaUlCg2NlaPPPKIxowZc8n1i4uLVadOHc2ePVuDBg26ZPvc3FxFRkYqJydHERERla7f7uvXpA9Gl/6dD354Qs4haVZrX1dxMS5LB+AFrnx/+7TnprCwUJs3b9bYsWPty4KCgpSUlKSNGzdWaBv5+fk6c+aM6tat6/D1goICFRQU2J/n5uZWrmjAVyJjvH/H5IpwdFl6+OXn5uoCAC/zabg5fvy4iouLFRUVVWZ5VFSUvvvuuwpt48knn1SjRo2UlJTk8PW0tDQ99dRTla4VqNIuDD1b35DeG+6bWqTS2dUrErjqXyON+MLz9QAIKD4fc1MZ06ZN0+LFi7Vu3TqFh4c7bDN27FglJyfbn+fm5io2lgGTsLgOA0of05qWBo2q6tgOxyEouoP00DqvlwPAGnwaburVq6fg4GBlZ2eXWZ6dna3o6Ohy133++ec1bdo0ffTRR2rXrp3TdmFhYQoLCzOlXsDvODo1lFpHUonXS3FJ1lbnPT+MaQNwCT4NN6GhoerUqZMyMjLUr18/SaUDijMyMjRy5Ein6z377LN65plntGbNGnXu3NlL1V4Cs4LDX6T+4mS5D8ftuOLCOjsPk5rfJLW82Tf1AKhyfH5aKjk5WYMHD1bnzp3VtWtXpaenKy8vT0OHDpUkDRo0SDExMUpLS5MkTZ8+XZMmTdKbb76puLg4ZWVlSZJq1qypmjVr+ux9AH7vUj0iVTX8fL2g9OEMPT1AwPF5uOnfv7+OHTumSZMmKSsrS/Hx8Vq9erV9kPH+/fsVFHTuXoMvvfSSCgsL9ac//anMdlJSUpSamurN0oHAcn5IyDkkzWorqdhn5VSYo1DGBKOApfn8Pjfe5rH73Hy1QFr5v4HL/E8RgWpKlFR82tdVmMAmpZ70dREAzuM397kBYDETsy/dRqq6p7jsDOc13j639Eo0AFUW4QaA9znq3dy1Wnqrv/drcdV7w8u/hxA9t4DPEW4AVA0tb3YeDJ5tLuUf9W497mL2dcDnCDemCaihS4B3PbG77HN/CjtS+afhajaUHqvYHdkBVAzhBoD/uTDsXOj5VtKvR7xTS2X9esRx+Bn9bel8YgBcRrgBYD2OekJ2rZbeukdV/u7MZzmbAZ5TXMAlEW4ABIaWNzu/O/NZVf4qLjmpkUvXgfMRbgDgrPJ6Rap08Cnn0nWJ3h4EHMINAFSE3wYfOa/PFiqlHPNuLYAXEG4AoLIcBZ+psVJhrvdrcYVRWE4wC5FSj3u1HMAshBuzBNYsFgAuZdyB8l+v6r09OuO4Ri5dhx8g3ACALzg7zVXVQ4+zS9cZ14MqhHADAFWJo5BQ1QOPxIBmVCmEGwCo6pyFg2lNpdM/e7cWd1wqnNVtIf31K+/UgoBAuAEAfzVmT/mv+0OPjySd+N55rfT6wA2EGwCwKn8d13O+S9VK+IEDhBsACDT+fM+eCxF+4ADhBgBwjhV6e85Xbt3VpFQ/GLMElxFuAACX5ij0zOkmHdvh/VpMU1R++KlWQ5rgJ7PLowzCDQDAPSO+cP5aerx0cq/XSvGIonzu6eOnCDcAAPONynT+2sfPSDvfl47tllTkrYrMU15vz+hvpcgY79UChwg3AADv6jW+9OGMv47vkaRZrct//aZnpG4jvVNLACPcAACqlkud9vHn8PPh+NLHhTjVZSrCDQDAv1gx/Dir+bonyu/lgkOEG7MwKzgAVA1WCj+fPVv6cITeHqcINwCAwGKV8FOROsMvv/Q0HRZEuAEA4HwOZ2avLckPe+hP/+w8BFk4+BBuAAC4lNSTl3jdT3p7zlde8JH8+rQX4QYAgMoqLwg821zKP+q9WsziLPjc/7HUuJN3a3ER4QYAAE96Yrfj5VNjpcJc79Zihld7lf96FejxIdwAAOAL4w44f80fT3OddX7tPgo6hBvT+OFAMwBA1WSV2dlTI30ScAg3AAD4i4oGhaoUgnwQcAg3AABYTXlhoioFHw8h3AAAEEgCIPgQbgAAQClPBB/G3AAAgCrJneDD1VIAAMAvVYF725wvyNcFWAazggMAUCUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbkzDpeAAAFQFhBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBuzMCs4AABVAuEGAABYCuEGAABYCuEGAABYSpUIN3PmzFFcXJzCw8OVkJCgTZs2ldv+3//+t1q1aqXw8HC1bdtWq1at8lKlAACgqvN5uFmyZImSk5OVkpKiLVu2qH379urdu7eOHj3qsP0XX3yhe+65R8OGDdPWrVvVr18/9evXT998842XKy9HziFfVwAAQMCyGYZvL/NJSEhQly5dNHv2bElSSUmJYmNj9cgjj2jMmDEXte/fv7/y8vL0wQcf2Jf97ne/U3x8vObNm3fJ/eXm5ioyMlI5OTmKiIgw7438e6i0Y1np321BUt8XpI6DzNs+AAABzJXvb5/23BQWFmrz5s1KSkqyLwsKClJSUpI2btzocJ2NGzeWaS9JvXv3dtq+oKBAubm5ZR6myzkk7Xj33HOjRHp/FD04AAD4gE/DzfHjx1VcXKyoqKgyy6OiopSVleVwnaysLJfap6WlKTIy0v6IjY01p/jznfhR0gUdYEaxdGKP+fsCAADl8vmYG08bO3ascnJy7I8DBw6Yv5O6zUpPRZ3PFizVbWr+vgAAQLl8Gm7q1aun4OBgZWdnl1menZ2t6Ohoh+tER0e71D4sLEwRERFlHqaLjCkdY2MLLn1uC5b6ppcuBwAAXuXTcBMaGqpOnTopIyPDvqykpEQZGRlKTEx0uE5iYmKZ9pK0du1ap+29puMgadR2afAHpX8ymBgAAJ+o5usCkpOTNXjwYHXu3Fldu3ZVenq68vLyNHToUEnSoEGDFBMTo7S0NEnSo48+qh49emjGjBm69dZbtXjxYn399dd65ZVXfPk2SkXG0FsDAICP+Tzc9O/fX8eOHdOkSZOUlZWl+Ph4rV692j5oeP/+/QoKOtfB1K1bN7355puaMGGCxo0bp+bNm2v58uVq06aNr94CAACoQnx+nxtv89h9bgAAgMf4zX1uAAAAzEa4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAluLz6Re87ewNmXNzc31cCQAAqKiz39sVmVgh4MLNqVOnJEmxsbE+rgQAALjq1KlTioyMLLdNwM0tVVJSosOHD6tWrVqy2Wymbjs3N1exsbE6cOAA81Z5EMfZOzjO3sFx9h6OtXd46jgbhqFTp06pUaNGZSbUdiTgem6CgoLUuHFjj+4jIiKCXxwv4Dh7B8fZOzjO3sOx9g5PHOdL9dicxYBiAABgKYQbAABgKYQbE4WFhSklJUVhYWG+LsXSOM7ewXH2Do6z93CsvaMqHOeAG1AMAACsjZ4bAABgKYQbAABgKYQbAABgKYQbAABgKYQbF82ZM0dxcXEKDw9XQkKCNm3aVG77f//732rVqpXCw8PVtm1brVq1ykuV+jdXjvP8+fN17bXXqk6dOqpTp46SkpIu+e+CUq7+PJ+1ePFi2Ww29evXz7MFWoSrx/nkyZMaMWKEGjZsqLCwMLVo0YLPjgpw9Tinp6erZcuWql69umJjYzV69GidPn3aS9X6p88++0x9+/ZVo0aNZLPZtHz58kuus27dOnXs2FFhYWG66qqrtHDhQo/XKQMVtnjxYiM0NNR47bXXjB07dhgPPPCAUbt2bSM7O9th+w0bNhjBwcHGs88+a3z77bfGhAkTjJCQEGP79u1erty/uHqc7733XmPOnDnG1q1bjZ07dxpDhgwxIiMjjYMHD3q5cv/i6nE+a+/evUZMTIxx7bXXGrfffrt3ivVjrh7ngoICo3PnzkafPn2M9evXG3v37jXWrVtnZGZmerly/+LqcX7jjTeMsLAw44033jD27t1rrFmzxmjYsKExevRoL1fuX1atWmWMHz/eWLZsmSHJePfdd8ttv2fPHqNGjRpGcnKy8e233xovvviiERwcbKxevdqjdRJuXNC1a1djxIgR9ufFxcVGo0aNjLS0NIft77rrLuPWW28tsywhIcH4y1/+4tE6/Z2rx/lCRUVFRq1atYxFixZ5qkRLcOc4FxUVGd26dTNeffVVY/DgwYSbCnD1OL/00ktG06ZNjcLCQm+VaAmuHucRI0YYvXr1KrMsOTnZ6N69u0frtJKKhJsnnnjCuOaaa8os69+/v9G7d28PVmYYnJaqoMLCQm3evFlJSUn2ZUFBQUpKStLGjRsdrrNx48Yy7SWpd+/eTtvDveN8ofz8fJ05c0Z169b1VJl+z93jPHnyZDVo0EDDhg3zRpl+z53jvGLFCiUmJmrEiBGKiopSmzZtNHXqVBUXF3urbL/jznHu1q2bNm/ebD91tWfPHq1atUp9+vTxSs2BwlffgwE3caa7jh8/ruLiYkVFRZVZHhUVpe+++87hOllZWQ7bZ2VleaxOf+fOcb7Qk08+qUaNGl30C4Vz3DnO69ev14IFC5SZmemFCq3BneO8Z88effzxxxowYIBWrVqlH374QcOHD9eZM2eUkpLijbL9jjvH+d5779Xx48f1+9//XoZhqKioSA899JDGjRvnjZIDhrPvwdzcXP3222+qXr26R/ZLzw0sZdq0aVq8eLHeffddhYeH+7ocyzh16pQGDhyo+fPnq169er4ux9JKSkrUoEEDvfLKK+rUqZP69++v8ePHa968eb4uzVLWrVunqVOnau7cudqyZYuWLVumlStXasqUKb4uDSag56aC6tWrp+DgYGVnZ5dZnp2drejoaIfrREdHu9Qe7h3ns55//nlNmzZNH330kdq1a+fJMv2eq8f5xx9/1L59+9S3b1/7spKSEklStWrVtGvXLjVr1syzRfshd36eGzZsqJCQEAUHB9uXXX311crKylJhYaFCQ0M9WrM/cuc4T5w4UQMHDtT9998vSWrbtq3y8vL04IMPavz48QoK4v/+ZnD2PRgREeGxXhuJnpsKCw0NVadOnZSRkWFfVlJSooyMDCUmJjpcJzExsUx7SVq7dq3T9nDvOEvSs88+qylTpmj16tXq3LmzN0r1a64e51atWmn79u3KzMy0P2677TZdf/31yszMVGxsrDfL9xvu/Dx3795dP/zwgz08StL333+vhg0bEmyccOc45+fnXxRgzgZKgykXTeOz70GPDle2mMWLFxthYWHGwoULjW+//dZ48MEHjdq1axtZWVmGYRjGwIEDjTFjxtjbb9iwwahWrZrx/PPPGzt37jRSUlK4FLwCXD3O06ZNM0JDQ42lS5caR44csT9OnTrlq7fgF1w9zhfiaqmKcfU479+/36hVq5YxcuRIY9euXcYHH3xgNGjQwHj66ad99Rb8gqvHOSUlxahVq5bx1ltvGXv27DE+/PBDo1mzZsZdd93lq7fgF06dOmVs3brV2Lp1qyHJmDlzprF161bjp59+MgzDMMaMGWMMHDjQ3v7speCPP/64sXPnTmPOnDlcCl4Vvfjii8YVV1xhhIaGGl27djW+/PJL+2s9evQwBg8eXKb922+/bbRo0cIIDQ01rrnmGmPlypVertg/uXKcr7zySkPSRY+UlBTvF+5nXP15Ph/hpuJcPc5ffPGFkZCQYISFhRlNmzY1nnnmGaOoqMjLVfsfV47zmTNnjNTUVKNZs2ZGeHi4ERsbawwfPtz45ZdfvF+4H/nkk08cft6ePbaDBw82evTocdE68fHxRmhoqNG0aVPj9ddf93idNsOg/w0AAFgHY24AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AQJLNZtPy5cslSfv27ZPNZlNmZqZPawLgHsINAJ8bMmSIbDabbDabQkJC1KRJEz3xxBM6ffq0r0sD4Ieq+boAAJCkm2++Wa+//rrOnDmjzZs3a/DgwbLZbJo+fbqvSwPgZ+i5AVAlhIWFKTo6WrGxserXr5+SkpK0du1aSVJJSYnS0tLUpEkTVa9eXe3bt9fSpUvLrL9jxw794Q9/UEREhGrVqqVrr71WP/74oyTpq6++0o033qh69eopMjJSPXr00JYtW7z+HgF4B+EGQJXzzTff6IsvvlBoaKgkKS0tTf/4xz80b9487dixQ6NHj9af//xnffrpp5KkQ4cO6brrrlNYWJg+/vhjbd68Wffdd5+KiookSadOndLgwYO1fv16ffnll2revLn69OmjU6dO+ew9AvAcTksBqBI++OAD1axZU0VFRSooKFBQUJBmz56tgoICTZ06VR999JESExMlSU2bNtX69ev18ssvq0ePHpozZ44iIyO1ePFihYSESJJatGhh33avXr3K7OuVV15R7dq19emnn+oPf/iD994kAK8g3ACoEq6//nq99NJLysvL06xZs1StWjX98Y9/1I4dO5Sfn68bb7yxTPvCwkJ16NBBkpSZmalrr73WHmwulJ2drQkTJmjdunU6evSoiouLlZ+fr/3793v8fQHwPsINgCrhsssu01VXXSVJeu2119S+fXstWLBAbdq0kSStXLlSMTExZdYJCwuTJFWvXr3cbQ8ePFg///yzXnjhBV155ZUKCwtTYmKiCgsLPfBOAPga4QZAlRMUFKRx48YpOTlZ33//vcLCwrR//3716NHDYft27dpp0aJFOnPmjMPemw0bNmju3Lnq06ePJOnAgQM6fvy4R98DAN9hQDGAKunOO+9UcHCwXn75ZT322GMaPXq0Fi1apB9//FFbtmzRiy++qEWLFkmSRo4cqdzcXN199936+uuvtXv3bv3zn//Url27JEnNmzfXP//5T+3cuVP//e9/NWDAgEv29gDwX/TcAKiSqlWrppEjR+rZZ5/V3r17Vb9+faWlpWnPnj2qXbu2OnbsqHHjxkmSLr/8cn388cd6/PHH1aNHDwUHBys+Pl7du3eXJC1YsEAPPvigOnbsqNjYWE2dOlWPPfaYL98eAA+yGYZh+LoIAAAAs3BaCgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWMr/B1g/3w5YnsSmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", "output_type": "stream", "text": [ - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n" + "+------------------+---------------------+---------------------+\n", + "| Confusion Matrix | Positive prediction | Negative prediction |\n", + "+------------------+---------------------+---------------------+\n", + "| Positive class | True positive (TP) | False negative (FN) |\n", + "| Negative class | False positive (FP) | True negative (TN) |\n", + "+------------------+---------------------+---------------------+\n", + "+------------------+---------------------+---------------------+\n", + "| Confusion Matrix | Positive prediction | Negative prediction |\n", + "+------------------+---------------------+---------------------+\n", + "| Positive class | 0 | 4884 |\n", + "| Negative class | 1 | 56618 |\n", + "+------------------+---------------------+---------------------+\n", + "ROC AUC: 0.4999911690421943\n", + "Accuracy = 0.9205729801798286\n", + "Precision = 0.0\n", + "Recall = 0.0\n", + "F1 Score = 0.0\n", + "Fbeta Score = (0.49, 0.92, 0.9)\n", + " model tn fp fn tp FP+10*FN accuracy ROC_AUC \\\n", + "0 RFC_newFEATURE_002 56618 1 4884 0 48841 0.920573 0.499991 \n", + "\n", + " precision recall F1_Score Fbeta_macro Fbeta_micro Fbeta_weighted \n", + "0 0.0 0.0 0.0 0.49 0.92 0.9 \n", + "---------------------------------\n", + "start find_optimal_business_score\n", + "prediction proba 61503\n", + "Y_true 61503\n", + "Series([], Name: best, dtype: object)\n", + "0 1\n", + "Name: best, dtype: object\n", + "best b score 35370 1 0.1\n", + "Name: threshold, dtype: float64\n", + " threshold tn fp fn tp FP+10*FN accuracy ROC_AUC \\\n", + "0 0.0 0 56619 0 4884 56619 0.079411 0.500000 \n", + "1 0.1 39599 17020 1835 3049 35370 0.693430 0.661839 \n", + "2 0.2 53621 2998 3793 1091 40928 0.889583 0.585216 \n", + "3 0.3 56188 431 4602 282 46451 0.918167 0.525064 \n", + "4 0.4 56578 41 4843 41 48471 0.920589 0.503835 \n", + "5 0.5 56618 1 4884 0 48841 0.920573 0.499991 \n", + "\n", + " precision recall F1_Score Fbeta_macro Fbeta_micro Fbeta_weighted \\\n", + "0 0.079411 1.000000 0.147137 0.150668 0.079411 0.023929 \n", + "1 0.151926 0.624283 0.244379 0.561981 0.693430 0.710915 \n", + "2 0.266813 0.223382 0.243174 0.587648 0.889583 0.887738 \n", + "3 0.395512 0.057740 0.100768 0.523806 0.918167 0.905846 \n", + "4 0.500000 0.008395 0.016512 0.496529 0.920589 0.905408 \n", + "5 0.000000 0.000000 0.000000 0.491513 0.920573 0.904964 \n", + "\n", + " best \n", + "0 0 \n", + "1 1 \n", + "2 0 \n", + "3 0 \n", + "4 0 \n", + "5 0 \n", + "Artifact PATH RFC_newFEATURE_002_artifactPATH\n", + "{'TN': 39599, 'FP': 17020, 'FN': 1835, 'TP': 3049, 'FP_10_FN': 35370, 'Accuracy': 0.6934295888005463, 'F1': 0.2443794333346692, 'Precision': 0.15192585579749862, 'Recall': 0.6242833742833743, 'ROC_AUC': 0.6618387852889521, 'threshold': 0.1, 'time_in_s': 5635.813629388809}\n", + "{'max_depth': None, 'min_samples_leaf': 2, 'min_samples_split': 2, 'n_estimators': 100}\n", + "Active run_id: 099cbabe3cbf4842946dcd09a6e7710e\n" + ] + } + ], + "source": [ + "run_name = \"RFC_newFEATURE_002\"\n", + "RFC_model_002, best_RFC_params, time_RFC = RFC_model(new_X_train_002, Y_train)\n", + "RFC_metrics, best_metrics_RFC = generate_model_report(RFC_model_002, run_name, new_X_test_002, Y_test, time_RFC)\n", + "run_MLflow(experiment_name, run_name, RFC_metrics, \n", + " best_RFC_params, RFC_model_002, new_X_train_002)" + ] + }, + { + "cell_type": "code", + "execution_count": 231, + "id": "339217b2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "START time Sat Mar 2 16:58:13 2024\n", + "start RandomizedSearchCV \n", + "Fitting 5 folds for each of 6 candidates, totalling 30 fits\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The total space of parameters 6 is smaller than n_iter=100. Running 6 iterations. For exhaustive searches, use GridSearchCV.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Best Hyperparameters: {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100}\n", - "START time Fri Mar 1 11:46:14 2024\n", - "END time Fri Mar 1 15:10:30 2024 duration 204.27139929930368 min\n", + "START time Sat Mar 2 16:58:13 2024\n", + "END time Sat Mar 2 17:04:55 2024 duration 6.689607028166453 min\n", "\n", "---------------------------------\n", "start generate_model_report\n" @@ -3887,7 +4995,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABas0lEQVR4nO3deVhUZf8G8HsGmGHfZRUBd3FBBUVcUoukNM3eX2rmXmmWlmmraeprpVZWVmqWufVmuZSaqWlKoqEoiuAG4gKIIqvKvgzMPL8/kMkRUAaBw8D9ua65LjnznDPfOQxzbp9znufIhBACRERERBKRS10AERERNW0MI0RERCQphhEiIiKSFMMIERERSYphhIiIiCTFMEJERESSYhghIiIiSTGMEBERkaSMpS6gOjQaDW7cuAErKyvIZDKpyyEiIqJqEEIgNzcXbm5ukMur7v8wiDBy48YNeHh4SF0GERER1cC1a9fQvHnzKp83iDBiZWUFoOzNWFtbS1wNERERVUdOTg48PDy0x/GqGEQYKT81Y21tzTBCRERkYB50iQUvYCUiIiJJMYwQERGRpBhGiIiISFIMI0RERCQphhEiIiKSFMMIERERSYphhIiIiCTFMEJERESSYhghIiIiSekdRg4fPoyhQ4fCzc0NMpkMO3bseOA6oaGh6N69O5RKJVq3bo3169fXoFQiIiJqjPQOI/n5+fD19cWKFSuq1T4hIQFDhgzBwIEDER0djTfeeAMvvfQS9u3bp3exRERE1PjofW+aJ598Ek8++WS1269atQre3t74/PPPAQAdOnRAWFgYvvzySwQHB+v78kRERNTI1PmN8sLDwxEUFKSzLDg4GG+88UaV6xQXF6O4uFj7c05OTl2VR0RE1OSoNQLXbxfgYloeLqXn4nJaHuYN9YGtuUKSeuo8jKSmpsLZ2VlnmbOzM3JyclBYWAgzM7MK6yxevBj//e9/67o0IiKiRk2tEbh6Mx+X0vNwOT0PF9NycSktD1cy8lBcqtFpOzqgBXp42UtSZ52HkZqYPXs2Zs2apf05JycHHh4eElZERETUcAkhkJZTjLi0XMSl5uBCai7iUnNxKT0PqntCRzmlsRytmlmijbMl2jhZwsXatJ6r/ledhxEXFxekpaXpLEtLS4O1tXWlvSIAoFQqoVQq67o0IiIig5NbVIKLabnawHEhNRcX03KRVVBSaXtTEzlaO1mijZPVneBhhTZOlvCwN4eRXFbP1VeuzsNIYGAg9uzZo7Ns//79CAwMrOuXJiIiMliqUg3iM/O0gSPuziM5q7DS9nIZ4O1ogfYu1mjnYlX2cLZCC3tzyBtI6KiK3mEkLy8Ply9f1v6ckJCA6Oho2Nvbo0WLFpg9ezaSk5Px448/AgCmTp2K5cuX45133sELL7yAv//+G1u2bMHu3btr710QEREZsKwCFaKSshCTkqMNHVcy8lCqEZW2d7E2RTsXK7R3sUJb57Lg0drJEqYmRvVcee3QO4ycPHkSAwcO1P5cfm3HhAkTsH79eqSkpCApKUn7vLe3N3bv3o2ZM2fiq6++QvPmzfHDDz9wWC8RETVJQgjEZ+Yj8uptRCbeRmTSbVxOz6u0rZXSGG3v9HK0v9PT0c7FSrJRL3VFJoSoPHY1IDk5ObCxsUF2djasra2lLoeIiKjaikrUOHM9Gyev3sKpq7cRefU2bldyfUdLRwt0bm7zb/BwsYabjSlksoZ9iuV+qnv8bpCjaYiIiAxVWk5RWa/H1ds4efU2zidnVzjdojSWw7e5Lbp72sHf0w7dPe1gb9G4ejv0wTBCRERUQ2qNwIXUHJy6Ezwir97G9dsVLzBtZqWEv6cd/O48OrrZQGHMe9WWYxghIiKqppyiEkQlZSHy6m2cunobUUm3ka9S67SRy4B2LtY64aO5nZlBn26pawwjRERElRBCIOlWgfZ0y6mrtxGXlot7r7S0VBqjWwtb+Hnawd/THr4eNrAyNZGmaAPFMEJERISyUy5nrmfhROKtO9d8ZCEzr7hCuxb25toeDz9PO7R1tmowk4cZKoYRIiJqsopK1Ai7lIn9MWkIuZCGzDyVzvMmRjJ0drfRBo/unnZwspJu2vTGimGEiIialFv5KoTEpmF/TBr+uZSJwpJ/r/mwMjVGgLcD/L3KRrl0crcx2InEDAnDCBERNXpXb+Zjf0wa/opJw8nEW7h7pK2bjSke93HG4z4u6Oltz1EuEmAYISKiRkejETiTnI39ManYH5OGi2m6M5x2cLXG4z7OGOTjjI5u1hzpIjGGESIiahSKS9U4euVm2fUfsWlIy/n34lMjuQwB3vZ43McZQR2c4WFvLmGldC+GESIiMljZBSU4GJeO/TFpCI1L15nzw0JhhP7tmmGQjwsGtnOCjTmH2zZUDCNERGRQrt8uwP6YsgtQIxJu6Uy17mSlRJCPMx73cUbvVg5QGvPiU0PAMEJERA2aEALnb+TgrzsBJDYlR+f5ts6W2gtQu7jbQM45PwwOwwgRETU4JWoNjsffwv6YVByITUdy1r/3e5HLAH9P+zsBxBlejhYSVkq1gWGEiIgahNyiEoTGZWB/TBoOxqUjt6hU+5ypiRyPtGmGx32c8VgH5yZ9h9vGiGGEiIgkk5pdhP2xafjrfCqOxd9Eifrf6z8cLRV4rH1Z70ffNo6cfKwRYxghIqJ6FZ+Rh33n07D3fCpOX8vSea6lo0XZ/B8dndHVw473fGkiGEaIiKhOaS9APZ+KvedTdSYgk8mAbh62eNzHBY/7OKO1k6WElZJUGEaIiKjWqTUCp5JuY++5VOw7n4rrt/+9ANVYLkNgKwcEd3TBIB9nOFnzxnNNHcMIERHVClWpBuHxN7H3XCr2x6Tq3AHX1ESO/m2b4YlOLni0nTMnICMdDCNERFRjBapSHIrLwL7zqQi5oDsCxtrUGEEdnDGoowv6t20GMwUvQKXKMYwQEZFesgpUCIlNx97zqTh8MQPFpRrtc82slBjk44zgji7o1dKBd8ClamEYISKiB0rPKcK+mDTsO1c2BPfuKdhb2JsjuKMznujkgm4edpwBlfTGMEJERJVKzMzHvvNlF6CeSsrSea69ixWCO7oguKMLOrhaQSZjAKGaYxghIiIAZUNwL6TmakfAXEjN1Xm+WwtbPHEngHAKdqpNDCNERE2YRiMQde122SRk51KRdKtA+5yRXIbAlg4I7lh2EzoXGw7BpbrBMEJE1MSUqDU4ph2Cm4b03GLtc0pjOR5p2wzBHV0Q1MEJtua8BwzVPYYRIqImoFClxuFLGdh3LhUHYtOQc9cQXCulMR7t4IQnOrqgf7tmMFfw0ED1i584IqJGSgiBU0lZ2HA0Eftj0lBYotY+52ipwON3huD2buXIIbgkKYYRIqJGRlWqwZ6zKVh3JAGnr2drl7vbmuGJTmUXoPp58iZ01HAwjBARNRKZecXYeCwJPx2/iow714EojOUY3tUNY3t5orO7DYfgUoPEMEJEZODOJWdj3ZFE/HH6BlTqstlQna2VGNfLE6N7toCDpVLiConuj2GEiMgAlao1+CsmDeuOJOBE4m3t8m4tbDGxtxcGd3aFiRGvAyHDwDBCRGRAsgpU2HTiGv4XfhXJWYUAAGO5DEO6uGJSH2909bCVtkCiGmAYISIyABfTcrHuSCK2R11HUUnZqRgHCwWeD2iBsb084WzNCcnIcDGMEBE1UBqNwMG4dKw7koiwy5na5T6u1pjUxwtDfd1gamIkYYVEtYNhhIiogcktKsHWk9exITwRV2+WTc8ulwGDfFwwqY8Xenrbc1QMNSoMI0REDURiZj7WH03Er5HXkVdcNkOqtakxRvcsOxXjYW8ucYVEdYNhhIhIQkIIhF3OxPojifg7Lh1ClC1v7WSJib298J/u7pyenRo9fsKJiCRQqFJjW9R1rD+SiEvpedrlA9s1w6Q+3ujXxpGnYqjJYBghIqpHyVmF+DE8EZsiriG7sAQAYKEwwgh/D0zo7QVvRwuJKySqfwwjRER1TAiBE4m3se5IAvadT4XmzqmYFvbmmNDbCyP8m8Pa1ETaIokkxDBCRFRHikvV+ON02Q3rzt/I0S7v09oBk3p7Y2B7J96sjggMI0REtS49pwg/HbuKnyOSkJmnAgAojeX4T3d3TOztjXYuVhJXSNSwMIwQEdWS09eysO5IAnafTUGJuuxcjKuNKcYHeuG5Hh6ws1BIXCFRw8QwQkT0EErUGuw9l4p1RxJwKilLu9zf0w6T+ngjuKMzjHnDOqL7YhghIqqBW/kq/BKRhP+FX0VqThEAwMRIhqFd3DCpjzc6N7eRuEIiw8EwQkSkhwupOVgXlogd0ckoLi27YZ2jpQJjAjwxplcLOFnxhnVE+mIYISJ6ALVGICQ2DeuOJCI8/qZ2eSd3a0zq7Y2nfF2hNOYN64hqimGEiKgKOUUl2HLiGn4Mv4qkW2U3rDOSy/BEx7Ib1vl52nGWVKJawDBCRHSP+Iw8bLhzw7p8lRoAYGNmgtE9W2BcoCfcbc0krpCocWEYISJC2Syp/1zKxLojCTgYl6Fd3sbJEpP6eOOZbu4wU/BUDFFdYBghoiatQFWKbaeSsf5oIi7fuWGdTAY82s4Jk/p4o09rB56KIapjDCNE1CRdv12A/4VfxS8RScgpKgUAWCqN8axfc0zs7QUv3rCOqN4wjBBRk1HVDes8HcwxIbDshnVWvGEdUb1jGCGiRo83rCNq2BhGiKjRSs8twk/HkvDz8au8YR1RA1ajGyasWLECXl5eMDU1RUBAACIiIu7bftmyZWjXrh3MzMzg4eGBmTNnoqioqEYFExE9yJnrWZi5ORp9lvyNr0MuITNPBVcbU7zzRDscm/0YFv+nC4MIUQOid8/I5s2bMWvWLKxatQoBAQFYtmwZgoODERcXBycnpwrtf/75Z7z33ntYu3YtevfujYsXL2LixImQyWT44osvauVNEBFVdcM6P087TOrjheCOLjDhDeuIGiSZEELos0JAQAB69OiB5cuXAwA0Gg08PDzw2muv4b333qvQfvr06YiNjUVISIh22Ztvvonjx48jLCysWq+Zk5MDGxsbZGdnw9raWp9yiaiRyy0qwcbjSdhwNBEp2f/esO6pLm6Y1McLXZrbSlsgURNW3eO3Xj0jKpUKkZGRmD17tnaZXC5HUFAQwsPDK12nd+/e+OmnnxAREYGePXsiPj4ee/bswbhx46p8neLiYhQXF+u8GSKiu2XmFWNtWAL+d+wqcu8MzXW0VOD5AE+MDWgBJ2vesI7IUOgVRjIzM6FWq+Hs7Kyz3NnZGRcuXKh0neeffx6ZmZno27cvhBAoLS3F1KlT8f7771f5OosXL8Z///tffUojoibi2q0CrP4nHptPXNPeNbe1kyVefqQlhnV14w3riAxQnY+mCQ0NxaJFi7By5UoEBATg8uXLmDFjBj788EN88MEHla4ze/ZszJo1S/tzTk4OPDw86rpUImrALqblYlXoFfx++gbUdyYI8fWwxasDWuHxDs6Qc2gukcHSK4w4OjrCyMgIaWlpOsvT0tLg4uJS6ToffPABxo0bh5deegkA0LlzZ+Tn52PKlCmYM2cO5PKKF5QplUoolUp9SiOiRioq6TZWhl7B/ph/v3f6tnbEqwNaIbAVp2onagz0CiMKhQJ+fn4ICQnB8OHDAZRdwBoSEoLp06dXuk5BQUGFwGFkVNaNque1s0TURAghEHY5EysPXkF4/E0AZfeLCfZxwSsDWsHXw1baAomoVul9mmbWrFmYMGEC/P390bNnTyxbtgz5+fmYNGkSAGD8+PFwd3fH4sWLAQBDhw7FF198gW7dumlP03zwwQcYOnSoNpQQEQGAWiOw73wqvg29grPJ2QAAY7kMz3Rzx8v9W6G1k6XEFRJRXdA7jIwaNQoZGRmYN28eUlNT0bVrV+zdu1d7UWtSUpJOT8jcuXMhk8kwd+5cJCcno1mzZhg6dCg+/vjj2nsXRGTQVKUa7IhKxqrDVxCfkQ8AMDMxwnM9PTC5X0u42ZpJXCER1SW95xmRAucZIWqcClSl+CXiGn74J147R4i1qTEm9vbCxD7esLdQSFwhET2MOplnhIioNmQVqLD+aCLWH01EVkEJAMDJSonJ/VpidEALWCr51UTUlPAvnojqTWp2EX74Jx4/RyShQKUGAHg5mOPl/q3wn+7unCOEqIliGCGiOpeQmY/vDl3BtlPJUKnLJirr4GqNVwe0wuDOrjDiHCFETRrDCBHVmXPJ2fj20BX8eTYFd+YpQ08ve7wysBUGtG3GOUKICADDCBHVMiEEjifcwrehV3DoYoZ2+WPtnfDKgFbw97KXsDoiaogYRoioVmg0An9fSMfK0Ms4lZQFAJDLgKG+bnhlQCu0d+FIOCKqHMMIET20g3Hp+OTPC7iQmgsAUBjLMcKvOV5+pBVaOJhLXB0RNXQMI0RUYwmZ+fhwVwz+vpAOALBUGmNsL0+80NcLTlamEldHRIaCYYSI9JZbVILlf1/G2iMJKFELmBjJMKmPN6YNbA0bMxOpyyMiA8MwQkTVptEI/HbqOj7ZG4fMvGIAwMB2zfDBUz5o2Yz3jSGimmEYIaJqiUq6jQV/xOD0tSwAQEtHC3zwlA8GtneStjAiMngMI0R0X+k5RViy9wK2nUoGUHZdyOuPtcbE3t5QGMsfsDYR0YMxjBBRpYpL1Vgblojlf19C/p2p20f4NcfbT7TjxalEVKsYRohIhxACIbHp+Gh3DBJvFgAAurWwxYKhHeHrYSttcUTUKDGMEJHW5fQ8LNwVg8N3Zk5tZqXEe0+0xzPd3CHn/WOIqI4wjBARcopK8PWBS1h/NBGlGgGFkRwv9PXG9Edbw1LJrwkiqlv8liFqwjQaga2R1/DZvjhk5qkAAEEdnDB3iA+8HC0kro6ImgqGEaImKvLqLSzYGYOzydkAgFbNLDBvaEf0b9tM4sqIqKlhGCFqYlKzi7Dkz1jsiL4BALBSGmNGUBtM6O0FEyMO1SWi+scwQtREFJWosSYsASsOXkaBSg2ZDBjl74G3gtvB0VIpdXlE1IQxjBA1ckII/BWTho93xyLpVtlQXT9POywY2hGdm9tIXB0REcMIUaN2KS0XC3fF4J9LmQAAZ2sl3h/cAcN83SCTcaguETUMDCNEjVBecSk+/ysOP4ZfhVojoDCWY3I/b7w6oDUsOFSXiBoYfisRNTL/XMrAe7+dRXJWIQBgkI8z5g7xQQsHc4krIyKqHMMIUSORU1SCxXti8UvENQCAh70ZPh7eGY9wqC4RNXAMI0SNQGhcOmZvO4uU7CIAwMTeXng7uB1PyRCRQeA3FZEByy4swUe7YrA18joAwNPBHJ/+XxcEtHSQuDIioupjGCEyUH9fSMPsbWeRllMMmQyY1Nsbbwe3g5nCSOrSiIj0wjBCZGCyC0rw313nse1UMgDA29ECnz3bBf5e9hJXRkRUMwwjRAZkf0wa3t9+Fhm5xZDLgJf6tcSsx9vC1IS9IURkuBhGiAzA7XwVFvxxHr/fuZ9Mq2YW+GyEL7q3sJO4MiKih8cwQtTA7T2Xgrk7ziEzTwW5DJjySCu8EdSGvSFE1GgwjBA1UDfzijF/53nsOpMCAGjjZInPRviiq4ettIUREdUyhhGiBmj3mRTM+/0cbuarYCSXYWr/lnj9sTZQGrM3hIgaH4YRogYkM68Y834/hz1nUwEA7ZytsHSEL++uS0SNGsMIUQMghMDO0zewYOd53C4ogbFchlcHtsb0ga2hMJZLXR4RUZ1iGCGSWHpuEeZuP4e/YtIAAB1crfHZs13QyZ29IUTUNDCMEElECIEd0clYsDMG2YVlvSGvPdoGrwxoxd4QImpSGEaIJJCWU4Q528/iQGw6AKCTuzU+e9YXHVytJa6MiKj+MYwQ1bPtUdcx//fzyCkqhYmRDG8EtcWUR1rCxIi9IUTUNDGMENWT4lI1FuyMwS8RSQCALs1t8NmzvmjnYiVxZURE0mIYIaoHN7IK8cpPkTh9PRsyGTDjsTaYPrA1jNkbQkTEMEJU145czsRrv0ThVr4KNmYm+Oq5rhjQzknqsoiIGgyGEaI6IoTAqkPx+GzfBWgE0NHNGqvG+sHD3lzq0oiIGhSGEaI6kFtUgre2nsa+82Vzh4zwa44Ph3fize2IiCrBMEJUyy6l5eLl/0UiPjMfCiM5FgzriNE9PSCTyaQujYioQWIYIapFu87cwDu/nkGBSg1XG1N8O9aPd9klInoAhhGiWlCi1mDJnxewJiwBANC7lQO+Gd0NDpZKiSsjImr4GEaIHlJ6bhGm/xyFiIRbAICp/VvhrUFtOWyXiKiaGEaIHkLk1Vt4deMppOUUw1JpjKUjuuCJTq5Sl0VEZFAYRohqQAiBH8Ov4sNdMSjVCLR2ssSqsX5o7WQpdWlERAaHYYRIT4UqNd7ffhbbo5IBAEM6u+LTZ7vAQsk/JyKimuC3J5EeEjPzMfWnSFxIzYWRXIbZT7bHi329OWyXiOghMIwQVVNIbBre2ByN3KJSOFoqsPz57ujV0kHqsoiIDB7DCNEDqDUCXx24iK//vgwA6N7CFivH+MHFxlTiyoiIGgeGEaL7uJ2vwozN0Th8MQMAMCHQE3OG+EBhzGG7RES1pUbfqCtWrICXlxdMTU0REBCAiIiI+7bPysrCtGnT4OrqCqVSibZt22LPnj01KpiovpxLzsbQ5WE4fDEDpiZyfDnKF/99uhODCBFRLdO7Z2Tz5s2YNWsWVq1ahYCAACxbtgzBwcGIi4uDk1PF26KrVCo8/vjjcHJywq+//gp3d3dcvXoVtra2tVE/UZ3Yey4VMzdHo7BEjRb25lg11g8+btZSl0VE1CjJhBBCnxUCAgLQo0cPLF++HACg0Wjg4eGB1157De+9916F9qtWrcJnn32GCxcuwMTEpEZF5uTkwMbGBtnZ2bC25gGB6o4QAt8djscney9ACKBfG0csH90dNuY1++wSETVl1T1+69XfrFKpEBkZiaCgoH83IJcjKCgI4eHhla6zc+dOBAYGYtq0aXB2dkanTp2waNEiqNXqKl+nuLgYOTk5Og+iuqYq1eDd385gyZ9lQWR8oCfWTezBIEJEVMf0CiOZmZlQq9VwdnbWWe7s7IzU1NRK14mPj8evv/4KtVqNPXv24IMPPsDnn3+Ojz76qMrXWbx4MWxsbLQPDw8Pfcok0ltWgQrj1x7HlpPXIZcBC4b6YOHTnXh/GSKielDn37QajQZOTk74/vvv4efnh1GjRmHOnDlYtWpVlevMnj0b2dnZ2se1a9fqukxqwuIz8vDMyqM4Fn8LlkpjrJnQAxP7eEtdFhFRk6HXBayOjo4wMjJCWlqazvK0tDS4uLhUuo6rqytMTExgZGSkXdahQwekpqZCpVJBoVBUWEepVEKp5K3Xqe4dvZKJV346hezCErjbmmHNRH+0d+F1SURE9UmvnhGFQgE/Pz+EhIRol2k0GoSEhCAwMLDSdfr06YPLly9Do9Fol128eBGurq6VBhGi+rLlxDWMXxOB7MISdPWwxY5pfRhEiIgkoPdpmlmzZmH16tXYsGEDYmNj8corryA/Px+TJk0CAIwfPx6zZ8/Wtn/llVdw69YtzJgxAxcvXsTu3buxaNEiTJs2rfbeBZEeNBqBxXti8c5vZ1CqERjq64ZNU3qhmRV744iIpKD3PCOjRo1CRkYG5s2bh9TUVHTt2hV79+7VXtSalJQEufzfjOPh4YF9+/Zh5syZ6NKlC9zd3TFjxgy8++67tfcuiKqpQFWKNzZF46+YslONrz/WBjOD2vBGd0REEtJ7nhEpcJ4Rqg2p2UV4ccMJnL+RA4WRHJ8+2wXDu7lLXRYRUaNV3eM3701DTcK55Gy8uOEE0nKK4WChwPfj/eDnaS91WUREBIYRagL2nU/FG5vKpnZv42SJtRN7wMPeXOqyiIjoDoYRarTundr9kbbNsPz5brA25YyqREQNCcMINUqqUg3m7jiLLSevAyib2n3eUz6cUZWIqAFiGKFGJ6tAhak/ReJY/C3IZcC8p3w4oyoRUQPGMEKNSnxGHl7ccBIJmfmwVBrjm9HdMLC9k9RlERHRfTCMUKMRcyMHY9ccx618Fad2JyIyIAwj1Cicv5GNMT8cR1ZBCTq722DtxB6cUZWIyEAwjJDBO5dcFkTK7zGz4YWesDHjiBkiIkPBMEIG7cz1LIz94ThyikrRrUVZEOHQXSIiw8IwQgYr+loWxq05jtyiUvh52mH9pB6wYhAhIjI4DCNkkE4l3caENRHILS5FDy87rJvUE5ZKfpyJiAwRv73J4ERevYUJa08gr7gUPb3tsW5iD1gwiBARGSx+g5NBOZF4CxPXRiBfpUavlvZYO7EHzBX8GBMRGTJ+i5PBOB5/E5PWn0CBSo3erRywZkIPmCmMpC6LiIgeEsMIGYRj8Tcxad0JFJao0be1I1aP92cQISJqJBhGqME7eiUTL64/icISNfq1KQsipiYMIkREjQXDCDVoRy5n4sUNJ1BUokH/ts3w3Tg/BhEiokaGYYQarMMXMzD5x5MoLtVgYLtm+HYsgwgRUWPEMEINUmhcOqb8LxKqUg2COjhhxZjuUBoziBARNUYMI9TgHLyQjpf/FwmVWoPHfZyx4vnuUBjLpS6LiIjqCL/hqUEJiU3TBpHgjgwiRERNAXtGqMHYefoG3twSjRK1wJOdXPD16G4wMWIQISJq7BhGqEH44Z94fLQ7FgAwpIsrlo3qyiBCRNREMIyQpDQagY92x2LtkQQAwMTeXvjgKR8YyWUSV0ZERPWFYYQkU1SixptbTmP32RQAwOwn22PKIy0hkzGIEBE1JQwjJInsghJM/t9JRCTcgomRDEtH+OLpru5Sl0VERBJgGKF6dyOrEBPWRuBSeh6slMb4bpwferd2lLosIiKSCMMI1avYlBxMXBeBtJxiOFsrsX5ST3RwtZa6LCIikhDDCNWbo1cy8fKPkcgtLkVrJ0tseKEn3G3NpC6LiIgkxjBC9eLuOUR6etlj9Xh/2JibSF0WERE1AAwjVKeEEFj9TzwW7bkAABjc2QVfjOzKG94REZEWwwjVGbVG4MNdMVh/NBEAMKmPFz4Y4gM55xAhIqK7MIxQnSgqUWPWlmjsOZsKAJgzuANe6ufNOUSIiKgChhGqddkFJZj840lEJHIOESIiejCGEapVOUUlGPV9OC6k5pbNITLeD71bcQ4RIiKqGsMI1ZpStQbTNp7ChdRcNLNS4n8v9kR7F84hQkRE98fbolKt+Wh3LP65lAlTEznWTezBIEJERNXCMEK14n/HrmpHzSwb1RWd3G2kLYiIiAwGwwg9tLBLmViw8zwA4O3gdniik6vEFRERkSFhGKGHciUjD69ujIRaI/BMN3e8OqCV1CUREZGBYRihGssqUOHF9SeQU1QKP087LP5PZ84jQkREemMYoRopUWvwyk+nkHizAO62ZvhunB+neCciohphGCG9CSEw7/dzCI+/CQuFEdZM9IejpVLqsoiIyEAxjJDe1h5JxC8R1yCTAV+P7sYhvERE9FAYRkgvBy+k4+PdMQCA95/sgMc6OEtcERERGTqGEaq2uNRcvPZLFDQCGOXvgZf6eUtdEhERNQIMI1QtN/OK8eKGE8grLkWAtz0+HN6JI2eIiKhWMIzQAxWXqvHy/yJx/XYhPB3MsWqsHxTG/OgQEVHt4BGF7ksIgdnbzuLk1duwMjXGmgn+sLNQSF0WERE1IgwjdF/fH47HtlPJMJLLsOL57mjtZCV1SURE1MgwjFCVQuPSsWTvBQDAvKd88EjbZhJXREREjRHDCFUqMTMfr/8SBSGA53p4YHygp9QlERFRI8UwQhXkFZdiyv9OIqeoFN1b2OK/T3fkyBkiIqozDCOkQ6MReHNLNC6m5cHJSolVY/2gNOY9Z4iIqO4wjJCO5QcvY9/5NCiM5Fg1zg9O1qZSl0RERI1cjcLIihUr4OXlBVNTUwQEBCAiIqJa623atAkymQzDhw+vyctSHdsfk4Yv9l8EAHw0vBO6t7CTuCIiImoK9A4jmzdvxqxZszB//nycOnUKvr6+CA4ORnp6+n3XS0xMxFtvvYV+/frVuFiqO5fT8zBzczQAYHygJ0b28JC2ICIiajL0DiNffPEFJk+ejEmTJsHHxwerVq2Cubk51q5dW+U6arUaY8aMwX//+1+0bNnyoQqm2pdTVIIpP55EXnEpenrb44OnfKQuiYiImhC9wohKpUJkZCSCgoL+3YBcjqCgIISHh1e53sKFC+Hk5IQXX3yxWq9TXFyMnJwcnQfVDbVG4I1N0YjPzIebjSlWjukOEyNeSkRERPVHr6NOZmYm1Go1nJ11bxvv7OyM1NTUStcJCwvDmjVrsHr16mq/zuLFi2FjY6N9eHjwlEFd+XL/Rfx9IR1KYzm+G+cPR0ul1CUREVETU6f/Bc7NzcW4ceOwevVqODo6Vnu92bNnIzs7W/u4du1aHVbZdO05m4LlBy8DAD75vy7o3NxG4oqIiKgpMtansaOjI4yMjJCWlqazPC0tDS4uLhXaX7lyBYmJiRg6dKh2mUajKXthY2PExcWhVatWFdZTKpVQKvk/9Lp0ITUHb209DQCY3M8bw7u5S1wRERE1VXr1jCgUCvj5+SEkJES7TKPRICQkBIGBgRXat2/fHmfPnkV0dLT2MWzYMAwcOBDR0dE8/SKRrAIVpvwYiQKVGn1bO+LdJ9pLXRIRETVhevWMAMCsWbMwYcIE+Pv7o2fPnli2bBny8/MxadIkAMD48ePh7u6OxYsXw9TUFJ06ddJZ39bWFgAqLKf6oSrV4JWfTiHpVgE87M3wzehuMOYFq0REJCG9w8ioUaOQkZGBefPmITU1FV27dsXevXu1F7UmJSVBLufBrSESQuC9384gPP4mLJXGWD3eH3YWCqnLIiKiJk4mhBBSF/EgOTk5sLGxQXZ2NqytraUux2B98Vccvv77MozkMqyb2AOPtG0mdUlERNSIVff4zS6MJmLLiWv4+u+ykTOLnunEIEJERA0Gw0gT8M+lDLy//SwAYPrA1hjVo4XEFREREf2LYaSRi03JwSs/nUKpRmB4Vze8Oait1CURERHpYBhpxFKzizBp3QnkFZeiV0t7fPJsF8hkMqnLIiIi0sEw0kjlFZdi0voTSM0pQmsnS3w31h9KYyOpyyIiIqqAYaQRKlFrMG3jKcSm5MDRUol1E3vAxtxE6rKIiIgqxTDSyAghMO/3czh0MQNmJkZYO9EfHvbmUpdFRERUJYaRRmZl6BX8EnENchnwzehu6NLcVuqSiIiI7othpBE5fDEDn+2LAwAsGNYRQT7OEldERET0YAwjjcTtfJX2LrxjAlpgfKCXtAURERFVE8NIIyCEwOxtZ5GeW4xWzSwwd4iP1CURERFVG8NII/Br5HXsPZ8KY7kMXz3XDWYKDuElIiLDwTBi4JJuFmDBzvMAgFmD2qKTu43EFREREemHYcSAlao1mLklGvkqNXp62ePlR1pJXRIREZHeGEYM2LehVxB59TYslcb4fKQvjOSc6p2IiAwPw4iBir6WhWUhlwAAC5/uyInNiIjIYDGMGKACVSlmbo6GWiMwpIsrnunmLnVJRERENcYwYoA+2h2LhMx8uFib4uPhnXgnXiIiMmgMIwbmQEwafj6eBAD4fKQvbM0VEldERET0cBhGDEhmXjHe/e0MAOClvt7o09pR4oqIiIgeHsOIAZn/+3nczFehnbMV3gpuJ3U5REREtYJhxEDsPpOC3WdTYCSX4fORvjA14SyrRETUODCMGICbecX44PdzAIBpA1pxllUiImpUGEYMwLyd53ErX4X2LlaY/mgbqcshIiKqVQwjDdyesynYfabs9Mxnz/pCYcxfGRERNS48sjVgt/JV+GBH2emZV/q3QufmPD1DRESND8NIAzZ/57+jZ157rLXU5RAREdUJhpEGau+5FPxx+kbZ6ZkRXaA05ugZIiJqnBhGGqBb+SrMvXN6Zmr/lujS3FbagoiIiOoQw0gDtGDneWTmqdDGyRKvP8bRM0RE1LgxjDQwB2LSsPPO6ZmlI3x5eoaIiBo9hpEGpKhEjQV/nAcAvNTPG74ettIWREREVA8YRhqQb0Ov4PrtQrjamGIGT88QEVETwTDSQFy9mY9vD10BAHzwlA/MFcYSV0RERFQ/GEYaiIV/xEBVqkHf1o54spOL1OUQERHVG4aRBuBATBpCLqTDxEiGBcM6QiaTSV0SERFRvWEYkVhRiRr/3VV20eqLfVuitZOlxBURERHVL4YRiX0begXXbpVdtPrao5zynYiImh6GEQkl3SzQXrQ6d4gPLJS8aJWIiJoehhEJ/feP89qLVgd35kWrRETUNDGMSOR4/E2EXEiHsZwXrRIRUdPGMCKRr0IuAQBG9fDgRatERNSkMYxI4ETiLRy9chMmRjK8OpAXrRIRUdPGMCKBr+/0ijzr1xzutmYSV0NERCQthpF6Fnn1Nv65lAljuQyvDmCvCBEREcNIPSu/VuT/ujeHh725xNUQERFJj2GkHkUl3cbhixkwksswjdeKEBERAWAYqVflvSLPdHNHCwf2ihAREQEMI/Um+loWQuPKekWms1eEiIhIi2Gknnxzp1fk6a5u8HK0kLgaIiKihoNhpB6cS85GyIV0yGVgrwgREdE9GEbqwTd/l/WKDPV1Q8tmnG2ViIjobgwjdSw2JQf7zqdBxl4RIiKiSjGM1LHlBy8DAAZ3ckUbZyuJqyEiImp4GEbq0OX0XOw5mwIAmP4oe0WIiIgqwzBSh5b/fRlCAIN8nNHB1VrqcoiIiBqkGoWRFStWwMvLC6ampggICEBERESVbVevXo1+/frBzs4OdnZ2CAoKum/7xiIhMx87T98AALz2aBuJqyEiImq49A4jmzdvxqxZszB//nycOnUKvr6+CA4ORnp6eqXtQ0NDMXr0aBw8eBDh4eHw8PDAoEGDkJyc/NDFN2QrD16GRgCPtndC5+Y2UpdDRETUYMmEEEKfFQICAtCjRw8sX74cAKDRaODh4YHXXnsN77333gPXV6vVsLOzw/LlyzF+/PhqvWZOTg5sbGyQnZ0Na+uGf7rj2q0CDFgaCrVGYPurvdGthZ3UJREREdW76h6/9eoZUalUiIyMRFBQ0L8bkMsRFBSE8PDwam2joKAAJSUlsLe3r7JNcXExcnJydB6GZMPRRKg1An1bOzKIEBERPYBeYSQzMxNqtRrOzs46y52dnZGamlqtbbz77rtwc3PTCTT3Wrx4MWxsbLQPDw8PfcqUVFGJGlsjrwMAJvXxkrYYIiIiA1Cvo2mWLFmCTZs2Yfv27TA1Na2y3ezZs5Gdna19XLt2rR6rfDi7zqQgu7AE7rZmGNDOSepyiIiIGjxjfRo7OjrCyMgIaWlpOsvT0tLg4uJy33WXLl2KJUuW4MCBA+jSpct92yqVSiiVSn1KazB+OnYVAPB8QAsYyWUSV0NERNTw6dUzolAo4Ofnh5CQEO0yjUaDkJAQBAYGVrnep59+ig8//BB79+6Fv79/zatt4M4lZyP6WhZMjGQY6W84p5aIiIikpFfPCADMmjULEyZMgL+/P3r27Illy5YhPz8fkyZNAgCMHz8e7u7uWLx4MQDgk08+wbx58/Dzzz/Dy8tLe22JpaUlLC0b103jNh4v6xUJ7uiCZlaG2bNDRERU3/QOI6NGjUJGRgbmzZuH1NRUdO3aFXv37tVe1JqUlAS5/N8Ol2+//RYqlQrPPvusznbmz5+PBQsWPFz1DUhOUQl2RJVNcja2l6fE1RARERkOvecZkYIhzDOy4Wgi5u88jzZOlvhr5iOQyXi9CBERNW11Ms8IVU4IoT1FMyagBYMIERGRHhhGasE/lzJxMS0P5gojPNO9udTlEBERGRSGkVqw+p94AMBIfw/YmJlIXA0REZFhYRh5SOdvZOOfS5mQy4AX+3pLXQ4REZHBYRh5SD/8kwAAGNzZFR725hJXQ0REZHgYRh7CjaxC/HG6bDjvlEdaSlwNERGRYWIYeQjrjiSgVCPQq6U9ujS3lbocIiIig8QwUkM5RSX4JaLsBn4vP9JK4mqIiIgMF8NIDW2KSEJecSnaOFmif9tmUpdDRERksBhGakBVqsHasEQAwOR+LSHn3XmJiIhqjGGkBnafvYHUnCI4WirxdDc3qcshIiIyaAwjehJC4PvDZcN5J/XxgtLYSOKKiIiIDBvDiJ6OXrmJ2JQcmJkYYUxAC6nLISIiMngMI3oqn/p9VA8P2JorJK6GiIjI8DGM6OHarQIcupgBoOwUDRERET08hhE9bD5xDUIAfVs7wtPBQupyiIiIGgWGkWoqVWuw5WTZJGeje/JaESIiotrCMFJNf19IR3puMRwsFHjcx1nqcoiIiBoNhpFq+iUiCQDwrF9zKIy524iIiGoLj6rVcCtfpb1wdVQPD4mrISIialwYRqrhn0sZ0AigvYsVWjazlLocIiKiRoVhpBpC48p6RQa0c5K4EiIiosaHYeQBNBqBw3dO0fDuvERERLWPYeQBzt/Iwc18FSwURvDztJO6HCIiokaHYeQBQuPSAQB9WjtyFA0REVEd4NH1AULLT9G04ykaIiKiusAwch+381WISroNABjIi1eJiIjqBMPIfRy+M6S3nbMV3GzNpC6HiIioUWIYuY9D5UN62/MUDRERUV1hGKmCWiO0s64OaMtTNERERHWFYaQK4Vdu4ma+CrbmJvD34pBeIiKiusIwUoWdp5MBAE92coWJEXcTERFRXeFRthLFpWr8eS4VADDU11XiaoiIiBo3hpFKHL6YidyiUjhZKRHg7SB1OURERI0aw0gl/r5QNuvq4M6uMJLLJK6GiIiocWMYqcSx+JsAyqaAJyIiorrFMHKP1OwiJGTmQy4DenrbS10OERFRo8cwco/yXpGObjawMTORuBoiIqLGj2HkHrvO3AAA9G3DUzRERET1gWHkLqnZRdqLV5/1ay5xNURERE0Dw8hdtkclQyOAnl72aNXMUupyiIiImgSGkbuExpX1inCiMyIiovrDMHJHfnEpTiXdBgD0bcO79BIREdUXhpE7IhJuoUQt4G5rBi8Hc6nLISIiajKMH3YDarUaJSUltVFLlVQqFTw9PaFSqVBUVFQnrxEZnwZ3KyMM8XFAcXFxnbwGERFRY2JiYgIjI6OH3o5MCCFqsqIQAqmpqcjKynroIh5Eo9Hg2rVr8PDwgFxeN505aTlFKFELOFgoYKZ4+B1LRETUFNja2sLFxQUyWcXbp+Tk5MDGxgbZ2dmwtrauchs17hkpDyJOTk4wNzevtIjaolarUVhYCC8vr1pJYPcqVWugysgDALRqZgljI569IiIiuh8hBAoKCpCeXjb4w9W15oM/ahRG1Gq1Nog4ONT9XW3VajUAwNTUtE7CSG5RCWTGCiiM5bC04PUiRERE1WFmZgYASE9Ph5OTU42P0TXqAii/RsTcvHEcuAtUZWHH3ISnZ4iIiPRRngUe5vrRhzofUZenZupTTmHZDrQ05b1oiIiI9FEbWaDJXxyh1ggUlpT1jFiZPvTgIiIiItJTkw8jRXeCiImRHCa8cLVRmjhxIoYPH37fNqGhoZDJZPUyOsyQDRgwAG+88UajfT0ikkaTPfqGh4fDyMgIw4cNBQCY3XW9yP0OTF5eXli2bJnOsoMHD2Lw4MFwcHCAubk5fHx88OabbyI5ObnK1/fy8oJMJoNMJoO5uTk6d+6MH374oUI7tVqNL7/8Ep07d4apqSns7Ozw5JNP4siRIxXaqlQqfPrpp/D19YW5uTkcHR3Rp08frFu37r7n8oQQ+P777xEQEABLS0vY2trC398fy5YtQ0FBQZXrGYqvvvoK69ev1/5cFwe4l19+GUZGRti6dWutbldfVQWvhh62Gnp9hiQpKQlDhgyBubk5nJyc8Pbbb6O0tLTK9uX7vrLHiRMntO3OnDmDfv36wdTUFB4eHvj00091tjNgwIBKtzFkyBBtmwULFqB9+/awsLCAnZ0dgoKCcPz4cb1r2bJlC7p27Qpzc3N4enris88+q/C+Nm7cqP0udHV1xQsvvICbN2/qtNm6dSvat28PU1NTdO7cGXv27NF5Pi8vD9OnT0fz5s1hZmYGHx8frFq1qsJrhYeH49FHH4WFhQWsra3xyCOPoLCwsNrvKTExsdLnjx07pn2Nbdu2wd/fH7a2trCwsEDXrl3xv//9T6eObdu2YdCgQXBwcIBMJkN0dHSFWouKijBt2jQ4ODjA0tIS//d//4e0tDSdNq+//jr8/PygVCrRtWvXCtuoC002jKxZswavvfYawo+EIT01pcZzi3z33XcICgqCi4sLfvvtN8TExGDVqlXIzs7G559/ft91Fy5ciJSUFJw7dw5jx47F5MmT8eeff2qfF0Lgueeew8KFCzFjxgzExsYiNDQUHh4eGDBgAHbs2KFtq1KpEBwcjCVLlmDKlCk4evQoIiIiMG3aNHzzzTc4f/58lXWMGzcOb7zxBp5++mkcPHgQ0dHR+OCDD/D777/jr7/+qtF+Ka+pIbCxsYGtrW2dbb+goACbNm3CO++8g7Vr1z6wfUPZL1JQq9XQaDRSl1HrGsrvVK1WY8iQIVCpVDh69Cg2bNiA9evXY968eVWu07t3b6SkpOg8XnrpJXh7e8Pf3x9A2VwRgwYNgqenJyIjI/HZZ59hwYIF+P7777Xb2bZtm842zp07ByMjI4wYMULbpm3btli+fDnOnj2LsLAweHl5YdCgQcjIyKh2LX/++SfGjBmDqVOn4ty5c1i5ciW+/PJLLF++XPs6R44cwfjx4/Hiiy/i/Pnz2Lp1KyIiIjB58mRtm6NHj2L06NF48cUXERUVheHDh2P48OE4d+6cts2sWbOwd+9e/PTTT4iNjcUbb7yB6dOnY+fOndo24eHheOKJJzBo0CBERETgxIkTmD59unZOrOq8p3IHDhzQaefn56d9zt7eHnPmzEF4eDjOnDmDSZMmYdKkSdi3b5+2TX5+Pvr27YtPPvmkyt/3zJkz8ccff2Dr1q04dOgQbty4gf/85z8V2r3wwgsYNWpUldupdaIGCgsLRUxMjCgsLKzJ6norLS0VJ06cEKWlpbWyvdzcXGFpaSkuXLggBj/9H/HaO3NFVn6x9vmDBw8KAOL27dsV1vX09BRffvmlEEKIa9euCYVCId54441KX6ey9SvbTjl7e3sxc+ZM7c+bNm0SAMTOnTsrrP+f//xHODg4iLy8PCGEEJ988omQy+Xi1KlTFdqqVCptu3tt3rxZABA7duyo8JxGoxFZWVlCCCH69+8vZsyYofP8008/LSZMmKDznhYuXCjGjRsnrKysxIQJE0RgYKB45513dNZLT08XxsbG4tChQ0IIIYqKisSbb74p3NzchLm5uejZs6c4ePBgpfUKIcSbb74phgwZov35yy+/FADEn3/+qV3WqlUrsXr1aiGEEBMmTBBPP/209t8AdB4JCQna3/mBAweEn5+fMDMzE4GBgeLChQtV1lFu/fr1olevXiIrK0uYm5uLpKQknefLX/+jjz4Srq6uwsvLSwghRFJSkhgxYoSwsbERdnZ2YtiwYSIhIUG7XkREhAgKChIODg7C2tpaPPLIIyIyMvK+tdz9Xu9272d6/vz5wtfXV/z444/C09NTWFtbi1GjRomcnBztOnl5eWLcuHHCwsJCuLi4iKVLl1b4HDzod7du3TphY2Mjfv/9d9GhQwdhZGSk8x6FECIhIaHC76T8c9W/f3/x2muvibffflvY2dkJZ2dnMX/+fJ31b9++LV588UXh6OgorKysxMCBA0V0dPR999O1a9fEc889J+zs7IS5ubnw8/MTx44dq3IfzpgxQ/Tv31/7c//+/cW0adPEjBkzhIODgxgwYIAYPXq0GDlypM56KpVKODg4iA0bNgghhFCr1WLRokXCy8tLmJqaii5duoitW7fet1Z97NmzR8jlcpGamqpd9u233wpra2tRXFx8nzV1a27WrJlYuHChdtnKlSuFnZ2dzjbeffdd0a5duyq38+WXXworK6sqv3uEECI7O1v7d1fdWkaPHi2effZZnXZff/21aN68udBoNEIIIT777DPRsmXLCm3c3d21P48cOVLne0QIIQICAsTLL7+s/bljx446ry2EEN27dxdz5szRWWfu3LlVvsfqvKfyv4GoqKhqb0cIIbp161bpa1e1vaysLGFiYqLzmYuNjRUARHh4eIXtlH9PPMj9MkH57zg7O/u+26i1nhEhBApUpXX2KCqtevtCz0lkt2zZgvbt26NN27Z4cvhI7Ni8EaY1GNa7detWqFQqvPPOO5U+X93/jWs0Gvz222+4ffs2FAqFdvnPP/+Mtm3bYujQoRXWefPNN3Hz5k3s378fQFmXZFBQELp161ahrYmJCSwsLCp97Y0bN6Jdu3Z4+umnKzwnk8lgY2NTrfdQbunSpfD19UVUVBQ++OADjBkzBps2bdL5HW3evBlubm7o168fAGD69OkIDw/Hpk2bcObMGYwYMQJPPPEELl26VOlr9O/fH2FhYdr5Zw4dOgRHR0eEhoYCAJKTk3HlyhUMGDCgwrpfffUVAgMDMXnyZO3/Pjw8PLTPz5kzB59//jlOnjwJY2NjvPDCCw98z2vWrMHYsWNhY2ODJ598UueUULmQkBDExcVh//792LVrF0pKShAcHAwrKyv8888/OHLkCCwtLfHEE09o/5edm5uLCRMmICwsDMeOHUObNm0wePBg5ObmPrCm6rhy5Qp27NiBXbt2YdeuXTh06BCWLFmiff7tt9/GoUOHtD1koaGhOHXqlM42qvO7KygowCeffIIffvgB58+fh5OTk842PDw88NtvvwEA4uLikJKSgq+++kr7/IYNG2BhYYHjx4/j008/xcKFC7WfewAYMWIE0tPT8eeffyIyMhLdu3fHY489hlu3blX6vvPy8tC/f38kJydj586dOH36NN555x29e2w2bNgAhUKBI0eOYNWqVRgzZgz++OMP5OXladvs27cPBQUFeOaZZwAAixcvxo8//ohVq1bh/PnzmDlzJsaOHYtDhw5V+TpTp06FpaXlfR/lwsPD0blzZzg7O2uXBQcHIycn5769o3fbuXMnbt68iUmTJuls95FHHtH5fgoODkZcXBxu375d6XbWrFmD5557rsrvHpVKhe+//x42Njbw9fWtdi3FxcUwNTXVaWdmZobr16/j6tWrAIDAwEBcu3YNe/bsgRACaWlp+PXXXzF48GCd9xQUFKSzneDgYISHh2t/7t27N3bu3Ink5GQIIXDw4EFcvHgRgwYNAlA2t8bx48fh5OSE3r17w9nZWfv9VJXK3lO5YcOGwcnJCX379tXpfbmXEEL7nfLII49U2e5ekZGRKCkp0Xnf7du3R4sWLXTetxRqNHxk48aNaNGiBQoKCmBubo4WLVpAZqKEz7x9D175Yew4UOnimIXBMFdU/62UHzyKS9ToPeAx5OXm4GjYYQwcOFCvci5dugRra+sazzr37rvvYu7cuSguLkZpaSns7e3x0ksvaZ+/ePEiOnToUOm65csvXryoraWyg++DXLp0Ce3atdO/+Co8+uijePPNN7U/jxw5Em+88QbCwsK04ePnn3/G6NGjIZPJkJSUhHXr1iEpKQlubm4AgLfeegt79+7FunXrsGjRogqv0a9fP+Tm5iIqKgp+fn44fPgw3n77be1pq9DQULi7u6N169YV1rWxsYFCoYC5uTlcXFwqPP/xxx+jf//+AID33nsPQ4YMQVFRUYUvv3KXLl3CsWPHsG3bNgDA2LFjMWvWLMydO1dnuJuFhQV++OEH7Zf5Tz/9BI1Ggx9++EHbbt26dbC1tUVoaCgGDRqERx99VOe1vv/+e9ja2uLQoUN46qmnKq1HHxqNBuvXr4eVlRWAstN1ISEh+Pjjj5GXl4c1a9bgp59+wmOPPQag7ODbvHlz7frV/d2VlJRg5cqVVR5wjIyMYG9vDwBwcnKqEOK7dOmC+fPnAwDatGmD5cuXIyQkBI8//jjCwsIQERGB9PR0KJVKAGWBeMeOHfj1118xZcqUCq/3888/IyMjAydOnNC+bmWflQdp06aNznUTrVq1goWFBbZv345x48ZpX2vYsGGwsrJCcXExFi1ahAMHDiAwMBAA0LJlS4SFheG7777Tfu7utXDhQrz11lvVqik1NVUniADQ/pyamlqtbaxZswbBwcE6v+vU1FR4e3tXuV07Ozud5yIiInDu3DmsWbOmwvZ37dqF5557DgUFBXB1dcX+/fvh6OhY7VqCg4Mxc+ZMTJw4EQMHDsTly5e1p8RTUlLg5eWFPn36YOPGjRg1ahSKiopQWlqKoUOHYsWKFTrvqbJ9dfd++uabbzBlyhQ0b94cxsbGkMvlWL16tTYAxMfHAyi7Fmbp0qXo2rUrfvzxRzz22GM4d+4c2rRpU633ZGlpic8//xx9+vSBXC7Hb7/9huHDh2PHjh0YNmyYtl12djbc3d1RXFwMIyMjrFy5Eo8//nil+64yqampUCgUFf7G7n3fUtA7jGzevBmffPIJNm7ciFatWiErKwsXL15Ey7bt66K+WhcXF4eIiAhs374dBSo1jI2N8dTw/8PatWv1DiNCiIcaX/32229j4sSJSElJwdtvv41XX321wpdidXt99O0detj1qnLvOdBmzZph0KBB2LhxI/r164eEhASEh4fju+++AwCcPXsWarUabdu21VmvuLi4ytl9bW1t4evri9DQUCgUCigUCkyZMgXz589HXl4eDh06VOUX+4N06dJF++/ykJmeno4WLVpU2n7t2rUIDg7WfpkOHjwYL774Iv7++2/tQRwAOnfurPO/ytOnT+Py5cvaIFCuqKgIV65cAQCkpaVh7ty5CA0NRXp6OtRqNQoKCpCUlFSj93YvLy8vndd3dXXVTut85coVqFQqBAQEaJ+3t7fXCa7V/d0pFAqd/aqve9e9u87Tp08jLy+vwmelsLBQux/vFR0djW7dummDSE3dfT4fAIyNjTFy5Ehs3LgR48aNQ35+Pn7//Xds2rQJAHD58mUUFBRUOHioVKpKezTLOTk5VehNqivXr1/Hvn37sGXLlofazpo1a9C5c2f07NmzwnMDBw5EdHQ0MjMzsXr1aowcOVLbu1CdWiZPnowrV67gqaeeQklJCaytrTFjxgwsWLBAe51GTEwMZsyYgXnz5iE4OFj7HTt16tRKA1JVvvnmGxw7dgw7d+6Ep6cnDh8+jGnTpsHNzQ1BQUHa3rSXX35Z29PRrVs3hISEYO3atVi8eHG13pOjoyNmzZql/blHjx64ceMGPvvsM50wYmVlhejoaOTl5SEkJASzZs1Cy5Yta/Qf0YZG7zDyxRdfYMSIEbC0tISpqSk8PT2RnZ2N/OzbiFkYXKF9fHwCNBoNWrdupV0WdyEOZubmaNHCo0L7yqjVapw+fQa+vl0qnWrWTI9TLGvWrEFpaan2f3JA2QFZqVRi+fLlsLGx0d7MJzs7u0KCzMrK0p66aNu2LbKzs5GSklKj3hFHR0e0bt0arVu3xtatW9G5c2f4+/vDx8dHu/3Y2NhK1y1fXn4gaNu2LS5cuKB3DdVdTy6XVwgulY3QqaxLdsyYMXj99dfxzTff4Oeff0bnzp3RuXNnAGVd5kZGRoiMjKzwu727+/leAwYMQGhoKJRKJfr37w97e3t06NABYWFhOHTokE7vjD5MTP6d+K48aFbVfa9Wq7FhwwakpqbC2NhYZ/natWt1wsi9+yUvLw9+fn7YuHFjhe02a9YMADBhwgTcvHkTX331FTw9PaFUKhEYGHjfiyWtra21XdV3y8rKgpGRkU4dd7/X8verz6mK6v7uzMzMHiq036/OvLw8uLq6ak/R3a2q06Tl01dX5WE/6/3790d6ejr2798PMzMzPPHEE9paAWD37t1wd3fXWa+8V6cyU6dOxU8//XTfmsu37eLigoiICJ3nykdKVNYTeK9169bBwcFB5wBYvu69Iy6q2m5+fj42bdqEhQsXVvoaFhYW2u+9Xr16oU2bNlizZg1mz55drVpkMhk++eQTLFq0CKmpqWjWrBlCQkIAlPU0AWWnw/r06YO3334bQFmgtbCwQL9+/fDRRx/B1dW1yvdU/n4KCwvx/vvvY/v27doRQV26dEF0dDSWLl2KoKAg7fd++Xd2uQ4dOlT6n4aq3lNlAgICdE5HAmWfzfL/sHbt2hWxsbFYvHhxtcOIi4sLVCoVsrKydP4+7n7fUtHrmhGVSoXIyEhtFyNQ9sGwtrYuO2WjMK7w0KgK4exgq7PMycEW6uLK25srjGFqLIfSSKbzMDWWVdm+ul90paWl+PHHH/H5558jOjoauw4exea9hxESdhxubm745ZdfAJR1v8rlckRGRuqsHx8fj+zsbG0AePbZZ6FQKCoMcSunzzBFDw8PjBo1SucP8rnnnsOlS5fwxx9/VGj/+eefw8HBQfu/rOeffx4HDhxAVFRUhbYlJSXIz8+v9HWff/55XLx4Eb///nuF54QQyM7OBlB2gExJSdE+p1arda46v5+nn34aRUVF2Lt3L37++WeMGTNG+1y3bt2gVquRnp6u/YIqf9zvj6P8vGxISIj2D3HAgAH45ZdfcPHixfv+cSoUCu31Jg9jz5492tNF0dHR2scvv/yCbdu23ff33717d1y6dAlOTk4V3nd52D1y5Ahef/11DB48GB07doRSqURmZuZ9a2rXrh3Onz+P4uJineWnTp2Ct7d3hQN7VVq1agUTExOdYZe3b9/WnhYEav67q0x5r5G+v5fu3btrw+C9NVTV9V9+QKnqmpJ7P+sAKh0iWZnevXvDw8MDmzdvxsaNGzFixAjtPvfx8YFSqURSUlKFWu++buleCxcu1Pl8VfYoFxgYiLNnz2p7jgBg//79sLa2rnDAvJcQAuvWrcP48eMrfE4CAwNx+PBhnVC2f/9+tGvXrsIpmq1bt6K4uBhjx4594P4CysL+vZ/X+9VSzsjICO7u7lAoFPjll18QGBioDfIFBQUV7vBeHpjLg2ZgYKA2xNz9nsqPbyUlJSgpKal0O+Vh2MvLC25uboiLi9Npc/HiRXh6eur9nu4WHR39wP/kVrbv7sfPzw8mJiY67zsuLg5JSUk6x3VJPPAy2bskJycLAOLo0aM6V85eu3ZNxMTEVLrOyZMnRWZmps6ytLS0+141nJycLE6cOFHh8bCjabZv3y4UCoV2hMiltFxx+tptkVWgEu+8847w9/fXtp0yZYrw8vISv//+u4iPjxeHDh0SvXr1Er169dJesS2EECtWrBAymUy88MILIjQ0VCQmJoqwsDAxZcoUMWvWrCprqWw0zfnz54VMJhMnTpwQQpSNZnnmmWeEnZ2d+OGHH0RCQoI4ffq0mDJlijA2Nhbbt2/XrltUVCT69esn7OzsxPLly0V0dLS4cuWK2Lx5s+jevXuV+1uj0YhRo0YJMzMz8fHHH4sTJ06IxMRE8ccff4hHH31U+xqrVq0S5ubmYteuXSI2NlZMnjxZWFtbVxhNc+97KjdmzBjh6+srZDKZuHr1aoXnvLy8xG+//Sbi4+PF8ePHxaJFi8SuXbuq3H+3bt0ScrlcGBkZidjYWCFE2e/XyMhIuLq66rS9d3TE5MmTRY8ePURCQoLIyMgQarW60hFUUVFR2tE2lXn66afFqFGjKixXq9XCxcVFLF++vNLXF0KI/Px80aZNGzFgwABx+PBhER8fLw4ePChee+01ce3aNSFE2ZXyjz/+uIiJiRHHjh0T/fr1E2ZmZlXuYyHKRpY4OTmJkSNHipMnT4pLly6JNWvWCCsrK/Htt99q21V2lfyXX34pPD09tT9PnTpVeHp6ipCQEHH27FkxbNgwYWlpqTOa5kG/u/LRNA9y/fp1IZPJxPr160V6errIzc0VQjx4FJdGoxF9+/YVvr6+Yt++fSIhIUEcOXJEvP/++9q/o3sVFxeLtm3bin79+omwsDBx5coV8euvv4qjR48KIYTYu3evkMlkYsOGDeLixYti3rx5wtrausJomnvrKjdnzhzh4+MjjI2NxT///FPhOQcHB7F+/Xpx+fJlERkZKb7++muxfv36B+6j6igtLRWdOnUSgwYNEtHR0WLv3r2iWbNmYvbs2do2x48fF+3atRPXr1/XWffAgQMCgPbv6W5ZWVnC2dlZjBs3Tpw7d05s2rRJmJubi++++65C2759+1b6d5GXlydmz54twsPDRWJiojh58qSYNGmSUCqV4ty5c9WuJSMjQ3z77bciNjZWREVFiddff12YmpqK48ePa9usW7dOGBsbi5UrV4orV66IsLAw4e/vL3r27Kltc+TIEWFsbCyWLl0qYmNjxfz584WJiYk4e/astk3//v1Fx44dxcGDB0V8fLxYt26dMDU1FStXrtS2+fLLL4W1tbXYunWruHTpkpg7d64wNTUVly9frvZ7Wr9+vfj5559FbGysiI2NFR9//LGQy+Vi7dq12jaLFi0Sf/31l7hy5YqIiYkRS5cuFcbGxtpRg0IIcfPmTREVFSV2794tAIhNmzaJqKgokZKSom0zdepU0aJFC/H333+LkydPisDAQBEYGKhTz6VLl0RUVJR4+eWXRdu2bUVUVJSIioqqckRWbYymaZBhRK1Wi9LSUu2juLi4VsLIU089JQYPHqz9OTO3SKRkFYhCVak4fvy4ACBOnz4thCjbufPnzxft27cXZmZmwtvbW0yZMkVkZGRU2O7+/ftFcHCwsLOzE6ampqJ9+/birbfeEjdu3KiylqoO3MHBweLJJ5/U/lxSUiI+++wz0bFjR6FQKIS1tbUIDg4WYWFhFdYtKioSixcvFp07dxampqbC3t5e9OnTR6xfv16UlJRUWYtarRbffvut6NGjhzA3NxfW1tbCz89PfPXVV6KgoEAIUTYc7ZVXXhH29vbCyclJLF68uNKhvVUdKPfs2SMAiEceeaTCcyqVSsybN094eXkJExMT4erqKp555hlx5syZKmsWQghfX1/h4uKi/fnmzZtCJpOJ5557TqfdvWEgLi5O9OrVS5iZmVUY2lvdMJKamiqMjY3Fli1bKq3tlVdeEd26dav09culpKSI8ePHC0dHR6FUKkXLli3F5MmTtX+0p06dEv7+/sLU1FS0adNGbN269b77+O7398wzzwg3NzdhYWEhfH19xerVq3VCdHXCSG5urhg7dqwwNzcXzs7O4tNPP61wEH7Q7666YUQIIRYuXChcXFyETCbTGdr7oCHlOTk54rXXXhNubm7CxMREeHh4iDFjxlQYYn23xMRE8X//93/C2tpamJubC39/f52D2bx584Szs7OwsbERM2fOFNOnT692GImJiREAhKenp84+F6IsPC1btky0a9dOmJiYiGbNmong4GDtMPfakJiYKJ588klhZmYmHB0dxZtvvqnz91/+Wb/3cz169GjRu3fvKrd7+vRp0bdvX6FUKoW7u7tYsmRJhTYXLlwQAMRff/1V4bnCwkLt51KhUAhXV1cxbNgwERERUaHt/WrJyMgQvXr1EhYWFsLc3Fw89thj2mHZd/v666+Fj4+PMDMzE66urmLMmDEVAtiWLVtE27ZthUKhEB07dhS7d+/WeT4lJUVMnDhRuLm5CVNTU9GuXTvx+eefV/i9Ll68WDRv3lyYm5uLwMDACiH0Qe9p/fr1okOHDtrv3549e1YY8j1nzhzRunVrYWpqKuzs7ERgYKDYtGmTTpt169ZVGCYPQGc4fGFhoXj11Ve1w9qfeeYZnbAiRNnnu7LtVPUfs9oIIzIhqn8Fo0qlgrm5OXbs2IFWrVrB29sbpqamSEhIgFqtrvSK9DNnzsDZ2VnnquXk5GRkZWWhY8eO1XpdtVqNqKgodOvWrca3JyYiIqLaV1RUhISEBG0muFtOTg5sbGyQnZ2tvR6zMnpdM6JQKODn56czRa0QAjk5OVWOJbewsEBOTk6F4u53cSIRERE1HXpPejZr1ixs2bIFeXl5KCoqQlJSEjQajfZisYSEBFy/fl3b3tnZGTk5OUhNTUVhYSFu3LiBgoKCehuqRkRERA2b3kN7R40ahdzcXGRlZeHKlSswNzdHmzZttFcH3zvs0NLSEt7e3rhx4waSk5NhamqK1q1bP3B4HRERETUNNZqBdezYsVWeH6psNk97e/uHnmCIiIiIGqcme9deIiIiahgeKow0xluBExERUfXVRhao0WkahUIBuVyOGzduoFmzZlAoFA813fODlM/KWFRUxKG9REREDYAQAiqVChkZGZDL5Tr339JXjcKIXC6Ht7c3UlJScOPGjRq/eHVpNBpkZmYiMTGxwtS8REREJB1zc3O0aNHioY7PNQojQFnvSIsWLVBaWlor9/m4n7y8PAwZMgQnT57k/CREREQNhJGREYyNq3+PuKrUOIwAZTfJMzExqfbNt2pKpVLh6tWrUCgUFUbvEBERkWHjOQ8iIiKSFMMIERERSYphhIiIiCT1UNeM1JfyGwvfe8M9IiIiarjKj9vlx/GqGEQYyc3NBQB4eHhIXAkRERHpKzc3FzY2NlU+LxMPiisNgEajwY0bN2BlZVWrk6vl5OTAw8MD165dg7W1da1tl3RxP9cf7uv6wf1cP7if60dd7mchBHJzc+Hm5nbfeUgMomdELpejefPmdbZ9a2trftDrAfdz/eG+rh/cz/WD+7l+1NV+vl+PSDlewEpERESSYhghIiIiSTXpMKJUKjF//nwolUqpS2nUuJ/rD/d1/eB+rh/cz/WjIexng7iAlYiIiBqvJt0zQkRERNJjGCEiIiJJMYwQERGRpBhGiIiISFKNPoysWLECXl5eMDU1RUBAACIiIu7bfuvWrWjfvj1MTU3RuXNn7Nmzp54qNWz67OfVq1ejX79+sLOzg52dHYKCgh74e6F/6fuZLrdp0ybIZDIMHz68bgtsJPTdz1lZWZg2bRpcXV2hVCrRtm1bfn9Ug777edmyZWjXrh3MzMzg4eGBmTNnoqioqJ6qNUyHDx/G0KFD4ebmBplMhh07djxwndDQUHTv3h1KpRKtW7fG+vXr67ZI0Yht2rRJKBQKsXbtWnH+/HkxefJkYWtrK9LS0iptf+TIEWFkZCQ+/fRTERMTI+bOnStMTEzE2bNn67lyw6Lvfn7++efFihUrRFRUlIiNjRUTJ04UNjY24vr16/VcueHRd1+XS0hIEO7u7qJfv37i6aefrp9iDZi++7m4uFj4+/uLwYMHi7CwMJGQkCBCQ0NFdHR0PVduWPTdzxs3bhRKpVJs3LhRJCQkiH379glXV1cxc+bMeq7csOzZs0fMmTNHbNu2TQAQ27dvv2/7+Ph4YW5uLmbNmiViYmLEN998I4yMjMTevXvrrMZGHUZ69uwppk2bpv1ZrVYLNzc3sXjx4krbjxw5UgwZMkRnWUBAgHj55ZfrtE5Dp+9+vldpaamwsrISGzZsqKsSG42a7OvS0lLRu3dv8cMPP4gJEyYwjFSDvvv522+/FS1bthQqlaq+SmwU9N3P06ZNE48++qjOslmzZok+ffrUaZ2NSXXCyDvvvCM6duyos2zUqFEiODi4zupqtKdpVCoVIiMjERQUpF0ml8sRFBSE8PDwStcJDw/XaQ8AwcHBVbanmu3nexUUFKCkpAT29vZ1VWajUNN9vXDhQjg5OeHFF1+sjzINXk32886dOxEYGIhp06bB2dkZnTp1wqJFi6BWq+urbINTk/3cu3dvREZGak/lxMfHY8+ePRg8eHC91NxUSHEsNIgb5dVEZmYm1Go1nJ2ddZY7OzvjwoULla6TmppaafvU1NQ6q9PQ1WQ/3+vdd9+Fm5tbhQ8/6arJvg4LC8OaNWsQHR1dDxU2DjXZz/Hx8fj7778xZswY7NmzB5cvX8arr76KkpISzJ8/vz7KNjg12c/PP/88MjMz0bdvXwghUFpaiqlTp+L999+vj5KbjKqOhTk5OSgsLISZmVmtv2aj7Rkhw7BkyRJs2rQJ27dvh6mpqdTlNCq5ubkYN24cVq9eDUdHR6nLadQ0Gg2cnJzw/fffw8/PD6NGjcKcOXOwatUqqUtrVEJDQ7Fo0SKsXLkSp06dwrZt27B79258+OGHUpdGD6nR9ow4OjrCyMgIaWlpOsvT0tLg4uJS6TouLi56taea7edyS5cuxZIlS3DgwAF06dKlLstsFPTd11euXEFiYiKGDh2qXabRaAAAxsbGiIuLQ6tWreq2aANUk8+0q6srTExMYGRkpF3WoUMHpKamQqVSQaFQ1GnNhqgm+/mDDz7AuHHj8NJLLwEAOnfujPz8fEyZMgVz5syBXM7/X9eGqo6F1tbWddIrAjTinhGFQgE/Pz+EhIRol2k0GoSEhCAwMLDSdQIDA3XaA8D+/furbE81288A8Omnn+LDDz/E3r174e/vXx+lGjx993X79u1x9uxZREdHax/Dhg3DwIEDER0dDQ8Pj/os32DU5DPdp08fXL58WRv2AODixYtwdXVlEKlCTfZzQUFBhcBRHgAFb7NWayQ5FtbZpbENwKZNm4RSqRTr168XMTExYsqUKcLW1lakpqYKIYQYN26ceO+997Ttjxw5IoyNjcXSpUtFbGysmD9/Pof2VoO++3nJkiVCoVCIX3/9VaSkpGgfubm5Ur0Fg6Hvvr4XR9NUj777OSkpSVhZWYnp06eLuLg4sWvXLuHk5CQ++ugjqd6CQdB3P8+fP19YWVmJX375RcTHx4u//vpLtGrVSowcOVKqt2AQcnNzRVRUlIiKihIAxBdffCGioqLE1atXhRBCvPfee2LcuHHa9uVDe99++20RGxsrVqxYwaG9D+ubb74RLVq0EAqFQvTs2VMcO3ZM+1z//v3FhAkTdNpv2bJFtG3bVigUCtGxY0exe/fueq7YMOmznz09PQWACo/58+fXf+EGSN/P9N0YRqpP3/189OhRERAQIJRKpWjZsqX4+OOPRWlpaT1XbXj02c8lJSViwYIFolWrVsLU1FR4eHiIV199Vdy+fbv+CzcgBw8erPQ7t3zfTpgwQfTv37/COl27dhUKhUK0bNlSrFu3rk5rlAnBvi0iIiKSTqO9ZoSIiIgMA8MIERERSYphhIiIiCTFMEJERESSYhghIiIiSTGMEBERkaQYRoiIiEhSDCNEREQkKYYRIiIikhTDCBEREUmKYYSIiIgkxTBCREREkvp/DKylqjfe5c0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABVtElEQVR4nO3deXhMZ/8G8HuyzGSPRHZC7PsaRCyvqlSKon27aCmqli66UkoVb7VFF63+Squv2tralVKU2kKRCiF2sSUEWcSSVTLJzPf3hzenxiSRiSQny/25rrmuOc85Z+Y7ZyYzd57znHM0IiIgIiIiUomV2gUQERFR1cYwQkRERKpiGCEiIiJVMYwQERGRqhhGiIiISFUMI0RERKQqhhEiIiJSFcMIERERqcpG7QKKwmg04tq1a3B2doZGo1G7HCIiIioCEUFaWhr8/PxgZVVw/0eFCCPXrl2Dv7+/2mUQERFRMcTFxaFmzZoFzq8QYcTZ2RnA3Rfj4uKicjVERERUFKmpqfD391d+xwtSIcJI3q4ZFxcXhhEiIqIK5kFDLDiAlYiIiFTFMEJERESqYhghIiIiVTGMEBERkaoYRoiIiEhVDCNERESkKoYRIiIiUhXDCBEREamKYYSIiIhUZXEY2bNnD/r27Qs/Pz9oNBr89ttvD1wnLCwMbdu2hU6nQ/369bF48eJilEpERESVkcVhJCMjA61atcLcuXOLtHxMTAz69OmD7t27IyoqCu+88w5GjBiBrVu3WlwsERERVT4WX5umV69e6NWrV5GXnzdvHurUqYNZs2YBAJo0aYK9e/fi66+/RmhoqKVPT0RERJVMqV8oLzw8HCEhISZtoaGheOeddwpcJzs7G9nZ2cp0ampqaZVHRERU6WXlGJCalQODUZRbUlo2ohPScPjSLbg62OLlznXg7+6gSn2lHkYSEhLg7e1t0ubt7Y3U1FTcuXMH9vb2ZuvMmDEDH330UWmXRkREVKEZjYK07FzsOXsdqVk50Oca8ffFG0hO16OavS3Czl6HwShFeqwnWvpV3jBSHBMnTsSYMWOU6dTUVPj7+6tYERERUdnR5xoReekWLlxPR0Z2Li5cT0dMcgasrTRITM1GYmoWMvUGix/X1loDK40G1lYaWGs0sLWxgl81O2iggY+rXSm8kqIp9TDi4+ODxMREk7bExES4uLjk2ysCADqdDjqdrrRLIyIiUlXczUxExd1GYmoWTsen4fjV2zibmF7sx+vTwhc6WyvczsxBU18X1PNyhK21FZr6uqCup1MJVl6ySj2MBAcHY/PmzSZt27ZtQ3BwcGk/NRERkapuZegRn5KFTH0uVh+6gh1nEpGpN8DFzhYJqVlFeow6Ho5o6O0EaysNvF3s0MTXBfa21vCrZgdvFztUc9DCUWsNjUZTyq+m9FgcRtLT03H+/HllOiYmBlFRUXB3d0etWrUwceJEXL16FT/99BMA4NVXX8WcOXMwfvx4vPzyy9i5cydWrVqFTZs2ldyrICIiUtGN9GzE3sjExevpuJWpR1TcbWw+nlDg8vfvYqnr6QhPJx3stdZo7ueKns280cTXBbbWVePcpBaHkUOHDqF79+7KdN7YjqFDh2Lx4sWIj4/H5cuXlfl16tTBpk2b8O677+Kbb75BzZo18eOPP/KwXiIiqlDSs3Ox7VQCNh2LB6DB9tOJcLGzQWpW7gPXrVHNHgajICE1C8M6ByCkiTfcHbXwdb3bs1HVaUSkaMNsVZSamgpXV1ekpKTAxcVF7XKIiKiSu3b7Do5duY31Udfwx4mCezju52pvC1trDVr7u6G+lxPaB7ihRxPvB69YSRX197tcHk1DRERUmnINRsSnZOHKrTu4evsOtpyIx7XbWcjKNeDi9YwHrt+hjju6NfSEXzU7tKvtDjdHLZx0/EktLm45IiKq1EQEmXoDFu+Pxb7zydh/4UaR161RzR6t/F3RvZEXHmvqDVd72wo9ULS8YhghIqJKRUSw4mActpxIwJVbmbhQSE+Hu6MWNd3s4eaghZuDLdrWdoO/mwNa+1eDmyPHcpQVhhEiIqrQcg1GpNzJwcJ9MZi768IDl3+uXU083bYm2gW4w9qKvRzlAcMIERGVe5dvZCLqym1cSs7AqfhU3MzQ40DMzQeuF9LEG72a+yCorjv8XO1hxfBRLjGMEBFRuXHxejqOXrmN41dSEXn5Fo5duQ1Ljvl0sbPBS53r4LVu9WCvtS69QqlEMYwQEZEq7ugNOJOQigvXM3DiagoW74994Do+LnZwd9SilrsD2gW4oaabA5rXcEF1Rx10Nlbs+aigGEaIiKhUnU9Kx1/nruP41RSsPXwV7o5a3MzQF7i8va01Gvs6w0lng8Y+zuhUzwNta7vB1d62DKumssQwQkREJeaO3oD9F5IRdzMTm08kICKfcR33BxEnnQ1c7W1R38sJ40IboXkN17Iql8oJhhEiInoo55PSsPVkIlYdisOlG5kFLtfAywnOdjbo09IPIU28oLWxgo+LHc/bQQwjRERkmai425i9/SzCoq8XulzXBh6wtbZC/9Z+eKKlHw+jpQIxjBARUYFyDEZExd3G9lOJWBIei6wcY4HL1nJ3wJDg2hjWuQ6DB1mEYYSIiBRGo2DfhWR8te0sTl1LRXZuweGjQx13jHmsIRr7OPPKs/RQGEaIiKqopLQsnE9Mx7mkdBiMgkX7YxB3806By3u76PBYU2+83aMhPJ11ZVgpVXYMI0REVUR2rgFL9sdi+uYzD1zWQWuNx5p648WOtdHGvxpsrK3KoEKqqhhGiIgqsYSULCyPuIw1kVdw9Xb+vR71PB2RlWNE+wA32GttMKxzABp6O5dxpVSVMYwQEVVC+88nY+CPB/Kd56C1xns9G6Ffaz94OHF3C6mPYYSIqBIwGgUbj8dj5cHL2Hf+htl8FzsbjOhaFy92rA13Rw42pfKFYYSIqIKKiLmJWX9GIzE1C7EFnGxszGMN8VaPBmVcGZFlGEaIiCqYo3G30X/uvnznNfNzQYc67hjQ3h+NfVzKuDKi4mEYISIqx25n6rH9dBK2nEjAgYs3kJada7ZMI29nvN69HkKb+cDO1lqFKokeDsMIEVE5s+VEPA7G3sKCvTGFLvfls63wTGDNMqqKqPQwjBARqeyO3oC1R67gXGI6Fu+PzXcZf3d7uDto8UxgTXSq74F6nk5lWyRRKWIYISJSybc7zmHpgctISM3Kd35IE28E1nbDsM4B3P1ClRrDCBFRGdtw9BreWn7ErN3TWYc+LXzxREtftAtwV6EyInUwjBARlbJcgxFHr9zGT+GXsD7qmtn8Nx+tjzcfbQCtDU+5TlUTwwgRUSlISstCZOwtzPjjDC7fND8HSI1q9vhlRBDqeDiqUB1R+cIwQkRUQlLu5GDsqqPYeSYRRsl/mVruDpjQqzF6NfeBRqMp2wKJyimGESKih2Q0Ckb8dAg7zySZzWsf4IY7OQZ8PygQ/u4OKlRHVP4xjBARFVNSahaWHriMb3acM2kPaeKFCb2aoJ6nI3s/iIqAYYSIqIhEBFdv38GqQ1fwf/cFEABw1tng4IchPAyXyEIMI0REhTAaBd/vvoAvtkYXuEyLGq74oHcTBNerXoaVEVUeDCNERPcREXyy6TTWHr6CW5k5BS73Sre6GPNYQ+hs2BNC9DAYRoiIcDeApGbl4o1lh/HXuWSz+c46G7wd0gADg2rBQcuvTqKSxL8oIqrSLlxPx8D5fyMxNdtsnoeTFp882Rz/aujJAEJUivjXRURV0u9Hr+HdlVHILeCEIGHvPYIAnpCMqEwwjBBRlXLxejoenbXbrL1PC1980KcJ/FzteDguURljGCGiSk1EsOdcMvZfSMaivbHQG4wm82cPaI2+rfxgbcUAQqQWhhEiqpTOJabh+90XsPNMEm7nc0RMn5a+mDuwrQqVEdH9GEaIqFIwGgUL98Vg3ZGrOHktNd9lXu5cB852NhjUsRa8nO3KuEIiKgjDCBFVWEmpWfjyz2isOnSlwGUaejvhu0FtUd/LuQwrIyJLMIwQUYX05dZozNl1Pt95L3ashWGd66Cep1MZV0VExcEwQkQVyu6z1zFsUQTuPSK3VU1XDAkOQO8WvrDX8myoRBUNwwgRVQin41PR65u/zNpPfhQKRx2/yogqMv4FE1G5ZTQKdp+9jnm7L+BAzE2TeWMfa4jR3evDiofkElV4DCNEVO4cv5KC78LO448TCWbzVo7qiKC6vDouUWXCMEJE5YKI4Oe/L2HK+pNm82ysNHi5Sx2Meawh7Gw5JoSosmEYISJVnY5PxbPzwpGenWs2r3sjT3zQuwkaePOwXKLKjGGEiFTx17nrGLwgwqzdy1mHT59qgceaeqtQFRGpgWGEiMrUlVuZ6PLZLrP2lzvXwbjQRjw0l6gKYhgholJ3O1OPhfti8X87zpnNmzOwDfq08OWVcomqMIYRIio16dm5+G7XeXwXdsFs3neD2qJ3C18VqiKi8oZhhIhKVGpWDsasPIrwC8nI0BtM5nk46fBES19MfqIprHl+ECL6H4YRIioRGdm5eHP5Eew8k2Q2r32AG754phUCPBxVqIyIyjuGESJ6KHf0BkxYewzro66ZtNtaazD9qRbo19oPOhsOSiWigjGMEFGxiAg+WHcCyyMum7TX9XDEqleD4eGkU6kyIqpoGEaIyCKZ+lysiIjDtI2nTNo7BLjji2dbonZ17oohIstYFWeluXPnIiAgAHZ2dggKCkJEhPmJi+41e/ZsNGrUCPb29vD398e7776LrKysYhVMROo4l5iGN5cfQdMpW02CiK21Bken9sSqV4MZRIioWCzuGVm5ciXGjBmDefPmISgoCLNnz0ZoaCiio6Ph5eVltvyyZcswYcIELFy4EJ06dcLZs2fx0ksvQaPR4KuvviqRF0FEpes/G05i8f5Yk7auDTwwtmcjtPavpkpNRFR5aERELFkhKCgI7du3x5w5cwAARqMR/v7+ePPNNzFhwgSz5d944w2cPn0aO3bsUNrGjh2LAwcOYO/evUV6ztTUVLi6uiIlJQUuLi6WlEtED2Ht4SsYs+qoSdsLHWrh1W512QtCRA9U1N9vi3pG9Ho9IiMjMXHiRKXNysoKISEhCA8Pz3edTp064ZdffkFERAQ6dOiAixcvYvPmzRg8eHCBz5OdnY3s7GyTF0NEZSMi5ibGrzmK2BuZJu12tlY4+dHjPD8IEZU4i8JIcnIyDAYDvL1NL2Dl7e2NM2fO5LvOwIEDkZycjC5dukBEkJubi1dffRUffPBBgc8zY8YMfPTRR5aURkQPSUQw6udIbDuVaDbvm+dbo3/rGipURURVQbEGsFoiLCwM06dPx3fffYfDhw9j7dq12LRpEz7++OMC15k4cSJSUlKUW1xcXGmXSVSlhUUnoc7EzSZB5PFmPvj1tU6ImdGbQYSISpVFPSMeHh6wtrZGYqLpf06JiYnw8fHJd53Jkydj8ODBGDFiBACgRYsWyMjIwKhRozBp0iRYWZnnIZ1OB52O5yggKm0pd3LQ6qM/Tdp0NlY4OrUn7Gx5ojIiKhsW9YxotVoEBgaaDEY1Go3YsWMHgoOD810nMzPTLHBYW9/9krNw7CwRlZDIS7fw9Pf7zYLInnHdEf1JLwYRIipTFh/aO2bMGAwdOhTt2rVDhw4dMHv2bGRkZGDYsGEAgCFDhqBGjRqYMWMGAKBv37746quv0KZNGwQFBeH8+fOYPHky+vbtq4QSIip9IoJVh+Lw/q/Hzea18q+G9aM7q1AVEVExwsiAAQNw/fp1TJkyBQkJCWjdujW2bNmiDGq9fPmySU/Ihx9+CI1Ggw8//BBXr16Fp6cn+vbti08//bTkXgURFSgjOxfz/7qI2dvPmc0bElwbE3s1gb2W/xgQkXosPs+IGnieESLLxSRnIPTrPdAbjGbzVozqiI51q6tQFRFVJaVynhEiKv/SsnLQY9ZuJKVlm7RXd9RiwUvtecZUIip3GEaIKonsXAPafbwdadm5Ju3PtauJmf9uCSuerIyIyimGEaIKTkTw6abT+HFvjEl7cN3q+GVEEM+YSkTlHsMIUQV1K0OPV3+JxIGYmybtDb2dsPWdf0GjYQghooqBYYSoApq76zy+2Bpt1r73/e6o6eagQkVERMXHMEJUgWw4eg1vLT9i0tY+wA0/Dm0PV3tblaoiIno4DCNEFcDNDD3afrzNpM3DSYcNb3SGXzV7laoiIioZDCNE5dy2U4kY+dMhk7YlL3dAt4aeKlVERFSyGEaIyqmrt++g37d7cSNDr7QF1XHH8pEdeZguEVUqDCNE5YyI4IN1J7A84rJJ+5Z3uqKxD89ATESVD8MIUTlyPikdIV/tNml7JrAmPnu6Jc8XQkSVFsMIUTmxPuoq3l4RpUz7utph01td4e6oVa8oIqIywDBCpLKUzBx0mL4d2bn/XNBu1SvB6FDHXcWqiIjKDsMIkUriU+5gzs7zWHrAdGzIr68FI7A2gwgRVR0MI0QqWLg3BtM2njJpC23mjTkD28LW2kqlqoiI1MEwQlSGbmXo8covkYi453oyjzX1xuQ+TVGrOk/jTkRVE8MIURnIyjGg9zd/4WJyhkn7jrHdUM/TSaWqiIjKB4YRolKW3/Vknmzth68HtOaVdYmIwDBCVKpuZehNgojOxgoHPwyBix0vakdElIdhhKiUfLrpFOb/FaNM83oyRET547B9olLw418XTYLIvBfbMogQERWAPSNEJeh6Wja6fLbT5ARmf0/sAR9XOxWrIiIq3xhGiErIL39fwoe/nTBp2/hmFwYRIqIHYBgheki5BiOmbjhpcibVT59qjkFBtVWsioio4mAYISomEcHLiw9iV/R1pa2BlxN+GREEbxf2hhARFRXDCFExnE1MQ8+v95i0vRvSEG8+Wh9WVjx3CBGRJRhGiCyQlWNA32/34lxSutJW3VGL9W90Rk03ns6diKg4GEaIiihTn4umU7aatM17MRCPN/dRqSIiosqBYYSoCH786yI+2XRame7awANLhnXgLhkiohLAMEJUCBFBow+3QG/457whrz1SD+8/3ljFqoiIKheGEaICZOUY0HjyFpM27pYhIip5DCNE+TiflIaQr0yPlomZ0ZtX2SUiKgUMI0T3Gb/mKFYduqJMP97MB/MGB6pYERFR5cYL5RHdY8Yfp02CyMCgWgwiRESljD0jRACMRsET3+7FqfhUAIC1lQaHJoXAzVGrcmVERJUfwwhVaSKCXw5cxuT7LnB3dGpPOOn450FEVBb4bUtVVlpWDtpM24ZcoyhtnepVx7KRHVWsioio6mEYoSpp+6lEjPjpkDJd3VGLsT0b4YUO/ipWRURUNTGMUJVz6lqqSRAZFFQLnz7VQsWKiIiqNoYRqlL+b8c5fLXtrDI9/vFGeP2R+ipWREREDCNUZRy/koI5u84r08tGBqFTPQ8VKyIiIoBhhKqIyzcy0XfOXgCAg9YaEZNCeLQMEVE5wZOeUaV3LjEN//pilzL98/AODCJEROUIwwhVaisiLuOxr/+5xsx/BwcisLa7ihUREdH9GEao0lp24DImrD2uTL/cuQ56NuMVd4mIyhv2VVOlNGZlFNYeuapM/zW+O/zdHVSsiIiICsKeEap01kReMQki2979F4MIEVE5xp4RqlSOXbmN91YfVaYvTu8NKyuNihUREdGDsGeEKo2Nx66h35x9yvTqV4MZRIiIKgCGEaoUlh24jDeWHVGmP3u6BdoH8KgZIqKKgLtpqMIbv+YoVh26okxHTOoBL2c7FSsiIiJLMIxQhfbKz4ew9WSiMh0+8VEGESKiCoZhhCqs2dvPKkGkrqcjNr7ZBQ5afqSJiCoafnNThXQ+KR2zt58DAHSp74FfRgSpXBERERUXB7BShXM+KR0hX+1Wpr95vrV6xRAR0UNjGKEK5WjcbZMgsnJUR1R30qlYERERPaxihZG5c+ciICAAdnZ2CAoKQkRERKHL3759G6NHj4avry90Oh0aNmyIzZs3F6tgqrqS07Px7A/hyvSiYe0RVLe6ihUREVFJsHjMyMqVKzFmzBjMmzcPQUFBmD17NkJDQxEdHQ0vLy+z5fV6PR577DF4eXlhzZo1qFGjBi5duoRq1aqVRP1URfwcHovJ608q01880xLdG5l/3oiIqOLRiIhYskJQUBDat2+POXPmAACMRiP8/f3x5ptvYsKECWbLz5s3D1988QXOnDkDW1vbYhWZmpoKV1dXpKSkwMXFpViPQRVTVo4BjSdvMWl7r2dDvPFoA5UqIiKioirq77dFu2n0ej0iIyMREhLyzwNYWSEkJATh4eH5rrNhwwYEBwdj9OjR8Pb2RvPmzTF9+nQYDIYCnyc7OxupqakmN6p6MrJzzYLIX+O7M4gQEVUyFoWR5ORkGAwGeHt7m7R7e3sjISEh33UuXryINWvWwGAwYPPmzZg8eTJmzZqFTz75pMDnmTFjBlxdXZWbv7+/JWVSJbAm8gqaTd2qTHes646YGb159V0iokqo1I+mMRqN8PLywn//+18EBgZiwIABmDRpEubNm1fgOhMnTkRKSopyi4uLK+0yqRxZtC/G5Mq7U55oihWjgqHR8KJ3RESVkUUDWD08PGBtbY3ExEST9sTERPj4+OS7jq+vL2xtbWFtba20NWnSBAkJCdDr9dBqtWbr6HQ66HQ8XLMq2n4qER/9fkqZ3jG2G+p5OqlYERERlTaLeka0Wi0CAwOxY8cOpc1oNGLHjh0IDg7Od53OnTvj/PnzMBqNStvZs2fh6+ubbxChquv4lRSM+OmQMh3xQQ8GESKiKsDi3TRjxozB/PnzsWTJEpw+fRqvvfYaMjIyMGzYMADAkCFDMHHiRGX51157DTdv3sTbb7+Ns2fPYtOmTZg+fTpGjx5dcq+CKrydZxLRd85eZfrzp1vCy4UXvCMiqgosPs/IgAEDcP36dUyZMgUJCQlo3bo1tmzZogxqvXz5Mqys/sk4/v7+2Lp1K9599120bNkSNWrUwNtvv43333+/5F4FVWhxNzPx8uJ/ekT+OzgQPZvlv9uPiIgqH4vPM6IGnmek8srU56LplH+Omvn9jS5oUdNVxYqIiKiklMp5RohKUlaOAe0+2a5Mzx3YlkGEiKgKsng3DVFJyDUYTU5o1ruFD/q09FWxIiIiUgt7RqjMZWTnov6kP5Tp7o088d2gQBUrIiIiNTGMUJkSEQz68YAyPTCoFhYN66BiRUREpDbupqEyIyLo9kUYLt/MBAB82KcJRnStq3JVRESkNvaMUJlZE3lFCSI13ewZRIiICADDCJWR62nZGLfmGABAZ2OFv8Z3V7kiIiIqLxhGqNQZjIL2n/5zCO/GN7vwondERKTgmBEqVeNWH8XqyCvK9Id9mqCBt7OKFRERUXnDnhEqNR+sO24SRBr7OHOcCBERmWHPCJWKPWevY9mBy8r09jHdUN+LV+AlIiJzDCNU4m5n6vHSoggAgIPWGif+EworK44RISKi/DGMUIm6dvsOOs3cqUxveKMzgwgRERWKY0aoxKw7csUkiHz+TEvU9+JgVSIiKhzDCJWIrBwD3l15VJl+69H6eDawpooVERFRRcHdNFQi7r0C76pXgtGhjruK1RARUUXCnhF6aFPWn1Duj3+8EYMIERFZhGGEHsqF6+n4KfySMv36I/VVrIaIiCoihhEqts3H49Fj1m5l+uCkEBWrISKiiophhIolOT0bry89rExP7NUYns46FSsiIqKKigNYyWJZOQa0++SfC99tfedfaOTDQ3iJiKh42DNCFrmRnm1y5MzgjrUZRIiI6KEwjFCRpWTmIPCeHpGXOgXg4yebq1gRERFVBtxNQ0ViMAraf/pPEJn1bCs8zZOaERFRCWDPCD1QQkoW6n2wGXqDEQAwMKgWgwgREZUY9oxQoUQELy44oEwP71IHk59oqmJFRERU2TCMUKEW7I3B+aR0AMDMf7fA8x1qqVwRERFVNgwjVKDPtpzB92EXANzdNcMgQkREpYFjRihf127fUYKIRgNM6t1E5YqIiKiyYhihfHWauVO5Hz6hBxx17EQjIqLSwTBCZkYsOajc/2V4EHxc7VSshoiIKjuGETKx/0Iytp9OAgA08HJClwYeKldERESVHcMIKdKzczF88SFletNbXVWshoiIqgqGEQJw93wiwdN34E6OAQAQ9t4j0Nrw40FERKWPvzYEAJi49jjSsnMBAKP+VRcBHo4qV0RERFUFD5Go4kQEE9cex4qDcQCA9gFu+ICH8RIRURliz0gV98Oei0oQaeLrgsXDOqhcERERVTXsGanCrqdlY+YfZwAAIU288ePQdipXREREVRF7RqqovN0zeea92FbFaoiIqCpjGKmi5uw8j+2nE+/eH9gGNtb8KBARkTr4C1QFXbqRgVnbzgIAnmjpiyda+qlcERERVWUMI1XQ0IURAAAHrTWm9W+ucjVERFTVMYxUMZuOxSP2RiYAYPaA1nB31KpcERERVXUMI1XM8ojLAICWNV3Rs5mPytUQERExjFQpqw7FYe/5ZADA58+0VLkaIiKiuxhGqojUrByMX3MMAFDX0xGNfVxUroiIiOguhpEq4GDsTbT8z5/K9Ef9mqlYDRERkSmGkUruVoYez84LV6bfCWmArg08VayIiIjIFE8HX8l9vOmUcn/n2G6o6+mkYjVERETm2DNSic36MxprD18FAAzuWJtBhIiIyiWGkUrqdHwqvt15Xpme/ERTFashIiIqGMNIJfXBun8ugnfm48ehteFbTURE5RN/oSqhsOgkHLl8GwDw1qP1YWdrrW5BREREhWAYqWRSs3Lw0qKDyvTIf9VVsRoiIqIHYxipZCb8eky5/+trneBsZ6tiNURERA/GMFKJvLX8CDYfTwAATOzVGIG13VSuiIiI6MGKFUbmzp2LgIAA2NnZISgoCBEREUVab8WKFdBoNHjyySeL87RUiN+PXsOGo9eU6Ve61VOxGiIioqKzOIysXLkSY8aMwdSpU3H48GG0atUKoaGhSEpKKnS92NhYvPfee+jatWuxi6X8ZeUY8ObyI8r0+U97qVgNERGRZSwOI1999RVGjhyJYcOGoWnTppg3bx4cHBywcOHCAtcxGAwYNGgQPvroI9StywGVJe2H3ReV+2teDYaNNfe+ERFRxWHRr5Zer0dkZCRCQkL+eQArK4SEhCA8PLzA9aZNmwYvLy8MHz68SM+TnZ2N1NRUkxvl72xiGr7efhYAMP7xRmgX4K5yRURERJaxKIwkJyfDYDDA29vbpN3b2xsJCQn5rrN3714sWLAA8+fPL/LzzJgxA66ursrN39/fkjKrjFyDET2/3gMAqOXugOFd6qhcERERkeVKtT8/LS0NgwcPxvz58+Hh4VHk9SZOnIiUlBTlFhcXV4pVVlxfbI1W7n/QuzF0Njy5GRERVTwWXbXXw8MD1tbWSExMNGlPTEyEj4+P2fIXLlxAbGws+vbtq7QZjca7T2xjg+joaNSrZ37Uh06ng06ns6S0KicpNQs/7Lk7VuSFDv54vLmvyhUREREVj0U9I1qtFoGBgdixY4fSZjQasWPHDgQHB5st37hxYxw/fhxRUVHKrV+/fujevTuioqK4++UhfLTxlHJ/Wv/mKlZCRET0cCzqGQGAMWPGYOjQoWjXrh06dOiA2bNnIyMjA8OGDQMADBkyBDVq1MCMGTNgZ2eH5s1NfyirVasGAGbtVHR/HI/HpmPxAIC3ezSALY+eISKiCsziMDJgwABcv34dU6ZMQUJCAlq3bo0tW7Yog1ovX74MKyv+OJYWo1Hw2tLDyvSbj9ZXsRoiIqKHpxERUbuIB0lNTYWrqytSUlLg4uKidjmq+mzLGXwfdgEAsO71TmhTi6d8JyKi8qmov9/swqhAREQJIt4uOgYRIiKqFBhGKpD5f/1zptUlL3dQsRIiIqKSwzBSQWTnGvD1tnMAgGZ+LmjsU7V3VxERUeXBMFJBfLLxNO7kGAAAq14xP4yaiIioomIYqQCOXL6Fn/++BADoVK86HHUWHwRFRERUbjGMlHN39AY89d1+AICzzgaLh3GsCBERVS4MI+Xc8CUHlfsLXmoPrQ3fMiIiqlz4y1aOHY27jf0XbgAAng2siQ513FWuiIiIqOQxjJRjc3adBwB4OOnw2dMtVa6GiIiodDCMlFNnElKx7dTdqyPPHdgGVlYalSsiIiIqHQwj5dSLP0YAAJr6uiCobnWVqyEiIio9DCPl0Obj8UhOzwYAfP4Md88QEVHlxjBSDn288RQAoJqDLZrXcFW5GiIiotLFMFLOrD4Uh/iULADAB72aqFwNERFR6WMYKUf2nL2OcWuOAQDqeDjiufb+KldERERU+hhGypEhCyOU++te76RiJURERGWHYaScSM/Ohc3/Dt+d2KsxqjloVa6IiIiobDCMlBPzwi4g1yio7qjF8C511C6HiIiozDCMlAPRCWnK2VYHtPeHjTXfFiIiqjr4q6cyEUHo7D3K9GuP1FOxGiIiorLHMKKyvy/eVO4veqk9nO1sVayGiIio7DGMqOyvc9cBAI819Ub3xl4qV0NERFT2GEZUdCM9G9+FXQAAdOT1Z4iIqIpiGFHR2NVHlfvPtqupYiVERETqYRhRSWpWDsKi7+6ieblzHbhwrAgREVVRDCMq+Tn8knL/g96NVayEiIhIXQwjKtl5JgkA0KelL88rQkREVRp/BVWwKzoJkZduAQBe53lFiIioimMYUcGwRQcBAI19nNHMz1XlaoiIiNTFMFLGdkUnKfffeLS+ipUQERGVDwwjZWze/84rAgBPtPRTsRIiIqLygWGkDMUkZ+BAzN3Tv68f3VnlaoiIiMoHhpEy9OXWaABAq5quaOVfTd1iiIiIygmGkTK06Xg8AOCRRrwGDRERUR6GkTKy5US8cr93C18VKyEiIipfGEbKgNEo+Oj3UwAAd0ctGvk4q1wRERFR+cEwUgZ+/vsS4lOyAAALhrZTuRoiIqLyhWGklIkIPt9yBgDQpb4H2tRyU7kiIiKi8oVhpJSN/OkQMvQGAMCIrnVUroaIiKj8YRgpRSKC7af/OeMqj6IhIiIyxzBSitZEXlHu//5GFxUrISIiKr8YRkrRuDXHAAC9mvugRU1eEI+IiCg/DCOlZPfZ68r9D3o3UbESIiKi8o1hpJQMXRgBAHBzsIW/u4PK1RAREZVfDCOlYM89vSKfPNlCxUqIiIjKP4aRUrA84jIAwNtFhz4teep3IiKiwjCMlLDsXAPCou/2jEx+oqnK1RAREZV/DCMlbPmBy7iTY4DOxgq9m7NXhIiI6EEYRkqQ0SiYt/siACCkqTesrDQqV0RERFT+MYyUoJlbziAh9e4F8Sb34S4aIiKiomAYKUE/h18CAHSo4w4fVzuVqyEiIqoYGEZKyKlrqbiTc/eCeK91q6dyNURERBUHw0gJybsOTe3qDujemBfEIyIiKiqGkRJgNAoW7osBwF4RIiIiSzGMlIBfDlxS7oc281GxEiIiooqHYeQhiQjm7DwPAGjq6wI3R63KFREREVUsxQojc+fORUBAAOzs7BAUFISIiIgCl50/fz66du0KNzc3uLm5ISQkpNDlK5q5u84jKS0bAPB/L7RWtxgiIqIKyOIwsnLlSowZMwZTp07F4cOH0apVK4SGhiIpKSnf5cPCwvDCCy9g165dCA8Ph7+/P3r27ImrV68+dPHlwdaTiQAAT2cd6ns5q1wNERFRxaMREbFkhaCgILRv3x5z5swBABiNRvj7++PNN9/EhAkTHri+wWCAm5sb5syZgyFDhhTpOVNTU+Hq6oqUlBS4uLhYUm6pOpeYhse+3gMA+PW1Tgis7aZyRUREROVHUX+/LeoZ0ev1iIyMREhIyD8PYGWFkJAQhIeHF+kxMjMzkZOTA3d39wKXyc7ORmpqqsmtPPou7AIAwN7WmkGEiIiomCwKI8nJyTAYDPD29jZp9/b2RkJCQpEe4/3334efn59JoLnfjBkz4Orqqtz8/f0tKbNMnI5Pxbojd3c1zfh3C5WrISIiqrjK9GiamTNnYsWKFVi3bh3s7Ao+XfrEiRORkpKi3OLi4sqwyqJZfejuSc40GuDJNjVUroaIiKjisrFkYQ8PD1hbWyMxMdGkPTExET4+hZ9f48svv8TMmTOxfft2tGzZstBldToddDqdJaWVKZF/TnI2PrSxytUQERFVbBb1jGi1WgQGBmLHjh1Km9FoxI4dOxAcHFzgep9//jk+/vhjbNmyBe3atSt+teXExmPxyv0B7cvfLiQiIqKKxKKeEQAYM2YMhg4dinbt2qFDhw6YPXs2MjIyMGzYMADAkCFDUKNGDcyYMQMA8Nlnn2HKlClYtmwZAgIClLElTk5OcHJyKsGXUnb+OHE3jARUd4A7T3JGRET0UCwOIwMGDMD169cxZcoUJCQkoHXr1tiyZYsyqPXy5cuwsvqnw+X777+HXq/HM888Y/I4U6dOxX/+85+Hq14lm4/fDVQTezdRuRIiIqKKz+LzjKihPJ1nJC0rBy3+8ycAYO/73VHTzUHVeoiIiMqrUjnPCAHLIy4DANwdtQwiREREJYBhxAIigsX7YgEAw7vUUbcYIiKiSoJhxAKHL9/GtZQsAMDQTgHqFkNERFRJMIxYYMX/dtE09nGGk87isb9ERESUD4YRC1xLuQMAsLO1VrkSIiKiyoNhxAJxN++GkacDa6pcCRERUeXBMFJEl25k4PLNTABAr+aFn/qeiIiIio5hpIh+Dr8EAGhZ0xUeTuX3ujlEREQVDcNIEf249+6F8dr4V1O3ECIiokqGYaQIziSkKveHdeb5RYiIiEoSw0gRzPrzrHI/wMNRxUqIiIgqH4aRB0hKy8K2U4kAgGn9m6lcDRERUeXDMPIAf51NVu4/G+ivYiVERESVE8PIAxy6dAsA0KelL+y1PNkZERFRSWMYKYTRKMpVers18FS5GiIiosqJYaQQx6+mKPdDm/FEZ0RERKWBYaQQB2NvAgBa+1eDq4OtytUQERFVTgwjhbh04+7p36sxiBAREZUahpFC/Pz33VPA81o0REREpYdhpACJqVnK/Z5NGUaIiIhKC8NIAU78b/Cqh5MObo5alashIiKqvBhGCrDjTBIAIKiOu8qVEBERVW4MIwVYduDu+UU61a+uciVERESVG8NIPjKyc5X73RryZGdERESliWEkHxExN5X7NarZq1gJERFR5ccwko+T1+4OXq3r4QiNRqNyNURERJUbw0g+Uu7kAABqV3dQuRIiIqLKj2EkH/P/igEAPNrYS+VKiIiIKj+GkfscuHhDud+mlpuKlRAREVUNDCP3+fC3E8r95jVcVayEiIioamAYuc+5pHQAPNkZERFRWWEYuUdWjkG5P7VvMxUrISIiqjoYRu5x/n+9IgDQ1M9FxUqIiIiqDoaRe+w+ex0A4OHEC+MRERGVFYaRe4RF3704Xo/G3ipXQkREVHUwjNzjzv/GjLg5smeEiIiorDCM/E9SWhZOXE0FAAwJrq1yNURERFUHw8j/nEv8Z/CqHy+OR0REVGYYRv5n8/F4AEBgbZ51lYiIqCwxjPxPTHIGAKCht5PKlRAREVUtDCMAjEbB/gt3r0nTv3UNlashIiKqWhhGAJy//s94kTa1qqlXCBERURXEMALgQMxNAIC1lQY6G2uVqyEiIqpaGEYA7D+fDADoVK+6ypUQERFVPTYP+wBGoxF6vb4kaimQXq9H7dq1odfrkZWVVeKPn5aRiRrO1mjl61Aqj09ERFQZ2drawtr64fcoaEREiruyXq9HTEwMjEbjQxdSGKPRiLi4OPj7+8PKquQ7c5JSs6A3CKo52MJJ99D5jIiIqMqoVq0afHx8oNFozOalpqbC1dUVKSkpcHEp+AK0xf7lFRHEx8fD2tq61EJCHoPBgDt37iAgIKBEEti9jEZBTlI6BILa7g6w0zKMEBERPYiIIDMzE0lJd6/r5uvrW+zHKvYvb25uLjIzM+Hn5wcHB4diF1AUBsPda8bY2dmVeBhJy8oBbGxhY6WBq7NjvsmOiIiIzNnb3z1jeVJSEry8vIr9G13s7oy8gKDVVuyLymVk330dNlYaBhEiIiIL5XVI5OTkFPsxHnrfSkX/AU/NurvxnO1sVa6EiIio4imJHFDlD+21sbq7Ea0qdqYiIiKqsKp8GMkx3D0SyIk9I5XWSy+9hCeffLLQZcLCwqDRaHD79u0yqamieuSRR/DOO+9U2ucjInVU2TASHh4Oa2trjBz0LADA9p6ukcJ+mAICAjB79myTtl27dqF3796oXr06HBwc0LRpU4wdOxZXr14t8PkDAgKg0dwdp+Lg4IAWLVrgxx9/NFvOYDDg66+/RosWLWBnZwc3Nzf06tUL+/btM1tWr9fj888/R6tWreDg4AAPDw907twZixYtKnRfnojgv//9L4KCguDk5IRq1aqhXbt2mD17NjIzMwtcr6L45ptvsHjxYmW6NH7gXnnlFVhbW2P16tUl+riWKih4lfewVd7rq0guX76MPn36wMHBAV5eXhg3bhxyc3MLXD5v2+d3O3jwIAAgNjY23/l///13vo+5YsUKaDQak89iTk4O3n//fbRo0QKOjo7w8/PDkCFDcO3aNbP1N23ahKCgINjb28PNzc3kcY4ePYoXXngB/v7+sLe3R5MmTfDNN9/k+7ratm0LnU6H+vXrm3wHAMD333+Pli1bwsXFBS4uLggODsYff/yR7+sREfTq1QsajQa//fab2fzFixejZcuWsLOzg5eXF0aPHm0yf+vWrejYsSOcnZ3h6emJp59+GrGxscr8tWvX4rHHHoOnp6dSy9atW/OtBQBmzpwJjUZj8j1W0Huk0WjMvpcKq9fS97qkVNkwsmDBArw++g1EHtiP6wkJsLUp3qb44YcfEBISAh8fH/z66684deoU5s2bh5SUFMyaNavQdadNm4b4+HicOHECL774IkaOHGnyxyAieP755zFt2jS8/fbbOH36NMLCwuDv749HHnnE5I9Cr9cjNDQUM2fOxKhRo7B//35ERERg9OjR+Pbbb3Hy5MkC6xg8eDDeeecd9O/fH7t27UJUVBQmT56M9evX488//yzWdsmrqTxwdXVFtWrVSu3xMzMzsWLFCowfPx4LFy584PLlZbuowWAwlPp5idRQXt5Tg8GAPn36QK/XY//+/ViyZAkWL16MKVOmFLhOp06dEB8fb3IbMWIE6tSpg3bt2pksu337dpPlAgMDzR4vNjYW7733Hrp27WrSnpmZicOHD2Py5Mk4fPgw1q5di+joaPTr189kuV9//RWDBw/GsGHDcPToUezbtw8DBw5U5kdGRsLLywu//PILTp48iUmTJmHixImYM2eOskxMTAz69OmD7t27IyoqCu+88w5GjBhh8gNfs2ZNzJw5E5GRkTh06BAeffRR9O/fP9/vytmzZxc4LuKrr77CpEmTMGHCBJw8eRLbt29HaGioSS39+/fHo48+iqioKGzduhXJycn497//rSyzZ88ePPbYY9i8eTMiIyPRvXt39O3bF0eOHDF7voMHD+KHH35Ay5YtTdr9/f3N3sePPvoITk5O6NWrV5HrzVOU97pESTHduXNHTp06JXfu3CnuQxRZbm6uHDx4UHJzc0vk8dLS0sTJyUkOHT0uoX2fkncmTDGZv2vXLgEgt27dMlu3du3a8vXXX4uISFxcnGi1WnnnnXfyfZ781s/vcfK4u7vLu+++q0yvWLFCAMiGDRvM1v/3v/8t1atXl/T0dBER+eyzz8TKykoOHz5stqxer1eWu9/KlSsFgPz2229m84xGo9y+fVtERLp16yZvv/22yfz+/fvL0KFDTV7TtGnTZPDgweLs7CxDhw6V4OBgGT9+vMl6SUlJYmNjI7t37xYRkaysLBk7dqz4+fmJg4ODdOjQQXbt2pVvvSIiY8eOlT59+ijTX3/9tQCQP/74Q2mrV6+ezJ8/X0REhg4dKv3791fuAzC5xcTEKO/59u3bJTAwUOzt7SU4OFjOnDlTYB15Fi9eLB07dpTbt2+Lg4ODXL582WR+3vN/8skn4uvrKwEBASIicvnyZXn22WfF1dVV3NzcpF+/fhITE6OsFxERISEhIVK9enVxcXGRf/3rXxIZGVloLfe+1nvd/5meOnWqtGrVSn766SepXbu2uLi4yIABAyQ1NVVZJz09XQYPHiyOjo7i4+MjX375pdnn4EHv3aJFi8TV1VXWr18vTZo0EWtra5PXKCISExNj9p7kfa66desmb775powbN07c3NzE29tbpk6darL+rVu3ZPjw4eLh4SHOzs7SvXt3iYqKKnQ7xcXFyfPPPy9ubm7i4OAggYGB8vfffxe4Dd9++23p1q2bMt2tWzcZPXq0vP3221K9enV55JFH5IUXXpDnnnvOZD29Xi/Vq1eXJUuWiIiIwWCQ6dOnS0BAgNjZ2UnLli1l9erVhdZqic2bN4uVlZUkJCQobd9//724uLhIdnZ2kR5Dr9eLp6enTJs2TWnLe4+OHDlS6Lq5ubnSqVMn+fHHHwv8LN4rIiJCAMilS5dERCQnJ0dq1KghP/74Y5FqzfP6669L9+7dlenx48dLs2bNTJYZMGCAhIaGFvo4bm5uZs995MgRqVGjhsTHxwsAWbdunTLv5s2bYm9vL9u3by/wMVevXi02NjZiMBiUtg0bNohGoxG9Xl/gek2bNpWPPvrIpC0tLU0aNGgg27Zty/c7+X6tW7eWl19+2aJ6i/pe36uwPJCSkiIAJCUlpdDHKLGeERFBpj631G5ZuQU/vlh4EtlVq1ahcePGqF2nAfr8+zmsXfGLxY8BAKtXr4Zer8f48ePznV/U/8aNRiN+/fVX3Lp1y+RQ6WXLlqFhw4bo27ev2Tpjx47FjRs3sG3bNgDA0qVLERISgjZt2pgta2trC0dHx3yfe+nSpWjUqBH69+9vNk+j0cDV1bVIryHPl19+iVatWuHIkSOYPHkyBg0ahBUrVphs35UrV8LPz0/5z+mNN95AeHg4VqxYgWPHjuHZZ5/F448/jnPnzuX7HN26dcPevXuVw8t3794NDw8PhIWFAQCuXr2KCxcu4JFHHjFb95tvvkFwcDBGjhypJH5/f39l/qRJkzBr1iwcOnQINjY2ePnllx/4mhcsWIAXX3wRrq6u6NWrl1l3MADs2LED0dHR2LZtGzZu3IicnByEhobC2dkZf/31F/bt2wcnJyc8/vjjyn/ZaWlpGDp0KPbu3Yu///4bDRo0QO/evZGWlvbAmoriwoUL+O2337Bx40Zs3LgRu3fvxsyZM5X548aNw+7du5UesrCwMBw+fNjkMYry3mVmZuKzzz7Djz/+iJMnT8LLy8vkMfz9/fHrr78CAKKjoxEfH2/S7b5kyRI4OjriwIED+PzzzzFt2jTlcw8Azz77LJKSkvDHH38gMjISbdu2RY8ePXDz5s18X3d6ejq6deuGq1evYsOGDTh69CjGjx9vcY/NkiVLoNVqsW/fPsybNw+DBg3C77//jvT0f64CvnXrVmRmZuKpp54CAMyYMQM//fQT5s2bh5MnT+Ldd9/Fiy++iN27dxf4PK+++iqcnJwKveUJDw9HixYt4O3trbSFhoYiNTW10N7Re23YsAE3btzAsGHDzOb169cPXl5e6NKlCzZs2GA2f9q0afDy8sLw4cOL9FwpKSnQaDTKd+Xhw4dx9epVWFlZoU2bNvD19UWvXr1w4sSJBz6Ou7u7Mh0eHo6QkBCTZUJDQxEeHp7v+gaDAStWrEBGRgaCg4OV9szMTAwcOBBz586Fj4+P2Xrbtm2D0WjE1atX0aRJE9SsWRPPPfcc4uLilGUCAwNhZWWFRYsWwWAwICUlBT///DNCQkJga5v/WEWj0Yi0tDST1wQAo0ePRp8+fcxeW34iIyMRFRVl8l4Upd48D3qvS1yRo8895syZI506dZItW7bIiRMnJD09XTKyc6T2+xtVuWVk51hUf6dOnWT27NmSkHJHImOui3v16ib/zRW1Z+S1114TFxeX4mxCqV27tmi1WnF0dBQbGxsBIO7u7nLu3DllmcaNGxf4n8XNmzcFgHz22WciImJvby9vvfWWxXU0adJE+vXr98Dlitoz8uSTT5osk9cLsmfPHqUtODhY3n//fRERuXTpklhbW8vVq1dN1uvRo4dMnDgx31pu3bolVlZWcvDgQTEajeLu7i4zZsyQoKAgERH55ZdfpEaNGsry9/+Hlt9rubdnJM+mTZsEQKG9f2fPnhVbW1u5fv26iIisW7dO6tSpI0aj0eT5vb29Tf4z/fnnn6VRo0Ymy2VnZ4u9vb1s3bo13+cyGAzi7Owsv//+e4H1WNIz4uDgYNITMm7cOGUbpqWliVarlVWrVinzb9y4Ifb29sq2K8p7t2jRIgHwwJ6Kgv7munXrJl26dDFpa9++vfL5+euvv8TFxUWysrJMlqlXr5788MMP+T7XDz/8IM7OznLjxo185xe1Z6RNmzYmy+Tk5IiHh4f89NNPStsLL7wgAwYMEJG7vUgODg6yf/9+k/WGDx8uL7zwQr61iIgkJibKuXPnCr3lGTlypPTs2dNk/YyMDAEgmzdvLvA57tWrVy/p1auXSdv169dl1qxZ8vfff0tERIS8//77otFoZP369coyf/31l9SoUUP5W3hQz8idO3ekbdu2MnDgQKVt+fLlAkBq1aola9askUOHDskLL7wg1atXL/D92rdvn9jY2Jj83TRo0ECmT59uslze33NmZqbSduzYMXF0dBRra2txdXWVTZs2mawzatQoGT58uDKN+3pGZsyYIba2ttKoUSPZsmWLhIeHS48ePaRRo0Ymf+9hYWHi5eUl1tbWAkCCg4ML7Tn/7LPPxM3NTRITE022TfPmzZXvowf1jLz22mvSpEkTk7ai1FuU9/p+JdEzYvEZWFeuXIkxY8Zg0aJF8PX1hZ2dHc6ePYu6DRuXTDoqZdHR0YiIiMC6deuQqTfAxsYGfZ98BgsWLMj3P+nCiMhDHV89btw4vPTSS4iPj8e4cePw+uuvo379+mbPUdRaiqO46xXk/n3Mnp6e6NmzJ5YuXYquXbsiJiYG4eHh+OGHHwAAx48fh8FgQMOGDU3Wy87ORvXq+V9FuVq1amjVqhXCwsKg1Wqh1WoxatQoTJ06Fenp6di9eze6detWrPrv3Q+bd2rjpKQk1KpVK9/lFy5ciNDQUHh4eAAAevfujeHDh2Pnzp3o0aOHslyLFi1Mer2OHj2K8+fPw9nZ2eTxsrKycOHCBQBAYmIiPvzwQ4SFhSEpKQkGgwGZmZm4fPlysV7b/QICAkye39fXVzmt84ULF6DX6xEUFKTMd3d3R6NGjZTpor53Wq3WbP+2Je5f9946jx49ivT0dLPPyp07d5TteL+oqCi0adPG7L9OS92/D93GxgbPPfccli5disGDByMjIwPr16/HihUrAADnz59HZmYmHnvsMZP19Hp9vj2aeby8vMx6k0rLlStXsHXrVqxatcqk3cPDA2PGjFGm27dvj2vXruGLL75Av379kJaWhsGDB2P+/PnK30JhcnJy8Nxzz0FE8P333yvteb1TkyZNwtNPPw0AWLRoEWrWrInVq1fjlVdeMXmcEydOoH///pg6dSp69uxp8ett1KgRoqKikJKSgjVr1mDo0KHYvXs3mjZtig0bNmDnzp35jtu4t96cnBz83//9n/L8y5cvh4+PD3bt2oXQ0FAkJCRg5MiRGDp0KF544QWkpaVhypQpeOaZZ7Bt2zaz35Bly5bho48+wvr165X3PS4uDm+//Ta2bdsGOzu7B76uO3fuYNmyZZg8ebLF9T7ovS4tFoeRr776CiNHjsS///1vxMTEwM/PD+np6chIuYVT08wHwVy8ePdCevXr11Paos9Ew97BAbVq+Zstnx+DwYCjR4+hVauW+Z5q1t626KefXbBgAXJzc+Hn56e0iQh0Oh3mzJkDV1dX5WI+KSkpZrtabt++rey6aNiwIVJSUhAfH1+sc/J7eHigfv36qF+/PlavXo0WLVqgXbt2aNq0qfL4p0+fznfdvPa8H4KGDRvizJkzFtdQ1PWsrKzMgkt+R+jktzto0KBBeOutt/Dtt99i2bJlaNGiBVq0aAHgbpe5tbU1IiMjzd7be7uf7/fII48gLCwMOp0O3bp1g7u7O5o0aYK9e/di9+7dGDt27ANfU37u7TbN+5IoqPveYDBgyZIlSEhIgI2NjUn7woULTcLI/dslPT0dgYGBWLp0qdnjenp6AgCGDh2KGzdu4JtvvkHt2rWh0+kQHBxc6GBJFxcXXLp0yaz99u3bsLa2Nqnj/i5ijUZj0a6Kor539vb2DxXaC6szPT0dvr6+yi66exW0mzTv9NUFedjPerdu3ZCUlIRt27bB3t4ejz/+uFIrcPdIkRo1apisp9PpCqzn1VdfxS+//FJozXmP7ePjg4iICJN5iYmJyrwHWbRoEapXr16kH52goCBld9mFCxcQGxtrsks57z2ysbFBdHQ06tW7+xuQF0QuXbqEnTt3mlw8Le97NO87ELi7berWrWsWwk+dOoUePXpg1KhR+PDDD03m+fj4KK87T2JiIlxcXEzef61Wq/wDGBgYiIMHD+Kbb77BDz/8gJ07d+LChQtmn6Onn34aXbt2RVhYWL71enp6wsPDQ6l37ty5cHV1xeeff64s88svv8Df3x8HDhxAx44dlfYVK1ZgxIgRWL16tcmumMjISCQlJaFt27ZKm8FgwJ49ezBnzhxkZ2eb/A2uWbMGmZmZGDJkiEntRak3P/e+16XFojEjer0ekZGRJhtJo9HAxcUFmZmZcNDamN2M+jvwrl7NpM2rejUYsvNf3kFrAzsbK+isNSY3OxtNgcsX9YsuNzcXP/30E2bNmoWoqCj8vnM/Vm7Zgz3hh+Dn54fly5cDABo0aAArKytERkaarH/x4kWkpKQoAeCZZ56BVqs1+ZDdy5LDFP39/TFgwABMnDhRaXv++edx7tw5/P7772bLz5o1C9WrV1f+yxo4cCC2b9+eb4rPyclBRkZGvs87cOBAnD17FuvXrzebJyJISUkBcPcDGx8fr8wzGAwP3I+bp3///sjKysKWLVuwbNkyDBo0SJnXpk0bGAwGJCUlKcEs71bYl2feuJEdO3YoPVqPPPIIli9fjrNnzxbay6XVapXxJg9j8+bNSEtLw5EjRxAVFaXcli9fjrVr1xb6/rdt2xbnzp2Dl5eX2evOC7v79u3DW2+9hd69e6NZs2bQ6XRITk4utKZGjRrh5MmTyM7ONmk/fPgw6tSpU+A+6vvVq1cPtra2OHDggNJ269YtnD17Vpku7nuXn7xeI0vfl7Zt2yph8P4aCvoPvWXLloiKiipwTMn9n3Xgbm9KUXTq1An+/v5YuXIlli5dimeffVbZ5k2bNoVOp8Ply5fNar133NL9pk2bZvL5yu+WJzg4GMePH1d6joC74wRcXFxMfoDyIyJYtGgRhgwZUqTPSVRUlPLj1rhxYxw/ftykpn79+ilHs+S9vrwgcu7cOWzfvt2sRyswMBA6nQ7R0dFKW05ODmJjY1G7dm2l7eTJk+jevTuGDh2KTz/91Ky24OBg7Nixw6Rt27ZtJuNB8mM0GpW/nQkTJuDYsWNm2/nrr7/GokWLAACdO3cGAJN6b968ieTkZKXezMxMswvJ5gWHe8P/8uXLMWzYMCxfvhx9+vQxWb5Hjx5m27ddu3YYNGgQoqKizP4ZWLBgAfr166f8Y5OnKPXm5973utQUuhPnPlevXhUAsn//fpN9RHFxcXLq1Kl81zl06JAkJyebtCUmJhY6Uvfq1aty8OBBs9vDHk2zbt060Wq1yhEi5xLT5GjcLbmdqZfx48dLu3btlGVHjRolAQEBsn79erl48aLs3r1bOnbsKB07djTZzz937lzRaDTy8ssvS1hYmMTGxsrevXtl1KhRMmbMmAJrye9ompMnT4pGo5GDBw+KyN2jWZ566illhHdMTIwcPXpURo0aJTY2Nib7LrOysqRr167i5uYmc+bMkaioKLlw4YKsXLlS2rZtW+D2NhqNMmDAALG3t5dPP/1UDh48KLGxsfL777/Lo48+qjzHvHnzxMHBQTZu3CinT5+WkSNHiouLi9mYkftfU55BgwZJq1atRKPRKCPn750XEBAgv/76q1y8eFEOHDgg06dPl40bNxa4/W7evClWVlZibW0tp0+fFpG776+1tbX4+vqaLHv/vuuRI0dK+/btJSYmRq5fvy4GgyHfMQtHjhxRjrbJT//+/ZXxAPcyGAzi4+Mjc+bMyff5Re7ux2/QoIE88sgjsmfPHrl48aLs2rVL3nzzTYmLixMRkTZt2shjjz0mp06dkr///lu6du0q9vb2BW5jkbvjaby8vOS5556TQ4cOyblz52TBggXi7Ows33//vbJc3tE09/r666+ldu3ayvSrr74qtWvXlh07dsjx48elX79+4uTkZLKf+kHvXd7RNA9y5coV0Wg0snjxYklKSpK0tDQRefBYJaPRKF26dJFWrVrJ1q1bJSYmRvbt2ycffPCB8nd0v+zsbGnYsKF07dpV9u7dKxcuXJA1a9YoYzm2bNkiGo1GlixZImfPnpUpU6aIi4uL2ZiRgvbXT5o0SZo2bSo2Njby119/mc2rXr26LF68WM6fPy+RkZHyf//3f7J48eIHbqOiyM3NlebNm0vPnj0lKipKtmzZIp6enibjrw4cOCCNGjWSK1eumKy7fft2AaD8Pd1r8eLFsmzZMjl9+rScPn1aPv30U7GyspKFCxcWWMv9n3u9Xi/9+vWTmjVrSlRUlMTHxyu3e8dXvP3221KjRg3ZunWrnDlzRoYPHy5eXl5y8+ZNERE5fvy4eHp6yosvvmjyGElJScpjXLx4URwcHGTcuHFy+vRpmTt3rlhbW8uWLVuUZSZMmCC7d++WmJgYOXbsmEyYMEE0Go38+eefBb4m3DdmROTu57FZs2ayb98+OX78uDzxxBPStGlT5UiZHTt2iEajkY8++kjOnj0rkZGREhoaKrVr11bGryxdulRsbGxk7ty5Jq8p77cqPwV9Bs+dOycajcbk6EJL6i3Oe10SY0bKZRgxGAySm5ur3LKzs0skjDzxxBPSu3dvZTo5LUuu3c6UO/pcOXDggACQo0ePisjdjTt16lRp3Lix2NvbS506dWTUqFHK4Kx7bdu2TUJDQ8XNzU3s7OykcePG8t5778m1a9cKrKWgH+7Q0FCTwWM5OTnyxRdfSLNmzUSr1YqLi4uEhobK3r17zdbNysqSGTNmSIsWLcTOzk7c3d2lc+fOsnjxYsnJKXiQr8FgkO+//17at28vDg4O4uLiIoGBgfLNN98ofyx6vV5ee+01cXd3Fy8vL5kxY0a+A1gL+qHcvHmzAJB//etfZvP0er1MmTJFAgICxNbWVnx9feWpp56SY8eOFViziEirVq3Ex8dHmb5x44ZoNBp5/vnnTZa7/0sxOjpaOnbsKPb29maH9hY1jCQkJIiNjY3JAM97vfbaa8oAx4IG8sXHx8uQIUPEw8NDdDqd1K1bV0aOHKn80R4+fFjatWsndnZ20qBBA1m9enWh2/je1/fUU0+Jn5+fODo6SqtWrWT+/PkmIbooYSQtLU1efPFFcXBwEG9vb/n888/NvgAf9N4VNYyIiEybNk18fHxEo9GYHNr7oIHTqamp8uabb4qfn5/Y2tqKv7+/DBo0yOwQ63vFxsbK008/LS4uLuLg4CDt2rWTAwcOKPOnTJki3t7e4urqKu+++6688cYbRQ4jp06dEgBSu3Ztk20ucjc8zZ49Wxo1aiS2trbi6ekpoaGhymHuJSE2NlZ69eol9vb24uHhIWPHjjX5+8/7rN//uX7hhRekU6dO+T7m4sWLpUmTJsr3Q4cOHR54SPL9n/v8DuHOu917AIFer5exY8eKl5eXODs7S0hIiJw4cUKZP3Xq1Hwf497Pbt7rbN26tWi1Wqlbt64sWrTIZP7LL7+sHEjg6ekpPXr0KDSIiOQfRlJSUuTll1+WatWqibu7uzz11FNmn73ly5dLmzZtxNHRUTw9PaVfv34moa9bt275vqZ7P+f3K+gzOHHiRPH39zc5lNiSeovzXpdEGNGIFH0Eo16vh4ODA9asWYPHH38cMTExqFOnDuLj42EwGMwGXwLAsWPH4O3tbXKo2dWrV3H79m00a9asSM9rMBhw5MgRtGnTptiXJyYiIqKSl5WVpeSB+wfYpqamwtXVFSkpKSbjg+5n0ZgRrVaLwMBAk31xIoLU1NQCz2Ph6OiI1NRUs+IKG5xIREREVYfFJz0bM2YM5s+fj3Xr1iEnJwfXrl2D0WhUBovFxMTgypUryvLe3t5ITU1FQkIC7ty5g2vXriEzM7PMDlUjIiKi8s3iMDJgwAB8+eWX+Pbbb3Ht2jVkZWWhQYMGyuhrvV5vchick5MT6tSpg+TkZJw6dQq3bt1C/fr1H3h4HREREVUNFo0ZuVdh+4hKGseMEBERlU9lPmaEiIiIqKQ9dBgpZscKERERVQKWXmQyPxafDj6Pra0tNBoNrl+/Dk9Pz4c63fOD5J2VMSsri7tpiIiIygERgV6vx/Xr12FlZWVy/S1LFTuMWFtbo2bNmrhy5QpiY2OLXUBRGI1GJCcnIzY21uy0ukRERKQeBwcH1KpV66F+n4s9gDWPwWDI9yJSJSk9PR3t2rXDoUOHeH4SIiKicsLa2ho2NgVfI66oA1iL3TNybyGlvetEr9fj0qVL0Gq1pX7kDhEREZUt7vMgIiIiVTGMEBERkaoYRoiIiEhVDz1mpCzkjbG9/4J7REREVH7l/W4/6FiZChFG0tLSAAD+/v4qV0JERESWSktLg6ura4HzH/rQ3rJgNBpx7do1ODs7l+jJ1VJTU+Hv74+4uLhCDzmih8PtXHa4rcsGt3PZ4HYuG6W5nUUEaWlp8PPzK/Q8JBWiZ8TKygo1a9Ystcd3cXHhB70McDuXHW7rssHtXDa4nctGaW3nwnpE8nAAKxEREamKYYSIiIhUVaXDiE6nw9SpU6HT6dQupVLjdi473NZlg9u5bHA7l43ysJ0rxABWIiIiqryqdM8IERERqY9hhIiIiFTFMEJERESqYhghIiIiVVX6MDJ37lwEBATAzs4OQUFBiIiIKHT51atXo3HjxrCzs0OLFi2wefPmMqq0YrNkO8+fPx9du3aFm5sb3NzcEBIS8sD3hf5h6Wc6z4oVK6DRaPDkk0+WboGVhKXb+fbt2xg9ejR8fX2h0+nQsGFDfn8UgaXbefbs2WjUqBHs7e3h7++Pd999F1lZWWVUbcW0Z88e9O3bF35+ftBoNPjtt98euE5YWBjatm0LnU6H+vXrY/HixaVbpFRiK1asEK1WKwsXLpSTJ0/KyJEjpVq1apKYmJjv8vv27RNra2v5/PPP5dSpU/Lhhx+Kra2tHD9+vIwrr1gs3c4DBw6UuXPnypEjR+T06dPy0ksviaurq1y5cqWMK694LN3WeWJiYqRGjRrStWtX6d+/f9kUW4FZup2zs7OlXbt20rt3b9m7d6/ExMRIWFiYREVFlXHlFYul23np0qWi0+lk6dKlEhMTI1u3bhVfX1959913y7jyimXz5s0yadIkWbt2rQCQdevWFbr8xYsXxcHBQcaMGSOnTp2Sb7/9VqytrWXLli2lVmOlDiMdOnSQ0aNHK9MGg0H8/PxkxowZ+S7/3HPPSZ8+fUzagoKC5JVXXinVOis6S7fz/XJzc8XZ2VmWLFlSWiVWGsXZ1rm5udKpUyf58ccfZejQoQwjRWDpdv7++++lbt26otfry6rESsHS7Tx69Gh59NFHTdrGjBkjnTt3LtU6K5OihJHx48dLs2bNTNoGDBggoaGhpVZXpd1No9frERkZiZCQEKXNysoKISEhCA8Pz3ed8PBwk+UBIDQ0tMDlqXjb+X6ZmZnIycmBu7t7aZVZKRR3W0+bNg1eXl4YPnx4WZRZ4RVnO2/YsAHBwcEYPXo0vL290bx5c0yfPh0Gg6Gsyq5wirOdO3XqhMjISGVXzsWLF7F582b07t27TGquKtT4LawQF8orjuTkZBgMBnh7e5u0e3t748yZM/muk5CQkO/yCQkJpVZnRVec7Xy/999/H35+fmYffjJVnG29d+9eLFiwAFFRUWVQYeVQnO188eJF7Ny5E4MGDcLmzZtx/vx5vP7668jJycHUqVPLouwKpzjbeeDAgUhOTkaXLl0gIsjNzcWrr76KDz74oCxKrjIK+i1MTU3FnTt3YG9vX+LPWWl7RqhimDlzJlasWIF169bBzs5O7XIqlbS0NAwePBjz58+Hh4eH2uVUakajEV5eXvjvf/+LwMBADBgwAJMmTcK8efPULq1SCQsLw/Tp0/Hdd9/h8OHDWLt2LTZt2oSPP/5Y7dLoIVXanhEPDw9YW1sjMTHRpD0xMRE+Pj75ruPj42PR8lS87Zznyy+/xMyZM7F9+3a0bNmyNMusFCzd1hcuXEBsbCz69u2rtBmNRgCAjY0NoqOjUa9evdItugIqzmfa19cXtra2sLa2VtqaNGmChIQE6PV6aLXaUq25IirOdp48eTIGDx6MESNGAABatGiBjIwMjBo1CpMmTYKVFf+/LgkF/Ra6uLiUSq8IUIl7RrRaLQIDA7Fjxw6lzWg0YseOHQgODs53neDgYJPlAWDbtm0FLk/F284A8Pnnn+Pjjz/Gli1b0K5du7IotcKzdFs3btwYx48fR1RUlHLr168funfvjqioKPj7+5dl+RVGcT7TnTt3xvnz55WwBwBnz56Fr68vg0gBirOdMzMzzQJHXgAUXmatxKjyW1hqQ2PLgRUrVohOp5PFixfLqVOnZNSoUVKtWjVJSEgQEZHBgwfLhAkTlOX37dsnNjY28uWXX8rp06dl6tSpPLS3CCzdzjNnzhStVitr1qyR+Ph45ZaWlqbWS6gwLN3W9+PRNEVj6Xa+fPmyODs7yxtvvCHR0dGyceNG8fLykk8++UStl1AhWLqdp06dKs7OzrJ8+XK5ePGi/Pnnn1KvXj157rnn1HoJFUJaWpocOXJEjhw5IgDkq6++kiNHjsilS5dERGTChAkyePBgZfm8Q3vHjRsnp0+flrlz5/LQ3of17bffSq1atUSr1UqHDh3k77//VuZ169ZNhg4darL8qlWrpGHDhqLVaqVZs2ayadOmMq64YrJkO9euXVsAmN2mTp1a9oVXQJZ+pu/FMFJ0lm7n/fv3S1BQkOh0Oqlbt658+umnkpubW8ZVVzyWbOecnBz5z3/+I/Xq1RM7Ozvx9/eX119/XW7dulX2hVcgu3btyvc7N2/bDh06VLp162a2TuvWrUWr1UrdunVl0aJFpVqjRoR9W0RERKSeSjtmhIiIiCoGhhEiIiJSFcMIERERqYphhIiIiFTFMEJERESqYhghIiIiVTGMEBERkaoYRoiIiEhVDCNERESkKoYRIiIiUhXDCBEREamKYYSIiIhU9f8tyt9cZCRaMwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -3899,12 +5007,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "Logistic: f1=0.003 auc=0.192\n" + "Logistic: f1=0.041 auc=0.236\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABH7klEQVR4nO3deVxU9eL/8fcwwoALkBsgUrikVu4bl7xlGWVZlv26bXrdbnu2KLfNFrG8ubRSqdliqd1Ku2V9NU1vWmaaZal0rVxyNxTUVFBQtjm/P44sAwMCzsyB4fV8PM6DmTOfc/jMAZm3n8/nfD42wzAMAQAA+IkAqysAAADgSYQbAADgVwg3AADArxBuAACAXyHcAAAAv0K4AQAAfoVwAwAA/Eo9qyvga06nU/v27VOjRo1ks9msrg4AAKgEwzB07NgxtWjRQgEBFbfN1Llws2/fPsXExFhdDQAAUA179+5Vy5YtKyxT58JNo0aNJJkXJzQ01OLaAACAysjMzFRMTEzR53hF6ly4KeyKCg0NJdwAAFDLVGZICQOKAQCAXyHcAAAAv0K4AQAAfoVwAwAA/ArhBgAA+BXCDQAA8CuEGwAA4FcINwAAwK8QbgAAgF8h3AAAAL9iabhZuXKlBg4cqBYtWshms+mzzz477TErVqxQ9+7d5XA41LZtW82aNcvr9QQAALWHpeEmKytLXbp00bRp0ypVfufOnbr66qt16aWXKiUlRaNHj9btt9+upUuXermmlbThfemDW8yvAADAEjbDMAyrKyGZC2F9+umnGjRoULllHn30US1atEi//PJL0b5bbrlFR48e1ZIlSyr1fTIzMxUWFqaMjAzPLpyZ3EU6ukuSZEhyhscq5951LkUCbDYFB9qLnmfn5pd7ujMpeyK3QIbc/1htsikkqHplT+YVyFnBr0v9oHqWlw0JtBctqpaTX6ACp2fKBtezKyDALJub71S+0+mRso56dtmrUTavwKm8gvLLBtkDVM8eUOWy+QVO5VZQNtAeoMBqlC1wGsrJLyi3bL2AAAXVq3pZp9PQSQ+VtQfY5Khn/r4bhqETeZ4p66t/9/yNqFxZ/kaYfPE3wtOq8vldq1YFX7NmjRISElz29e/fX6NHjy73mJycHOXk5BQ9z8zM9HzFNrxfFGwkySYp4MguPTFurD7VJUX7L23fTO+O7F30vMeEZeX+UYxr1Vjz7oovev7XKV/rcFau27KdW4ZpwX1/LXqe8NI3Sj16wm3Zc5s31JeJfYueXzt1lX4/cNxt2ejwEK1+rF/R85veWKP//ZHhtmzjBkFa/9TlRc+Hv7NWP+w87LZsSKBdmyZcWfT8nn+v09dbDrotK0m7Jl9d9DjxoxQt3phWbtnfnulf9Ifu8fm/6JP1f5Rbdt2TCWrS0CFJ+tfnm/Te97vLLfvtI5cqpnF9SdIL/92iN1fuKLfsf8dcrHYRjSRJ077epleW/15u2f8b1UddYsIlSe+u3qlJX2wut+yHd/xF8W2amI/X7tG4//u13LLvjOipfh0iJEmfbUjVwx//r9yy0wZ319WdoyRJS39N16gP1pdb9vm/ddaNPWMkSSt/P6h/zPqp3LLPXHeBhsXHSpLW7jysW9/6vtyyY6/qoLv6tpEk/ZKaoeumrS637IOXnasxl7eTJG07eFxXvLyy3LJ3Xtxajw84T5KUevSELnru63LLDv3LOZowqKMk6XBWrnr8a1m5ZW/o3lIv3tRFknQir0Dnjyu/9XhAp0hNH9Kj6HlFZfkbYeJvRLHa/DfCSrVqQHFaWpoiIiJc9kVERCgzM1MnTrj/hzpp0iSFhYUVbTExXrjomxaW2WWzSf0Dy//DDwAAvKNWdUu1a9dOI0eO1NixY4v2LV68WFdffbWys7MVEhJS5hh3LTcxMTGe7Zba8L70f/e67DIknbz6VRldhhTto8nZ+2VpcjbRLVX1snRLmfgbUb2y/I0w0S1VDZGRkUpPT3fZl56ertDQULfBRpIcDoccDod3K9ZtiLTyeenIzqJdtrNaKaTX8AoPK/kP8nSqUrbkHxtPli35x7E2lC388PF02aB6AQqqZKOnt8pW5Q9IVcrWK/FHzJNl7QG2Sv8OV6VsgJfK2mzeKSt57989fyOqXpa/EVUvW5V/91aq+TUsIT4+XsuXL3fZ9+WXXyo+Pr6cI3zowRSpXrD5uF+S+RwAAPicpeHm+PHjSklJUUpKiiTzVu+UlBTt2bNHkjR27FgNGzasqPzdd9+tHTt26JFHHtHmzZs1ffp0ffTRRxozZowV1S+rMNycd4219QAAoA6zNNz89NNP6tatm7p16yZJSkxMVLdu3TRu3DhJ0v79+4uCjiS1atVKixYt0pdffqkuXbroxRdf1Ntvv63+/ftbUn8AAFDz1JgBxb7itXluJGlKrHTiiDRqrdSsvWfPDQBAHVaVz+9aNeam5jNHqatu5UUAAGoUwo0nnbplUOXcNgkAALyPcONRttMXAQAAXkW48Qa6pQAAsAzhxpPolgIAwHKEG49iQDEAAFYj3HgSLTcAAFiOcAMAAPwK4caj6JYCAMBqhBtPolsKAADLEW48ipYbAACsRrjxCsINAABWIdx4ko0ZigEAsBrhxqPolgIAwGqEG09iQDEAAJYj3HhUYcuNtbUAAKAuI9x4BekGAACrEG48ifHEAABYjnDjUQwoBgDAaoQbT2JAMQAAliPceAMtNwAAWIZw41EMugEAwGqEG0+iWwoAAMsRbjyKAcUAAFiNcONJtNwAAGA5wo030HIDAIBlCDcedarlZv/PUkaqtVUBAKCOItx4Uk6m+XXpWCm5o7R+jrX1AQCgDiLceEpGqnQ8vfi54ZQWjqYFBwAAHyPceMrh7WX3GQXS4R2+rwsAAHUY4cZTGrcpu89mlxq39n1dAACowwg3nhIWXXZf55vd7wcAAF5DuPEUd2Nr/jePMTcAAPgY4cZTGHMDAECNQLjxFMbcAABQIxBuPKX02BqbXRqYzJgbAAB8rJ7VFfBbozcSbAAAsAAtN95CsAEAwBKEGwAA4FcINwAAwK8QbgAAgF8h3AAAAL9CuAEAAH6FcAMAAPwK4QYAAPgVwg0AAPArhBsAAOBXCDcAAMCvEG4AAIBfIdwAAAC/QrgBAAB+hXADAAD8CuHGU9bPqfg5AADwCcKNJ2SkSgsfdN23cLS5HwAA+BThxhMOb5cMp+s+o0A6vMOa+gAAUIcRbjyhcRvJVupS2uxS49bW1AcAgDqMcOMJYdHSwFdcA87AZHM/AADwKcKNp3QfJl2TbD6O7Go+BwAAPke48aQGTc2v9QKtrQcAAHUY4cajbOYXw7C2GgAA1GGEG0+y2ayuAQAAdR7hxitouQEAwCqWh5tp06YpNjZWwcHBiouL09q1ayssn5ycrPbt2yskJEQxMTEaM2aMTp486aPang7dUgAAWM3ScDNv3jwlJiYqKSlJ69evV5cuXdS/f38dOHDAbfkPPvhAjz32mJKSkrRp0ybNnDlT8+bN0+OPP+7jmpejqFuKcAMAgFUsDTcvvfSS7rjjDo0cOVLnn3++ZsyYofr16+udd95xW/67775Tnz59NHjwYMXGxuqKK67QrbfeetrWHt9hzA0AAFazLNzk5uZq3bp1SkhIKK5MQIASEhK0Zs0at8dceOGFWrduXVGY2bFjhxYvXqwBAwaU+31ycnKUmZnpsnkd3VIAAFimnlXf+NChQyooKFBERITL/oiICG3evNntMYMHD9ahQ4f017/+VYZhKD8/X3fffXeF3VKTJk3S008/7dG6l4tuKQAALGf5gOKqWLFihSZOnKjp06dr/fr1mj9/vhYtWqQJEyaUe8zYsWOVkZFRtO3du9eLNaRbCgAAq1nWctO0aVPZ7Xalp6e77E9PT1dkZKTbY5566ikNHTpUt99+uySpU6dOysrK0p133qknnnhCAQFls5rD4ZDD4fD8G6gI3VIAAFjGspaboKAg9ejRQ8uXLy/a53Q6tXz5csXHx7s9Jjs7u0yAsdvtkiSjJgSKooabGlAXAADqKMtabiQpMTFRw4cPV8+ePdW7d28lJycrKytLI0eOlCQNGzZM0dHRmjRpkiRp4MCBeumll9StWzfFxcVp27ZteuqppzRw4MCikGOtwnlurK0FAAB1maXh5uabb9bBgwc1btw4paWlqWvXrlqyZEnRIOM9e/a4tNQ8+eSTstlsevLJJ5WamqpmzZpp4MCBevbZZ616C65YfgEAAMvZjBrRn+M7mZmZCgsLU0ZGhkJDQz178u1fSe9dL0V0lO5Z7dlzAwBQh1Xl87tW3S1V87H8AgAAViPceBLz3AAAYDnCjUcx5gYAAKsRbryBbikAACxDuPEkuqUAALAc4caj6JYCAMBqhBtvoFsKAADLEG48iW4pAAAsR7jxKOa5AQDAaoQbT2L5BQAALEe48QpabgAAsArhxqPolgIAwGqEG09iQDEAAJYj3AAAAL9CuPEouqUAALAa4caT6JYCAMByhBuP4lZwAACsRrjxBrqlAACwDOHGk+iWAgDAcoQbjyocUGxtLQAAqMsIN57EkBsAACxHuPEKmm4AALAK4cajmOcGAACrEW48iVXBAQCwHOHGK2i5AQDAKoQbj6JbCgAAqxFuPIl5bgAAsBzhxqMYcwMAgNUIN95AtxQAAJYh3HgS3VIAAFiOcONRDCgGAMBqhBtPYp4bAAAsR7jxClpuAACwCuHGo+iWAgDAaoQbT6JbCgAAyxFuvIKWGwAArEK48Si6pQAAsBrhxpOY5wYAAMsRbjyKMTcAAFiNcOMNdEsBAGAZwo0n0S0FAIDlCDceVTig2NpaAABQlxFuPIl5bgAAsBzhxhuMAmnnSikj1eqaAABQ5xBuvCH3uDR7oJTcUVo/x+raAABQpxBuPOn4AdfnhlNaOJoWHAAAfIhw40lH95TdZxRIh3f4vi4AANRRhBtPCj+n7D6bXWrc2vd1AQCgjiLceFJopOtzm10amCyFRVtSHQAA6qJ6VlfAv5S6FXz0RoINAAA+RsuNNxFsAADwOcKNJzGJHwAAliPceNIv812fM8cNAAA+R7jxlIxUafnTrvuY4wYAAJ8j3HjK4e3mpH0lMccNAAA+R7jxlMZtJFupy8kcNwAA+BzhxlPCoqX+k1z3MccNAAA+R7jxpO5Dix/XC5a6D7OuLgAA1FGEG08KCCx+bLNbVw8AAOowwo0n2UuGGy4tAABW4BPYk1wm8TMsqwYAAHUZ4caTSk7al3ucSfwAALBAtcJNQUGBZs6cqcGDByshIUH9+vVz2api2rRpio2NVXBwsOLi4rR27doKyx89elSjRo1SVFSUHA6H2rVrp8WLF1fnbXhWRqq08EHXfUziBwCAz1VrVfAHH3xQs2bN0tVXX62OHTvKVs01lebNm6fExETNmDFDcXFxSk5OVv/+/bVlyxY1b968TPnc3Fxdfvnlat68uT7++GNFR0dr9+7dCg8Pr9b396iKJvHjdnAAAHzGZhhGlQeHNG3aVHPmzNGAAQPO6JvHxcWpV69emjp1qiTJ6XQqJiZG999/vx577LEy5WfMmKHnn39emzdvVmBgYJnXKyMzM1NhYWHKyMhQaGjoGdXfRUaqlNzRNeDY7NLojYQbAADOUFU+v6vVLRUUFKS2bdtWq3KFcnNztW7dOiUkJBRXJiBACQkJWrNmjdtjFixYoPj4eI0aNUoRERHq2LGjJk6cqIKCgnK/T05OjjIzM102rwiLlga+IqlEK1bCeIINAAA+Vq1w889//lOvvPKKqtHoU+TQoUMqKChQRESEy/6IiAilpaW5PWbHjh36+OOPVVBQoMWLF+upp57Siy++qH/961/lfp9JkyYpLCysaIuJial2nU+r+zCpbXFY07IkBhUDAOBj1Rpzs2rVKn399df64osvdMEFF5TpIpo/f75HKlea0+lU8+bN9eabb8put6tHjx5KTU3V888/r6SkJLfHjB07VomJiUXPMzMzvRdwMlKlbcuKnxtOc1Bxm8towQEAwEeqFW7Cw8N1/fXXn9E3btq0qex2u9LT0132p6enKzIy0u0xUVFRCgwMlN1ePPvveeedp7S0NOXm5iooKKjMMQ6HQw6H44zqWmmHt6vM/DYMKgYAwKeqFW7efffdM/7GQUFB6tGjh5YvX65BgwZJMltmli9frvvuu8/tMX369NEHH3wgp9OpgACzR23r1q2KiopyG2x8rnEbmWNuSgQcVgYHAMCnzmgSv4MHD2rVqlVatWqVDh48WOXjExMT9dZbb2n27NnatGmT7rnnHmVlZWnkyJGSpGHDhmns2LFF5e+55x4dPnxYDz74oLZu3apFixZp4sSJGjVq1Jm8Dc8Ji5bOH1T83GZnZXAAAHysWi03WVlZuv/++zVnzhw5neatz3a7XcOGDdNrr72m+vXrV+o8N998sw4ePKhx48YpLS1NXbt21ZIlS4oGGe/Zs6eohUaSYmJitHTpUo0ZM0adO3dWdHS0HnzwQT366KPVeRvecXac9NunUuzF0vUzCDYAAPhYtea5ueuuu7Rs2TJNnTpVffr0kWQOMn7ggQd0+eWX6/XXX/d4RT3Fa/PcFPrhTemLh80WnJtme/78AADUQVX5/K5Wy80nn3yijz/+WJdccknRvgEDBigkJEQ33XRTjQ43XlfY0mSUP/cOAADwnmqNucnOzi4zP40kNW/eXNnZ2WdcqVrNdupOrjOYAwgAAFRftcJNfHy8kpKSdPLkyaJ9J06c0NNPP634+HiPVa5Wsp26pE5abgAAsEK1uqVeeeUV9e/fXy1btlSXLl0kST///LOCg4O1dOlSj1aw1gkobLkh3AAAYIVqhZuOHTvq999/1/vvv6/NmzdLkm699VYNGTJEISEhHq1grVPYLUXLDQAAlqhWuJGk+vXr64477vBkXfxDYctN9iFzOQZuBQcAwKcqHW4WLFigq666SoGBgVqwYEGFZa+99tozrlittWu1+XX/z1JyR3Ol8O7DrK0TAAB1SKXnuQkICFBaWpqaN2/uMrFemRPabCooqLldMl6d5yYjVXr5ApVZfmH0RlpwAAA4A16Z56ZwJuLSj1ECC2cCAGC5M1pbqqSjR4966lS1V9HCmSWwcCYAAD5VrXAzZcoUzZs3r+j5jTfeqMaNGys6Olo///yzxypX64RFS71LDbJm4UwAAHyqWuFmxowZiomJkSR9+eWXWrZsmZYsWaKrrrpKDz/8sEcrWOu0TSh+HNmJwcQAAPhYtW4FT0tLKwo3n3/+uW666SZdccUVio2NVVxcnEcrWOsUznMjSUGNrKsHAAB1VLVabs466yzt3btXkrRkyRIlJJitFYZh1Og7pXyi5J1k9RzW1QMAgDqqWi03/+///T8NHjxY5557rv78809dddVVkqQNGzaobdu2Hq1grVOy5YZwAwCAz1Ur3Lz88suKjY3V3r179dxzz6lhw4aSpP379+vee+/1aAVrnYAS4cYeZF09AACoo6oVbgIDA/XQQw+V2T9mzJgzrlCtZ5SYA6hesHX1AACgjmL5BU/Lzy1+XI+WGwAAfK3S4WbQoEFFyy8MGjSo3HI1ffkFr8s/WeJxjnX1AACgjmL5BU/7/cvixxv/I7W6mLluAADwIY8tvwCZC2eun+26b+Focz8AAPCJaoWbBx54QK+++mqZ/VOnTtXo0aPPtE61V0ULZwIAAJ+oVrj55JNP1KdPnzL7L7zwQn388cdnXKlaq3EbyVbqkrJwJgAAPlWtcPPnn38qLCyszP7Q0FAdOnTojCtVa4VFSwNfUfHK4DYWzgQAwMeqFW7atm2rJUuWlNn/xRdfqHXrOt5K0X2Y1O9J83GbfgwmBgDAx6o1iV9iYqLuu+8+HTx4UP369ZMkLV++XC+++KKSk5M9Wb/aqUFT8yvLLwAA4HPVCjf/+Mc/lJOTo2effVYTJkyQJMXGxur111/XsGG0VBStL+XMt7YeAADUQdUKN5J0zz336J577tHBgwcVEhJStL4UJAWcuqzOOjyZIQAAFqn2PDf5+flatmyZ5s+fL8Mwb3/et2+fjh8/7rHK1VqFi2cahBsAAHytWi03u3fv1pVXXqk9e/YoJydHl19+uRo1aqQpU6YoJydHM2bM8HQ9a5fCcEPLDQAAPletlpsHH3xQPXv21JEjRxQSElK0//rrr9fy5cs9Vrlay0a4AQDAKtVqufn222/13XffKSjIddXr2NhYpaay1EBRy01utrRzpTm5H3PdAADgE9VquXE6nW5X/v7jjz/UqFGjM65UrVc4oDgtRZo9UEruKK2fY2mVAACoK6oVbq644gqX+WxsNpuOHz+upKQkDRgwwFN1q702LXJ9bjhZQBMAAB+pVrfUCy+8oCuvvFLnn3++Tp48qcGDB+v3339X06ZN9eGHH3q6jrVLRqqU8u+y+wsX0KR7CgAAr6pWuImJidHPP/+sefPm6eeff9bx48d12223aciQIS4DjOskdyuDS5ICWEATAAAfqHK4ycvLU4cOHfT5559ryJAhGjJkiDfqVXsVrgxuOF33Xz6eVhsAAHygymNuAgMDdfLkSW/UxT8UrgxuK3FpL58g9XnQujoBAFCHVGtA8ahRozRlyhTl57N2klvdh0k3zjIfh58j9XnA0uoAAFCXVGvMzY8//qjly5frv//9rzp16qQGDRq4vD5//nyPVK5WCz/H/FqQZ209AACoY6oVbsLDw3XDDTd4ui7+JbC++TUvy9p6AABQx1Qp3DidTj3//PPaunWrcnNz1a9fP40fP547pNwJOhVucrOtrQcAAHVMlcbcPPvss3r88cfVsGFDRUdH69VXX9WoUaO8VbfarbDlxplH1xQAAD5UpXAzZ84cTZ8+XUuXLtVnn32mhQsX6v3335fT6Tz9wXVNUIlxSHm03gAA4CtVCjd79uxxWV4hISFBNptN+/bt83jFaj17kIou7587LK0KAAB1SZXCTX5+voKDg132BQYGKi+PbpcyNrwn6VSL1tv9WDgTAAAfqdKAYsMwNGLECDkcjqJ9J0+e1N133+1yO3idvxU8I1VaWGLSvsKFM9tcxizFAAB4WZXCzfDhw8vs+/vf/+6xyviNw9vLLr/AwpkAAPhElcLNu+++6616+Bd360vZ7CycCQCAD1Rr+QWcRuH6UrKd2mGTBibTagMAgA8Qbryl+zDp4ofNx+2vNJ8DAACvI9x4U2Qn82vWIWvrAQBAHUK48abwGPProW3mHVQAAMDrCDfetOd78+vJI1JyR+a6AQDABwg33pKRKi19vPi54TTnvvljnXV1AgCgDiDceIvbuW6c0tuX0YIDAIAXEW68pXCumzIMc7ZixuAAAOAVhBtvKZzrxl3AKZytGAAAeBzhxpu6D5NuW6biyfxOYbZiAAC8hnDjbS17SNe+WvzcFsBsxQAAeBHhxhe6D5PaX2U+vvABc3XwnSsZdwMAgBdUaeFMnIFz+khbvpB+WyCtfkWScaoV5xWWZgAAwINqRMvNtGnTFBsbq+DgYMXFxWnt2rWVOm7u3Lmy2WwaNGiQdyvoCccPmF+P7JBkmI8NJ3dOAQDgYZaHm3nz5ikxMVFJSUlav369unTpov79++vAgQMVHrdr1y499NBDuuiii3xU0zOQkSqtmer+Ne6cAgDAoywPNy+99JLuuOMOjRw5Uueff75mzJih+vXr65133in3mIKCAg0ZMkRPP/20WreuBXcduZvQr6QdKxiDAwCAh1gabnJzc7Vu3TolJCQU7QsICFBCQoLWrFlT7nHPPPOMmjdvrttuu+203yMnJ0eZmZkum8+VO6HfKd++IM0eyPpTAAB4gKXh5tChQyooKFBERITL/oiICKWlpbk9ZtWqVZo5c6beeuutSn2PSZMmKSwsrGiLiYk543pXWdGEfvaKyzEGBwCAM2Z5t1RVHDt2TEOHDtVbb72lpk2bVuqYsWPHKiMjo2jbu3evl2tZju7DpNEbpb/NUplJ/UpiDA4AAGfE0lvBmzZtKrvdrvT0dJf96enpioyMLFN++/bt2rVrlwYOHFi0z+k0x7LUq1dPW7ZsUZs2bVyOcTgccjgcXqh9NYRFS2HXS7nHzBYao6BsGWYvBgDgjFjachMUFKQePXpo+fLlRfucTqeWL1+u+Pj4MuU7dOigjRs3KiUlpWi79tprdemllyolJcWaLqfqKGzFGf65dPkzxfuZvRgAgDNm+SR+iYmJGj58uHr27KnevXsrOTlZWVlZGjlypCRp2LBhio6O1qRJkxQcHKyOHTu6HB8eHi5JZfbXeGHR5tbqIilto7TxP1K3YUzoBwDAGbI83Nx88806ePCgxo0bp7S0NHXt2lVLliwpGmS8Z88eBQTUqqFBVXdufzPc7E+xuiYAANR6NsMwDKsr4UuZmZkKCwtTRkaGQkNDra6OKXOf9NJ5kmzSrR9KkZ3pmgIAoISqfH5b3nIDSaEtpAZNpaxD0oe3mGNvEp6WWnQ158gh6AAAUGmEm5ogI1XK+rP4ueGUvnzKfMzimgAAVImfD2apJQ5vV9FimqUxsR8AAFVCuKkJTrc8AxP7AQBQaYSbmuB0yzPYApjYDwCASmLMTU3RfZjU5jKzhWbfemnZ08UzGAc2kNL+Zz5mcDEAABXiVvCaKiNVOrhJ+uR26cQRcx+DiwEAdVRVPr/plqqpwqKlZudJJ48W72NwMQAAp0W4qckOb5dKN6wxuBgAgAox5qYmK7yLynC67v/fR+a+Jm0ZgwMAQCm03NRkZe6isplfNsyR5lwrJXeU1s+xrHoAANREtNzUdCXvogqsL719mYom/Cscg9PmMlpwAAA4hZab2iAsWmp1kZSXpTIzGTMGBwAAF4Sb2sTdTMZM8AcAgAvCTW3ibiZjBhUDAOCCcFPbdB8mjd4o3fCOGXIObZVS11tdKwAAagzCTW0UFi11ukHqdKP5fMUkaedKJvcDAECEm9qtz4Pm19//K80e6HpreEYqgQcAUCdxK3htFhzm+txwSgsekLZ9LW36zHzOelQAgDqGlpva7PB2NzsN6bf5xbMasx4VAKCOIdzUZu5uDXeHuXAAAHUI4aY2K31ruM0uXT7BfeD55RPJ6Sy7HwAAP8OYm9qu5PIMjVubgSck3OyKMgpkrkdlSOvelbIOSgnjpWP7zVYf5scBAPghm2EYxumL+Y/MzEyFhYUpIyNDoaGhVlfHezJSiwPP7u+k/xslFeQUv156oHFGqjmGh9ADAKiBqvL5TcuNvwqLLg4pnW+UAkOkeUOKXzec0oL7pQObJMOQ1r5R8d1VhB8AQC1BuKkrgstJud9Pd31eeDv54R1SZGfprHOkPT9I/32CW8sBALUC4aauKLyzyig5qNgmnf0Xac+aUoUNadXL7s9TeGt5m8towQEA1EjcLVVXuLuz6tpXpRtmurm7yiZ1uEaKiZNCGpc9l1Eg/elujh0AAKzHgOK6puRA48KWl/Vziu+ustmlgcmuA42TO5Zq8ZHZZXXdNCmqsy9rDwCoo6ry+U24gcld6ClUMvzIJtmDzDuvbAFS77ukHiOlrHQGGwMAvIZwUwHCTTWVDD+2AGnp49Kv813LMNgYAOAlVfn8ZswNKicsWmp1kfk1NEq68V3p+jddyxhOaeGDrGMFALAU4QbVFxpVdp/hlFa/IjkLfF8fAABEuMGZKG/hzrVvSDOvkNJ/9X2dAAB1HuEG1efu9vJON0mOUCn1J+mNi6XlE6Q/d0g7V9JdBQDwCQYU48yVvtMqc5+0+GFp8+eu5RhwDACoJgYUw7dKDjaWpNAW0i3vS9e84lquaMDxH76vIwCgziDcwHuatC67z3BK790gbV4kOZ1lXwcA4AwRbuA95Q04PrRZmjtYmh4nrX9Pys8xu7YYlwMA8ADG3MC7Si/tcPkzUvaf0o8zpZwMs4wjVMo5JslgXA4AwC1mKK4A4cYC7pZ2OJkprZ8trX7NXLrBhU264W2pXX/J0cjn1QUA1DyEmwoQbmqYbV9J/77e/Wu2AKn5BVJMb3OF8phe0lmtJJvtVGDaznpWAFBHVOXzu56P6gS416y9GWJcVh23SY2ipGP7pPSN5vbTTPOlBs3M19I2im4sAIA7hBtYq3AiwJLjcgYmm2Elc7/0x1pp71pp7w/SvhQp66C5FTKc0oIHzJXKL7hequew6I0AAGoKuqVQM7gbl1Na3klp/Szpi0fdv+4Ilc69QjpvoNQ2QXI09Fp1AQC+xZibChBuarmMVCm5Y9lurPpNpOxDxbvqBUtt+plBp92VUv3GjNMBgFqMMTfwX+V1Y3X9u/THj9LmhdKmhdKRXdKWxeZms0tN2kiHfhfjdADA/9Fyg9qpom4sw5DSf5E2fW4GnQPuVie3SZc+IXUYIDU7TwpgPksAqMnolqoA4aYO+nmu9Old5b8eHC6dHS+dEy+dfaHUoqtkDzRfoysLAGoEuqWAkmIvcn+7+dl/kfb/Tzp5VNr6hblJUmB9qWVPKaihuc+gKwsAahPCDfxfRbebF+RJaf+Tdn8n7V4j7flOOnHEXOeqpMIVzWP+IjVrZ8W7AABUEt1SqDsqc7u50ykd2iKtmy398HrZ1wMCzdvMz7tGaneV1KCJd+sMAJDEmJsKEW5QKW5vOS/FZpfOuVA671qpw9VmYGKMDgB4BeGmAoQbVFrpFc2veVlq2cu8A2vzwlNLQJQQfo50dI+43RwAPI9wUwHCDaqkoq6swzulzYvMsLP3ezcH26Sb35PaD5AC7D6pLgD4K8JNBQg38Ipf/0/6TzmtNPWbmLMkt79Kan0py0IAQDVwKzjgay17ur/d3NFQyv5TSnnf3OwOqXVfM+i0u0oKjSouzngdAPAIWm4ATyk9RmdgstTlVmnP99KWL6Qti8xlIUpq0c3stnIWSCufM8MR43UAoAy6pSpAuIFXnW5ZiINbTq159YW5FpbK+ednC5BG/0ILDgCcQripAOEGNcbxA9LWpdKG96S9P5R9PTzW7L5qdbF5y3lIuK9rCAA1BuGmAoQb1DiVmlMnQIrqKrW6yAw7Z8dLQQ1cz8F4HQB+jHBTAcINaqTS43Wu+Jc52HjnSmnnt9Kfv7uWDwg0BzG3uljKOyGtmcp4HQB+rdaFm2nTpun5559XWlqaunTpotdee029e/d2W/att97SnDlz9Msvv0iSevTooYkTJ5ZbvjTCDWqsisbrZO4zQ87OldLOb6SMveWfh/E6APxQVT6/A3xUp3LNmzdPiYmJSkpK0vr169WlSxf1799fBw4ccFt+xYoVuvXWW/X1119rzZo1iomJ0RVXXKHU1FQf1xzwsLBos9vJXSgJbSF1uVkaNE0avVF6IEUa+KrUqm/ZsoZTmj1Q+uY5Kf1XcyAzANQhlrfcxMXFqVevXpo6daokyel0KiYmRvfff78ee+yx0x5fUFCgs846S1OnTtWwYadviqflBn6lMuN1zoqVOlxjrn8VE8dsyQBqpVrTcpObm6t169YpISGhaF9AQIASEhK0Zs2aSp0jOztbeXl5aty4sdvXc3JylJmZ6bIBfiMs2hxjYzsVWGx2qf9E6dqp5iSBdoc5t86aqdK7V0kvtJP+b5R5K3reCfOYjFSzuyuD1k8A/sHSGYoPHTqkgoICRUREuOyPiIjQ5s2bK3WORx99VC1atHAJSCVNmjRJTz/99BnXFaixug+T2lxWdrxO96FSznFp+1fmGlhbl0jZh6QN/za3wPpS03Ol/f8Ti30C8Ce1evmFyZMna+7cuVqxYoWCg4Pdlhk7dqwSExOLnmdmZiomJsZXVQR8Iyza/VgdR0Pp/GvNrSBP2v2dGXQ2L5Iy/5D2/1xc1nBKC+43x+mc00eK6iKFny3ZbL57HwDgAZaGm6ZNm8putys9Pd1lf3p6uiIjIys89oUXXtDkyZO1bNkyde7cudxyDodDDofDI/UFajV7oLmuVeu+0lVTpHXvSp+PKVvuhxnmJknB4VJkJzPoRHWRIjubrT3uxu0w1w6AGsLScBMUFKQePXpo+fLlGjRokCRzQPHy5ct13333lXvcc889p2effVZLly5Vz549fVRbwI/YbNK5/d0v9nnBIOnP7dKBTdLJo9Kub82tUGB9KeICM+hEdZGiOkupG6TF/2SuHQA1guXdUomJiRo+fLh69uyp3r17Kzk5WVlZWRo5cqQkadiwYYqOjtakSZMkSVOmTNG4ceP0wQcfKDY2VmlpaZKkhg0bqmHDhpa9D6DWKRyMXHqxz8JQkp8rHdxkjsnZ/7OU9j8p7RcpL8tcF+uPH92f13BKCx80W3Bi4iS75X9mANQxlt8KLklTp04tmsSva9euevXVVxUXFydJuuSSSxQbG6tZs2ZJkmJjY7V79+4y50hKStL48eNP+724FRwopaLJA0tzFpitOmn/k/anmMEndZ2Ue9x9+YBAqUkbqWk7c2vW3uzWanKuOR4IACqp1s1Q7EuEG8DDMv6QkjuVnWvHHiwVnCz/uNCWUrN2pYJPO6lBM7PbjDE8AEqoyuc37cXlKCgoUF5entXVgKTAwEDZ7Uw8V2OFtXTfvdX17+YdWQe3Soe2Soe2FD/OPmS+lvmHeat6ScHhUshZ0pGd5nObTRrwotTrNh+/MQC1FS03pRiGobS0NB09etT3lUO5wsPDFRkZKRu3JddcVeneyj5shpyDW04Fn1Pbkd2SyvmTFNVNan1qRfSYOKm++4k7AfgnuqUqcLqLs3//fh09elTNmzdX/fr1+TC1mGEYys7O1oEDBxQeHq6oqCirqwRvyjsh/e8jaeEDpy/btL109l+Kt7NaMScP4MfolqqmgoKComDTpEkTq6uDU0JCQiRJBw4cUPPmzemi8meBIVLbhLK3qNsCpMsnSAc3S3t/KO7mOrRFWj/bLNOg+amgEy+dHWfeqm4PZOwOUAcRbkooHGNTv359i2uC0gp/Jnl5eYQbf3e6W9QlKetPM+TsWSPt+V7at0HKOiBtWmBukjkfT2i09Oc2FS0vMeAFxu4AdQDdUiWcPHlSO3fuVKtWrcpdzgHW4GdTB1VlDE/eCTPg7Fkj7flB2vu9dDLDfdkGEVLTtmY3VuNTW+HjkLM8/z4AeATdUgBqv/LWy3InMEQ650JzkySnU0p5X1rgZqbzrHRz27267GshZ50KOq1LhJ5TjxtGuI7pobsLqLEIN/CISy65RF27dlVycrLb10eMGKGjR4/qs88+c1s+NjZWo0eP1ujRo31SX/i5gACpTT83Y3fs0i3vm6ulH9lptgwd3mk+Pp4unThibvvWlz1nYP3iFp7cbGnH1yrq7romWeox3FfvDsBpEG78xIgRIzR79mxNmjRJjz32WNH+zz77TNdff73OpPexoKBAzz//vGbNmqXdu3crJCRE5557ru644w7dfvvtlTrHK6+8ckZ1AKqsvLE77a9yXz7nuHRk16nQcyr4FD7O2CvlZUsHfjW3kgyneXfXmulS8w5Sk7bm1vRcc3ZmuroAnyPc+JHg4GBNmTJFd911l846y3N/UJ9++mm98cYbmjp1qnr27KnMzEz99NNPOnLkSKXPERYW5rH6AJXWfZjU5rLKjd1xNJQiO5pbafm5ZsA5vFPa9mXxquklHdpsbqXVb3Iq8JwKO4Xhp3FrKbDU+DG6ugCPINxUUnZufrmvBdhsCg60e7Rs/aCq/2gSEhK0bds2TZo0Sc8991y55T755BONGzdO27ZtU1RUlO6//37985//LLf8ggULdO+99+rGG28s2telS5cK67Jo0SINHjxY06dP15AhQ8p0SwE+U5WxO+WpF3QqmLSRmp8nrX2z7K3q100zu7T+3GZuh7ZJx/ZJ2X+a294fSp3UJoXHFIed7MPSL5+oqKuLldWBaiPcVNL545aW+9ql7Zvp3ZG9i573mLBMJ/IK3JaNa9VY8+6KL3r+1ylf63BWbplyuyZfXeU62u12TZw4UYMHD9YDDzygli1blimzbt063XTTTRo/frxuvvlmfffdd7r33nvVpEkTjRgxwu15IyMj9dVXX+nee+9Vs2bNTluPDz74QHfffbc++OADXXPNNVV+H0CNVl53V9fBZcvmHDdbjQoDT8ngk5MhHd1jbqWXoDCc0oL7pZ8/lJqdJ50V67oFsy4eUBHCjZ+5/vrr1bVrVyUlJWnmzJllXn/ppZd02WWX6amnnpIktWvXTr/99puef/75csPNSy+9pL/97W+KjIzUBRdcoAsvvFDXXXedrrqq7NiFadOm6YknntDChQvVt29fj743oMaobHeXo6EU1dncSjIMKetQcdjZ/pX06/yyx+/+ztxKq9/kVNBp5Rp6GreSGkVJAW7mgqLLC3UI4aaSfnumf7mvBZSa8n3dUwmVLrvq0UvPrGJuTJkyRf369dNDDz1U5rVNmzbpuuuuc9nXp08fJScnq6CgwO0Eeeeff75++eUXrVu3TqtXr9bKlSs1cOBAjRgxQm+//XZRuY8//lgHDhzQ6tWr1atXL4+/L6BGOZPuLptNatjM3M6JN+/s+u2zsl1dCU+b8/Uc2VU82Lmwmyv7Tyl1Xdlz24Ok8LNdg8+RXdJPM83z0+WFOoBwU0lVGQPjrbKVdfHFF6t///4aO3Zsua0xVRUQEKBevXqpV69eGj16tP79739r6NCheuKJJ9SqVStJUrdu3bR+/Xq988476tmzJ+tyAZVVmVmZC53MlI7uPnUL+y7X4HN0j1SQW9wi5E5hl9f2r6TITmZLTpM2ZhhyNPTaWwR8iXDjpyZPnqyuXbuqffv2LvvPO+88rV7tOnnZ6tWr1a5duyota3D++edLkrKysor2tWnTRi+++KIuueQS2e12TZ069QzeAVDHVLarKzjUDCWRncq+5iyQMlNdg88fP0q7vi1b9tdPza2khpFm0Gncqjj0NG5tbkENyq87XV6oYQg3fqpTp04aMmSIXn31VZf9//znP9WrVy9NmDBBN998s9asWaOpU6dq+vTp5Z7rb3/7m/r06aMLL7xQkZGR2rlzp8aOHat27dqpQ4cOLmXbtWunr7/+Wpdcconq1atX7qR+ANw40zu7Auxml1T42ZJOjXnLSJWSO5bt8oq7V8o+eGrA83bpxGHpeJq5uZu9uVFUcdApCj1tzLW9vniYLi/UKIQbP/bMM89o3rx5Lvu6d++ujz76SOPGjdOECRMUFRWlZ555psLuq/79++vDDz/UpEmTlJGRocjISPXr10/jx49XvXplf4Xat2+vr776qqgF58UXX/T0WwNQWZXt8jpx5FTQ2WG2whSGnsPbzdeO7Tc3d8GnkOGUFjwgFeRJLXuaXV3c2QULsHBmCSzOWHPxswHOUFUWIi0t+/CpWZtLhZ6DW6Tc4xUfW79p8fpchS0/jVubwad+Y9f1utzWme4umFg4EwDg6ky6vOo3NreWPVz3u+vykk2K7CJl/iFlHyre/lhb9ryOsOKV2UuGnsatpd//K30+mu4uVAvhBgBQPafr8jqZ6bpAacmvx/aZExnuTzG3ihhOaeGDUoPm5srvdHXhNAg3AIDqq+gur+BQKaqLuZWWd8K8m8sl+Jzaju6RVGrEhOGUPrzZfNwoylyYtGm7U9upx6HRdHNBEuEGAHCmqtPlFRhirtPV/Lyyrx3eJb3WrVR3l8zxO9mHigc371xZ6pwNpKZty4aexm2kjR+ZrT90c9UJhBsAQM3SOLb87q4TR0+tz7X11Pa7+fXwDikvS9r/s7lVpLCbq0lbqWUvyR7o/fcEnyLcAABqnvK6u0LCzdvMW/Z0LV+QZ3ZzlQ49h7aaS1iUZjild68yg1P42a53chXe3RV+jhRYwd2ZdHPVWIQbAEDNVJXuLnvgqW6ocyVdXbzfMKS0/0lv9jUfuxzjkApyzEHPR3ZK25eXOqlNCmtZ9jb2xq3NBU2/eIRurhqKcAMA8F82mzmgeeCrZbu5uv7dnJG55GDmknd15R6TMvaaW+nxPSUVTl6Y8Yc5hig02twaRkh2PmatwFUHAPi/8rq5QluYW+xfXcsbhpR1yDX4FN7W7nbyQkP6ZorrLluAuV5X4fcIPdUSVfg4tIV551fpMT90d50xwg0qJTY2VqNHj9bo0aOrdfysWbM0evRoHT161KP1AoBKq0o3l80mNWxmbmfHub5W3uSF7a+Uso9ImfvMeXyc+ebXY/uk1HK/kdnCUxiAco6daiUyzHB01XNS7zuq/l7rOJZfKKE2T/E/YsQIHT16VJ999plXzn/w4EE1aNBA9evXP21Zd0HoxIkTOnbsmJo3b16t71+bfzYA/ND6ORWv1+V0SlkHzVXaM1PNwFP0dZ/ZhXVsv1SQe/rv1aC51Kx9iUVLT63YflYr9wOe/bTlh+UXago/+gVr1qzZGR0fEhKikJAQD9UGACxW0eSFkhQQIDWKMLfo7u7P4XRK2X8Wh56d30g/zChbLuuAue36ttQLpwY8lww8R3ZLP75V5wc6B1hdgRrPMKTcrKpva98ymy1nDzS/rn2r6ufwUKPaN998o969e8vhcCgqKkqPPfaY8vPzi14/duyYhgwZogYNGigqKkovv/yyLrnkEpeWl9jYWCUnJ5+6JIbGjx+vs88+Ww6HQy1atNADDzwgSbrkkku0e/dujRkzRjabTbZTs4XOmjVL4eHhLvVauHChevXqpeDgYDVt2lTXX3+9R94vAPhEWLTU6qLq/+c1IMDs9mrRVeowQLrwATOQlGSzS7fOla5/U+r7qNTxb1KLbpIjVJJhDnbesUL6aaa09HFp7RvF3WWGU1pwvzR3qPTVv8zWph0rzECWX06LUUaq2S2WUW4/Wq1Ay83p5GVLE1uc2TkMp7T4IXOrisf3SUENzuhbp6amasCAARoxYoTmzJmjzZs364477lBwcLDGjx8vSUpMTNTq1au1YMECRUREaNy4cVq/fr26du3q9pyffPKJXn75Zc2dO1cXXHCB0tLS9PPP5qRZ8+fPV5cuXXTnnXfqjjvK7ydetGiRrr/+ej3xxBOaM2eOcnNztXjx4jN6rwBQq5W3Vlf7q8qWLRrwvL14lfY930u7V5ctu3mBtLn0Tps5xif8bHMLizFbkH6eq6LxPhW1+tTwngnCjZ+bPn26YmJiNHXqVNlsNnXo0EH79u3To48+qnHjxikrK0uzZ8/WBx98oMsuu0yS9O6776pFi/ID3Z49exQZGamEhAQFBgbq7LPPVu/evSVJjRs3lt1uV6NGjRQZGVnuOZ599lndcsstevrpp4v2deniZv0ZAKhLTtfdVchlwPNfzH3uBjrbAqQ+D5oTGR7dc2rbK+WfKB4PtGdN2fMXtvps/a8U3U1qdp457uesWCnlffdLWdSgwEO4OZ3A+mYLSlVk7pOm9S71C2aXRv1gJuWqfO8ztGnTJsXHxxd1D0lSnz59dPz4cf3xxx86cuSI8vLyisKJJIWFhal9+/blnvPGG29UcnKyWrdurSuvvFIDBgzQwIEDVa9e5X+dUlJSKmzZAYA6qzprdRUeV9Eq7YUKW32O7pGO7ja/7vle2vpF2XNuXmhuhQonPiw6l9P8fieOSMvGFwee+FFS3D2WhRzCzenYbFXvGmp6rvtfsKbneqOGPhcTE6MtW7Zo2bJl+vLLL3Xvvffq+eef1zfffKPAwMqt0cLgYgDwgsq0/JRs9WnZw9yXkSr9vrRsq0/8/eZdXQc3m0tZ5J8sez6jQPpyXInnTum716TvpkrXvmrJgGYGFHtL92HS6I3S8M/NrxaNVj/vvPO0Zs0albzjf/Xq1WrUqJFatmyp1q1bKzAwUD/++GPR6xkZGdq6dWuF5w0JCdHAgQP16quvasWKFVqzZo02btwoSQoKClJBQUGFx3fu3FnLl5ee6hwAcMaqM9C5sNXHZjef2+zm8yuekW54S7r7W7MXY+QSSbYKT1XMMP+Tb8HgZFpuvKm6TYvVlJGRoZSUFJd9d955p5KTk3X//ffrvvvu05YtW5SUlKTExEQFBASoUaNGGj58uB5++GE1btxYzZs3V1JSkgICAly6skqaNWuWCgoKFBcXp/r16+vf//63QkJCdM4550gy76xauXKlbrnlFjkcDjVt2rTMOZKSknTZZZepTZs2uuWWW5Sfn6/Fixfr0Ucf9fh1AQBUwmlvb7dL58SbrTEleyYu+qe08nlJbu7wNQrM8/m4e4pw40dWrFihbt26uey77bbbtHjxYj388MPq0qWLGjdurNtuu01PPvlkUZmXXnpJd999t6655hqFhobqkUce0d69e8udLC88PFyTJ09WYmKiCgoK1KlTJy1cuFBNmjSRJD3zzDO666671KZNG+Xk5MjdPJGXXHKJ/vOf/2jChAmaPHmyQkNDdfHFF3vwagAAqqwy/yl3F4LCY4oHGZdks5tlfIwZiktgFlxTVlaWoqOj9eKLL+q2226zujqS+NkAQI2XkWpOQvjdVEnO8gc0VxMzFKNKNmzYoM2bN6t3797KyMjQM888I0m67rrrLK4ZAKDWCIuWrpggxd19+lvZvYxwA0nSCy+8oC1btigoKEg9evTQt99+63asDAAAFfLxeFN3CDdQt27dtG7dOqurAQCAR3ArOAAA8CuEGzfq2BjrWoGfCQCgsgg3JRTOrpudnW1xTVBa4c+ksjMgAwDqLsbclGC32xUeHq4DBw5IkurXr1/uRHbwDcMwlJ2drQMHDig8PFx2u93qKgEAajjCTSmFK1kXBhzUDOHh4RWuMg4AQCHCTSk2m01RUVFq3ry58vLyrK4OZHZF0WIDAKgswk057HY7H6gAANRCDCgGAAB+hXADAAD8CuEGAAD4lTo35qZwMrjMzEyLawIAACqr8HO7MpO61rlwc+zYMUlSTEyMxTUBAABVdezYMYWFhVVYxmbUsXntnU6n9u3bp0aNGnl8gr7MzEzFxMRo7969Cg0N9ei5UYzr7BtcZ9/gOvsO19o3vHWdDcPQsWPH1KJFCwUEVDyqps613AQEBKhly5Ze/R6hoaH8w/EBrrNvcJ19g+vsO1xr3/DGdT5di00hBhQDAAC/QrgBAAB+hXDjQQ6HQ0lJSXI4HFZXxa9xnX2D6+wbXGff4Vr7Rk24znVuQDEAAPBvtNwAAAC/QrgBAAB+hXADAAD8CuEGAAD4FcJNFU2bNk2xsbEKDg5WXFyc1q5dW2H5//znP+rQoYOCg4PVqVMnLV682Ec1rd2qcp3feustXXTRRTrrrLN01llnKSEh4bQ/F5iq+vtcaO7cubLZbBo0aJB3K+gnqnqdjx49qlGjRikqKkoOh0Pt2rXjb0clVPU6Jycnq3379goJCVFMTIzGjBmjkydP+qi2tdPKlSs1cOBAtWjRQjabTZ999tlpj1mxYoW6d+8uh8Ohtm3batasWV6vpwxU2ty5c42goCDjnXfeMX799VfjjjvuMMLDw4309HS35VevXm3Y7XbjueeeM3777TfjySefNAIDA42NGzf6uOa1S1Wv8+DBg41p06YZGzZsMDZt2mSMGDHCCAsLM/744w8f17x2qep1LrRz504jOjrauOiii4zrrrvON5Wtxap6nXNycoyePXsaAwYMMFatWmXs3LnTWLFihZGSkuLjmtcuVb3O77//vuFwOIz333/f2Llzp7F06VIjKirKGDNmjI9rXrssXrzYeOKJJ4z58+cbkoxPP/20wvI7duww6tevbyQmJhq//fab8dprrxl2u91YsmSJV+tJuKmC3r17G6NGjSp6XlBQYLRo0cKYNGmS2/I33XSTcfXVV7vsi4uLM+666y6v1rO2q+p1Li0/P99o1KiRMXv2bG9V0S9U5zrn5+cbF154ofH2228bw4cPJ9xUQlWv8+uvv260bt3ayM3N9VUV/UJVr/OoUaOMfv36uexLTEw0+vTp49V6+pPKhJtHHnnEuOCCC1z23XzzzUb//v29WDPDoFuqknJzc7Vu3TolJCQU7QsICFBCQoLWrFnj9pg1a9a4lJek/v37l1se1bvOpWVnZysvL0+NGzf2VjVrvepe52eeeUbNmzfXbbfd5otq1nrVuc4LFixQfHy8Ro0apYiICHXs2FETJ05UQUGBr6pd61TnOl944YVat25dUdfVjh07tHjxYg0YMMAnda4rrPocrHMLZ1bXoUOHVFBQoIiICJf9ERER2rx5s9tj0tLS3JZPS0vzWj1ru+pc59IeffRRtWjRosw/KBSrznVetWqVZs6cqZSUFB/U0D9U5zrv2LFDX331lYYMGaLFixdr27Ztuvfee5WXl6ekpCRfVLvWqc51Hjx4sA4dOqS//vWvMgxD+fn5uvvuu/X444/7osp1Rnmfg5mZmTpx4oRCQkK88n1puYFfmTx5subOnatPP/1UwcHBVlfHbxw7dkxDhw7VW2+9paZNm1pdHb/mdDrVvHlzvfnmm+rRo4duvvlmPfHEE5oxY4bVVfMrK1as0MSJEzV9+nStX79e8+fP16JFizRhwgSrqwYPoOWmkpo2bSq73a709HSX/enp6YqMjHR7TGRkZJXKo3rXudALL7ygyZMna9myZercubM3q1nrVfU6b9++Xbt27dLAgQOL9jmdTklSvXr1tGXLFrVp08a7la6FqvP7HBUVpcDAQNnt9qJ95513ntLS0pSbm6ugoCCv1rk2qs51fuqppzR06FDdfvvtkqROnTopKytLd955p5544gkFBPB/f08o73MwNDTUa602Ei03lRYUFKQePXpo+fLlRfucTqeWL1+u+Ph4t8fEx8e7lJekL7/8stzyqN51lqTnnntOEyZM0JIlS9SzZ09fVLVWq+p17tChgzZu3KiUlJSi7dprr9Wll16qlJQUxcTE+LL6tUZ1fp/79Omjbdu2FYVHSdq6dauioqIINuWoznXOzs4uE2AKA6XBkoseY9nnoFeHK/uZuXPnGg6Hw5g1a5bx22+/GXfeeacRHh5upKWlGYZhGEOHDjUee+yxovKrV6826tWrZ7zwwgvGpk2bjKSkJG4Fr4SqXufJkycbQUFBxscff2zs37+/aDt27JhVb6FWqOp1Lo27pSqnqtd5z549RqNGjYz77rvP2LJli/H5558bzZs3N/71r39Z9RZqhape56SkJKNRo0bGhx9+aOzYscP473//a7Rp08a46aabrHoLtcKxY8eMDRs2GBs2bDAkGS+99JKxYcMGY/fu3YZhGMZjjz1mDB06tKh84a3gDz/8sLFp0yZj2rRp3ApeE7322mvG2WefbQQFBRm9e/c2vv/++6LX+vbtawwfPtyl/EcffWS0a9fOCAoKMi644AJj0aJFPq5x7VSV63zOOecYkspsSUlJvq94LVPV3+eSCDeVV9Xr/N133xlxcXGGw+EwWrdubTz77LNGfn6+j2td+1TlOufl5Rnjx4832rRpYwQHBxsxMTHGvffeaxw5csT3Fa9Fvv76a7d/bwuv7fDhw42+ffuWOaZr165GUFCQ0bp1a+Pdd9/1ej1thkH7GwAA8B+MuQEAAH6FcAMAAPwK4QYAAPgVwg0AAPArhBsAAOBXCDcAAMCvEG4AAIBfIdwAAAC/QrgBAEk2m02fffaZJGnXrl2y2WxKSUmxtE4AqodwA8ByI0aMkM1mk81mU2BgoFq1aqVHHnlEJ0+etLpqAGqhelZXAAAk6corr9S7776rvLw8rVu3TsOHD5fNZtOUKVOsrhqAWoaWGwA1gsPhUGRkpGJiYjRo0CAlJCToyy+/lCQ5nU5NmjRJrVq1UkhIiLp06aKPP/7Y5fhff/1V11xzjUJDQ9WoUSNddNFF2r59uyTpxx9/1OWXX66mTZsqLCxMffv21fr1633+HgH4BuEGQI3zyy+/6LvvvlNQUJAkadKkSZozZ45mzJihX3/9VWPGjNHf//53ffPNN5Kk1NRUXXzxxXI4HPrqq6+0bt06/eMf/1B+fr4k6dixYxo+fLhWrVql77//Xueee64GDBigY8eOWfYeAXgP3VIAaoTPP/9cDRs2VH5+vnJychQQEKCpU6cqJydHEydO1LJlyxQfHy9Jat26tVatWqU33nhDffv21bRp0xQWFqa5c+cqMDBQktSuXbuic/fr18/le7355psKDw/XN998o2uuucZ3bxKATxBuANQIl156qV5//XVlZWXp5ZdfVr169XTDDTfo119/VXZ2ti6//HKX8rm5uerWrZskKSUlRRdddFFRsCktPT1dTz75pFasWKEDBw6ooKBA2dnZ2rNnj9ffFwDfI9wAqBEaNGigtm3bSpLeeecddenSRTNnzlTHjh0lSYsWLVJ0dLTLMQ6HQ5IUEhJS4bmHDx+uP//8U6+88orOOeccORwOxcfHKzc31wvvBIDVCDcAapyAgAA9/vjjSkxM1NatW+VwOLRnzx717dvXbfnOnTtr9uzZysvLc9t6s3r1ak2fPl0DBgyQJO3du1eHDh3y6nsAYB0GFAOokW688UbZ7Xa98cYbeuihhzRmzBjNnj1b27dv1/r16/Xaa69p9uzZkqT77rtPmZmZuuWWW/TTTz/p999/13vvvactW7ZIks4991y999572rRpk3744QcNGTLktK09AGovWm4A1Ej16tXTfffdp+eee047d+5Us2bNNGnSJO3YsUPh4eHq3r27Hn/8cUlSkyZN9NVXX+nhhx9W3759Zbfb1bVrV/Xp00eSNHPmTN15553q3r27YmJiNHHiRD300ENWvj0AXmQzDMOwuhIAAACeQrcUAADwK4QbAADgVwg3AADArxBuAACAXyHcAAAAv0K4AQAAfoVwAwAA/ArhBgAA+BXCDQAA8CuEGwAA4FcINwAAwK/8f08brgMqt2LWAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABAT0lEQVR4nO3deXwU9f3H8fcmJJsgJBExByEaQLkEOYUCVRCjKIpgW8VCuaqoBVRIPUCURKgEVBAVkFZF0KpgESkK4hFFy2HVQPwpcqgglyaASAJEcmzm90fKSmA32d3szl6v5+ORR9yZ78x8doDdt9/5zncshmEYAgAACBER/i4AAADAmwg3AAAgpBBuAABASCHcAACAkEK4AQAAIYVwAwAAQgrhBgAAhJR6/i7AbJWVlfrhhx/UsGFDWSwWf5cDAABcYBiGjh49qiZNmigioua+mbALNz/88IPS0tL8XQYAAPDA3r171bRp0xrbhF24adiwoaSqkxMXF+fnagAAgCuKi4uVlpZm/x6vSdiFm5OXouLi4gg3AAAEGVeGlDCgGAAAhBTCDQAACCmEGwAAEFIINwAAIKQQbgAAQEgh3AAAgJBCuAEAACGFcAMAAEIK4QYAAIQUwg0AAAgpfg03H3/8sQYMGKAmTZrIYrFoxYoVtW6zdu1ade7cWVarVRdccIEWLVrk8zoBAEDw8Gu4OX78uDp06KB58+a51H7Xrl269tprdfnllys/P1/jx4/XrbfeqnfeecfHlbpoX560YW7VbwAA4Bd+fXDmNddco2uuucbl9gsWLFCzZs00a9YsSVKbNm20bt06PfHEE+rXr5+vynTN67dJXy6VJBmSKtrfrPIB1UNbhMWimKhI++uSsgqnu6tL21/KbDJkOGxrkUWx0Z61PVFuU6XhuK0k1Y+u5/e2sVGR9oeqlVbYZKv0TtuYepGKiKhqW1ZRqYrKSq+0tdaLVKQHbcttlSq3OW8bHRmhepERbretsFWqrIa2UZERivKgra3SUGmFzWnbehERiq7nftvKSkMnvNQ2MsIia72qv++GYeiXcu+0NevfPZ8RrrXlM6KKGZ8R/hRUTwXfuHGjMjIyqi3r16+fxo8f73Sb0tJSlZaW2l8XFxd7v7B9efZgI0kWSfX+b4l+91lbfakL7Msvb3WuXhjVzf66y7T3nX4odm/WSEtv72F//duZH+rw8TKHbS9uGq+V435rf50x+yPtP/KLw7YXJjbQe5m97a+vn7tO3xw45rBtakKs1k/sa39909836v/2FTls2+isaG166Er76xELP9V/dx122DY2KlJbp11tf/2Xf+bpw+0HHbaVpO9nXGv/78zX8rX6ywKnbb+e2s/+QffA8q/0+qZ9TtvmPZihcxpYJUl/e2urXvpkt9O2/7nvcqU1qi9Jevzd7frHxzudtn13wmVqmdRQkjTvw2/1ZO43Ttv+e2wvdUhLkCS9sH6Xct7e5rTtq6N/ox4tzqn670/3aMq/tzhtu3BkV/VtnSRJWrF5v+5d9n9O284b0lnXXpwiSXpnS6HGvrLJadvH/nCxbuyaJkn6+JuD+vOiz522nTrwIg3vkS5J+nTXYf3x2U+ctp10TWvd3ruFJOmr/UUaOG+907Z3X3GhJlzZUpL07cFjuuqJj522ve2y5nqgfxtJ0v4jv+jSRz902nbYb87XtEHtJEmHj5epy9/ed9r2952batZNHSRJv5Tb1HaK897j/u2TNX9oF/vrmtryGVGFz4hfBfNnhD/5P165oaCgQElJSdWWJSUlqbi4WL/84vgfak5OjuLj4+0/aWk+OOl7Np6xyGKRLonc4f1jAQCAGlkMo4b+OxNZLBa98cYbGjRokNM2LVu21KhRozRp0iT7stWrV+vaa69VSUmJYmNjz9jGUc9NWlqaioqKFBcX553i9+VJz/WttsiQdGLkuzKa/Pp/bHQ5+74tXc5VuCzlflsuS1XhM8KztnxGVPHlZani4mLFx8e79P0dVJelkpOTVVhYWG1ZYWGh4uLiHAYbSbJarbJarb4trGkXqc310taV9kWWDkMUm969xs1O/QdZG3fanvph4822p344BkPbk18+3m4bXS9C0S52evqqrTsfIO60rXfKh5g320ZGWFz+O+xO2wgftbVYfNNW8t2/ez4j3G/LZ4T7bd35d+9PgV/hKXr06KHc3Nxqy9577z316NHDyRYmuupvVb8joqRbP5BueMa/9QAAEKb8Gm6OHTum/Px85efnS6q61Ts/P1979uyRJE2aNEnDhw+3t7/jjju0c+dO3Xfffdq2bZvmz5+v1157TRMmTPBH+Y5FRlX15AAAAL/wa7j5/PPP1alTJ3Xq1EmSlJmZqU6dOmnKlCmSpB9//NEedCSpWbNmWrVqld577z116NBBs2bN0nPPPef/28ABAEDACJgBxWZxZ0CSW37eLT15sRRVX5r8o/f2CwAA3Pr+DqoxNwAAALUh3AAAgJBCuAEAACGFcAMAAEIK4QYAAIQUwg0AAAgphBsAABBSCDcAACCkEG4AAEBIIdwAAICQQrgBAAAhhXADAABCCuEGAACEFMINAAAIKYQbAAAQUgg3AAAgpBBuAABASCHcAACAkEK4AQAAIYVwAwAAQgrhBgAAhBTCDQAACCmEGwAAEFIINwAAIKQQbgAAQEgh3AAAgJBCuAEAACGFcAMAAEIK4QYAAIQUwg0AAAgphBsAABBSCDcAACCkEG4AAEBIIdwAAICQQrgBAAAhhXADAABCCuEGAACEFMINAAAIKYQbAAAQUgg3AAAgpBBuAABASCHcAACAkEK4AQAAIYVwAwAAQgrhBgAAhBTCDQAACCmEGwAAEFIINwAAIKQQbgAAQEgh3AAAgJBCuAEAACGFcONtlTapaL+/qwAAIGwRbrzlq+VVv22l0px20qYX/VsPAABhinDjDUX7pQ+m/vraqJTeHE8PDgAAfkC48YbD31UFmlMZNunwTv/UAwBAGCPceEOjFpLltFNpiZQaNfdPPQAAhDHCjTfEp0p9p5yywCINmFO1HAAAmIpw4y3tfvfrf7cZKHUe7r9aAAAIY4QbX7A28HcFAACELcKNL1gs/q4AAICwRbjxhfJfpF0fcys4AAB+UM/fBYSkr16XvlpWdQfVgCcZfwMAgIn83nMzb948paenKyYmRt27d9enn35aY/s5c+aoVatWio2NVVpamiZMmKATJ06YVK2rjP/9YjI/AADM5tdws3TpUmVmZiorK0ubNm1Shw4d1K9fPx04cMBh+1deeUUTJ05UVlaWtm7dqueff15Lly7VAw88YHLlbmAyPwAATOXXcDN79myNHj1ao0aNUtu2bbVgwQLVr19fCxcudNh+w4YN6tWrl4YMGaL09HRdddVV+uMf/1hrb48pTj5b6gwWJvMDAMBEfgs3ZWVlysvLU0ZGxq/FREQoIyNDGzdudLhNz549lZeXZw8zO3fu1OrVq9W/f3+nxyktLVVxcXG1H687/dlS1RjePx4AAHDKbwOKDx06JJvNpqSkpGrLk5KStG3bNofbDBkyRIcOHdJvf/tbGYahiooK3XHHHTVelsrJydHDDz/s1drP4OjZUtXW72S2YgAATOL3AcXuWLt2raZPn6758+dr06ZNWr58uVatWqVp06Y53WbSpEkqKiqy/+zdu9f7hTl6tlS19VyWAgDALH7ruWncuLEiIyNVWFhYbXlhYaGSk5MdbvPQQw9p2LBhuvXWWyVJ7du31/Hjx3Xbbbdp8uTJiog4M2BYrVZZrVbvv4FTnXy2VG72meuY0A8AAFP5recmOjpaXbp0UW5urn1ZZWWlcnNz1aNHD4fblJSUnBFgIiMjJUmG4eexLac+W+pUhsHdUgAAmMivk/hlZmZqxIgR6tq1q7p166Y5c+bo+PHjGjVqlCRp+PDhSk1NVU5OjiRpwIABmj17tjp16qTu3bvr22+/1UMPPaQBAwbYQ05Aiqrv7woAAAgbfg03gwcP1sGDBzVlyhQVFBSoY8eOWrNmjX2Q8Z49e6r11Dz44IOyWCx68MEHtX//fp177rkaMGCAHnnkEX+9hV8dLXC+rrzEvDoAAAhzFsPv13PMVVxcrPj4eBUVFSkuLs57O155l7RpseN1t34gNe3ivWMBABBm3Pn+Dqq7pQJW0X5p80vO1x/ZY14tAACEOcKNN9Q2z03JYfNqAQAgzBFuvKG2eW7qNzKvFgAAwhzhxhviU6VOw5yvT+tmXi0AAIQ5wo23dBzq7woAAIAIN97T0PGsypKYxA8AABMRbrylpnlueLYUAACmIdx4S023e9cUfAAAgFcRbrwl4Tzn6/Z+Yl4dAACEOcKNt2yc63xd2m/MqwMAgDBHuPGGfXnS1pWO113Qj0cvAABgIsKNN+zZ6Hxdi97m1QEAAAg3XnFeD+frSn4yrw4AAEC48YqmXaQ21ztet25O1YM1AQCAKQg33nLV3xwvN2xM4gcAgIkIN97CJH4AAAQEwo231DSJHwAAMA3hxltqmsSPy1IAAJiGcGOGqPr+rgAAgLBBuPGWmi5LlZeYVwcAAGGOcOMtUbE1rKPnBgAAsxBuvKX8lxrW0XMDAIBZCDfecmCL83X03AAAYBrCjTcU7ZfWP+l8PT03AACYhnDjDYe/k4xKJystTOIHAICJCDfe0KiFZHFyKi3mlgIAQLgj3HhDfKrU627H6wyDSfwAADAR4cZbEi9yvu6HTebVAQBAmCPceEtNj194b0rVoGMAAOBzhBtvaZhc8/q9n5pTBwAAYY5wY5aSw/6uAACAsEC48ZajBf6uAAAAiHDjPUd217z+lyOmlAEAQLgj3HhLvRoenClJJYfMqQMAgDBHuPGW2h6xcM4F5tQBAECYI9x4S0JazeubdDSlDAAAwh3hxlsaJNW8/sgec+oAACDMEW68xTD8XQEAABDhxotqCjcWKa2baZUAABDOCDfe4rTnxiJd/1TVwzUBAIDPEW685esV/q4AAACIcOMdRfultdOdrDSkN8fz4EwAAExCuPGGw9/VPKDYsEmHd5pXDwAAYYxw4w2NWkgWi/P1lkipUXPz6gEAIIwRbrwhPlXqPcn5+osHM6AYAACTEG68pe31ztf931LG3AAAYBLCjbcw5gYAgIBAuDEDY24AADAN4cbXLBHSgDmMuQEAwCSEG285Vuh4uVFpbh0AAIQ5wo23FO11vm7lXQwoBgDAJIQbb4lPq2GlIX38mGmlAAAQzgg33nLWuTWvz3uB3hsAAExAuDETt4MDAOBzhBuvqWGem5O4HRwAAJ8j3JilcUtuBwcAwASEG7Mc2sGYGwAATEC48ZaaHr9w0t5PfV8HAABhjnADAABCCuHGTFGx/q4AAICQR7jxGhcuS+3f5PsyAAAIc4QbM+3/3N8VAAAQ8jwKNzabTc8//7yGDBmijIwM9e3bt9qPO+bNm6f09HTFxMSoe/fu+vTTmgfdHjlyRGPHjlVKSoqsVqtatmyp1atXe/I2vKvagGKL4zbf5XLHFAAAPlbPk43uvvtuLVq0SNdee63atWsni8XJl3ktli5dqszMTC1YsEDdu3fXnDlz1K9fP23fvl2JiYlntC8rK9OVV16pxMRELVu2TKmpqdq9e7cSEhI8Or7PtPu99NUyx+v2firF32BuPQAAhBGPws2SJUv02muvqX///nU6+OzZszV69GiNGjVKkrRgwQKtWrVKCxcu1MSJE89ov3DhQh0+fFgbNmxQVFSUJCk9Pb1ONfhEs8uch5uSw+bWAgBAmPHoslR0dLQuuOCCOh24rKxMeXl5ysjI+LWYiAhlZGRo48aNDrdZuXKlevToobFjxyopKUnt2rXT9OnTZbPZnB6ntLRUxcXF1X5845TLUt+vc97slyM+Oj4AAJA8DDd//etf9eSTT8pwZeI6Jw4dOiSbzaakpKRqy5OSklRQUOBwm507d2rZsmWy2WxavXq1HnroIc2aNUt/+9vfnB4nJydH8fHx9p+0tDSPa3ZZgyTn6/ZsZNwNAAA+5NFlqXXr1unDDz/U22+/rYsuush+ieik5cuXe6W401VWVioxMVH/+Mc/FBkZqS5dumj//v167LHHlJWV5XCbSZMmKTMz0/66uLjY9wHHGu983XfvSXPaSQOelDoP920dAACEIY/CTUJCgm64oW6DYhs3bqzIyEgVFhZWW15YWKjk5GSH26SkpCgqKkqRkZH2ZW3atFFBQYHKysoUHR19xjZWq1VWq7VOtbrk1F6sn7+vpW2l9OZdUosreJgmAABe5lG4eeGFF+p84OjoaHXp0kW5ubkaNGiQpKqemdzcXI0bN87hNr169dIrr7yiyspKRURUXVHbsWOHUlJSHAYbv3Hl5jHD4M4pAAB8oE6T+B08eFDr1q3TunXrdPDgQbe3z8zM1LPPPqvFixdr69at+stf/qLjx4/b754aPny4Jk2aZG//l7/8RYcPH9bdd9+tHTt2aNWqVZo+fbrGjh1bl7fhJaf03Jyd7tom29f4pBIAAMKZRz03x48f15133qkXX3xRlZWVkqTIyEgNHz5cTz/9tOrXr+/SfgYPHqyDBw9qypQpKigoUMeOHbVmzRr7IOM9e/bYe2gkKS0tTe+8844mTJigiy++WKmpqbr77rt1//33e/I2fCcmwbV2+/7r0zIAAAhHFsODW55uv/12vf/++5o7d6569eolqWqQ8V133aUrr7xSzzzzjNcL9Zbi4mLFx8erqKhIcXFx3tvx/jzp2f/Nztz/cWn1PbVvc1aydO9279UAAECIcuf726Oem9dff13Lli1Tnz597Mv69++v2NhY3XTTTQEdbnzm1IhY/xzXtrGV+aQUAADCmUdjbkpKSs6Yn0aSEhMTVVJSUueigl5ad9faNXR8VxgAAPCcR+GmR48eysrK0okTJ+zLfvnlFz388MPq0aOH14oLLqd03cSnSt1ur32Tdn/wXTkAAIQpjy5LPfnkk+rXr5+aNm2qDh06SJK++OILxcTE6J133vFqgUGrzXXSp3+vuU2LPqaUAgBAOPEo3LRr107ffPONXn75ZW3btk2S9Mc//lFDhw5VbGysVwsMWo1a1N5m80tS0y6+rwUAgDDiUbiRpPr162v06NHerCW4nX7TWXyqdG5b6eDXzrfJe0G67F5mKQYAwItcDjcrV67UNddco6ioKK1cubLGttdff32dCwsJab+pOdxIVRP5dbvFnHoAAAgDLoebQYMGqaCgQImJifbHJThisVhks9m8UVvwi3LhmVbfryfcAADgRS6Hm5MzEZ/+3zjJwVyI51xQ+2alR71fCgAAYaxOz5Y61ZEjR7y1q9DR6pra25z3G9/XAQBAGPEo3MycOVNLly61v77xxhvVqFEjpaam6osvvvBacUHF0VMs4lOl659WjY8JT77IZyUBABCOPAo3CxYsUFpamiTpvffe0/vvv681a9bommuu0b333uvVAoNe5+HShC1Siysdr9+6ytx6AAAIcR7dCl5QUGAPN2+99ZZuuukmXXXVVUpPT1f37i4+eiCcxKdKFSccr9uzwdxaAAAIcR713Jx99tnau3evJGnNmjXKyMiQJBmGEcZ3StXycPUyJ8/cOvytVLTf++UAABCmPAo3v/vd7zRkyBBdeeWV+umnn3TNNVUDZzdv3qwLLnDhDqFwVLTP+bq9n5pXBwAAIc6jcPPEE09o3Lhxatu2rd577z01aNBAkvTjjz9qzJgxXi0wLCwbJS28lh4cAAC8wGIYjm7zCV3FxcWKj49XUVGR4uLivLfj3RulF66u+u/sojPXLx4o7Vpb+36uf7pqEDIAALBz5/ubxy+Ypc0A18LNyjulFlfwvCkAADzE4xe8ppYOsFbXSKv/6tqu3p4o3fxS3UsCACAM8fgFs8SnSvHnSUV7am+77W3f1wMAQIjy2uMX4IIbF7nYsNyXVQAAENI8Cjd33XWXnnrqqTOWz507V+PHj69rTcHJlXHZTbvI5VPOnVMAAHjEo3Dz+uuvq1evXmcs79mzp5YtW1bnokKaNd61dtvX+LYOAABClEfh5qefflJ8/Jlf0nFxcTp06FCdiwppjV2c5PCnb3xbBwAAIcqjcHPBBRdozZozexbefvttNW/evM5FBScXpwu67B7X2n3+guelAAAQxjx6cGZmZqbGjRungwcPqm/fvpKk3NxczZo1S3PmzPFmfaGn1dVS0+7Svv/W3M52ourSVKurzakLAIAQ4VG4+fOf/6zS0lI98sgjmjZtmiQpPT1dzzzzjIYPD9PZdU8dUFy0v+ZJ+G59tyq4fPue9Nlzztt9MJ1wAwCAm+r8+IWDBw8qNjbW/nypQOezxy+8+5C04X93kFkipAFPuvYYhYfPlYwyx+tiEqSJu71WIgAAwcqd72+P57mpqKjQ+++/r+XLl+tkPvrhhx907NgxT3cZvIr2Sxuf/vW1USm9Od6127nbXOd83Ykjda0MAICw41G42b17t9q3b6+BAwdq7NixOnjwoCRp5syZuuceFwfMhpLD3505z41hkw7vrH3bm2oZOLxhrud1AQAQhjwKN3fffbe6du2qn3/+WbGxsfblN9xwg3Jzc71WXNBo1KLqUtSpLJFSIxfvHIuuoXtt4zzP6wIAIAx5NKD4P//5jzZs2KDo6Ohqy9PT07V/fxjOrBufWjXG5s3xVT02lkhpwBw3nuxdw7CnEuYNAgDAHR6Fm8rKSodP/t63b58aNmxY56KCUufhUosrqi5FNWruRrCRlHiRtO8Tx+tsZbXffQUAAOw8uix11VVXVZvPxmKx6NixY8rKylL//v29VVvwiU+Vml3qfhC5enrN6/8zy/OaAAAIMx6Fm8cff1zr169X27ZtdeLECQ0ZMsR+SWrmzJnerjH0Ne0iRVqdr9/6lnm1AAAQ5Dy6LJWWlqYvvvhCS5cu1RdffKFjx47plltu0dChQ6sNMIYbrpgivTvZ8brSo+bWAgBAEHN7Er/y8nK1bt1ab731ltq0aeOrunzGZ5P4eUO2kyeGx5wtTfze1FIAAAgkPp3ELyoqSidOnPC4ONTg3LaOlzdMMbcOAACCmEdjbsaOHauZM2eqoqLC2/WEtwaJjpcX7ZUebizN/Y1rsx4DABDGPBpz89lnnyk3N1fvvvuu2rdvr7POOqva+uXLl3uluLBz7IDj5WX/G3NzaKv0RFvp+qdde24VAABhyKNwk5CQoN///vfergVHf3St3co7q+bUYe4bAADO4Fa4qays1GOPPaYdO3aorKxMffv2VXZ2NndIeUuFG2OZnu4qPehiGAIAIIy4NebmkUce0QMPPKAGDRooNTVVTz31lMaOHeur2sJPPTdCYkUJ428AAHDArXDz4osvav78+XrnnXe0YsUKvfnmm3r55ZdVWVnpq/rCS7db3Wv/hJO7qwAACGNuhZs9e/ZUe7xCRkaGLBaLfvjhB68XFpb6OpnEryYvD/Z+HQAABDG3wk1FRYViYmKqLYuKilJ5eblXiwprHYe51/6bNb6pAwCAIOXWgGLDMDRy5EhZrb8+B+nEiRO64447qt0Ozq3gdTBorvTFq5LhxhxCi66XRq70XU0AAAQRt8LNiBEjzlj2pz/9yWvF4H+yfpJWjJO2rJBiGkrx50n7PnHe/vuPpM0vS52GmlYiAACByu1nSwW7gH62VE2cPXfqVB2GSDc84/taAAAwmU+fLQU/GTi/9jZfvCLty/N9LQAABDDCTbDoNFQ6u1nt7d714I4rAABCCOEmmNydX3ubH//P52UAABDICDfBJi6t5vXlx6W3J5pTCwAAAYhwE2wyv6q9zX+fkaYl+r4WAAACEOEmGGUX1d7GVkoPDgAgLBFuQtl/F/i7AgAATEe4CVb1XbnsFFZTGAEAIIlwE7yGLHGtXXa8tJ3nTwEAwodbj19AAGnapWpG4i9eqb3tqyefHB4pdRxS9fwqAABCFD03weyGZ6RbP5Aat3JxA5uU/5L08Nk+LQsAAH8i3AS7pl2kcZ+6t41RKU2vZb4cAACCFOEmVLjy7KlTlRVLi673TS0AAPhRQISbefPmKT09XTExMerevbs+/dS1noglS5bIYrFo0KBBvi0wGHQaKjVIcm+b7z/iQZsAgJDj93CzdOlSZWZmKisrS5s2bVKHDh3Ur18/HThwoMbtvv/+e91zzz269NJLTao0CNyzQ0pId2+b5/r5pBQAAPzF7+Fm9uzZGj16tEaNGqW2bdtqwYIFql+/vhYuXOh0G5vNpqFDh+rhhx9W8+bNTaw2CIz/QvrjUqnNQBc3KKf3BgAQUvwabsrKypSXl6eMjAz7soiICGVkZGjjxo1Ot5s6daoSExN1yy231HqM0tJSFRcXV/sJea2ulga/WPWYhnr1a2//z9/7viYAAEzi13Bz6NAh2Ww2JSVVHyuSlJSkgoICh9usW7dOzz//vJ599lmXjpGTk6P4+Hj7T1pamN0l9OCPtT+L6sTP5tQCAIAJgmoSv6NHj2rYsGF69tln1bhxY5e2mTRpkjIzM+2vi4uLwy/gSNJl90kfP+p8fXb8mcss0VLWQd/VBACAD/g13DRu3FiRkZEqLCystrywsFDJyclntP/uu+/0/fffa8CAAfZllZWVkqR69epp+/btatGiRbVtrFarrFarD6oPMn0n1xxuHDHKqkKPK08hBwAgQPj1slR0dLS6dOmi3Nxc+7LKykrl5uaqR48eZ7Rv3bq1vvzyS+Xn59t/rr/+el1++eXKz88Pzx4ZM2THSx88Ij13pbSBRzcAAAKb3y9LZWZmasSIEeratau6deumOXPm6Pjx4xo1apQkafjw4UpNTVVOTo5iYmLUrl27atsnJCRI0hnL4UB8ulT0vWfbnuz12fep9O7kqjuyWl3trcoAAPAav4ebwYMH6+DBg5oyZYoKCgrUsWNHrVmzxj7IeM+ePYqI8Psd66Hhz6ulJ9p6Z1/2h3FKkkXKPuKd/QIAUEcWwzAMfxdhpuLiYsXHx6uoqEhxcXH+Lsd8m16UVt7pm30zNgcA4CPufH/TJRJuOg+XJnztm31nxzMhIADA7wg34Sg+1Ukvi0U6p2Xd9v1c36qQk3N+3fYDAICH/D7mBn6UXVR199PWlVKb66We405Z52DeG3eUHuE2cgCAXzDmBs5NTZQqS+u2D2uCNGm3V8oBAIQvd76/6bmBc1NOezK7J705pUe8UgoAAK5izA1cl10kRTVwf7vn+3m/FgAAnOCyFOrmkVSp/Fjt7RqmSH/d5vt6AAAhiVvBYZ7J+127tfzoj9LM5r6vBwAQ9gg3qLv4VOmqR2pv98tPVeN2Hm/t+5oAAGGLy1LwnmmJkq0ud1dFSdmHvFYOACB0cFkK/vHQgdrb1Ki87vPrAADCHuEG3pVdJLX9XR33QcABAHiOeW7gfTe9IL1cIn2zxvN9nB5wEppJ4/PrVBYAIDzQcwPfGLpUiqrvvf0d2UWPDgDAJYQb+M7kH6XL7vPuPrPjpUUDvbtPAEBIIdzAt/pOrhqHk97He/v8fm1VyHltlPf2CQAIGdwKDvNtflna9pbU+jpp90Yp/6U67CxCyv7Za6UBAAKTO9/fhBsEhrqMpzn3ImnsBu/VAgAIOMxzg+CTXeT5tge3MNgYAGDHreAIHI4CjjuhJTteuvDqqju1AABhi54bBLbsIklRrrf/Zg29OAAQ5gg3CHzZh1x78ni1bQg4ABCuCDcIDvGp7o/LyY6v+lkxzjc1AQACEuEGwcWTgcf5L1WFnLcner8eAEDAIdwg+GQXSdEe3Mb/32d+7c0BAIQswg2C0wN7q0JOzDmebZ8dLz16oXdrAgAEBG4FR3CbuLPqtye9MSUHft3OmiBN2u21sgAA/kPPDUJDXSYBlKTSI79esira75WSAAD+QbhB6KjLZapTPdFWmpZEyAGAIMVlKYSWk5epnrpEOrzD8/3YTlSFHElqkCLds63utQEATEHPDULTXZ9V9eTU9XKVJB37kTusACCIEG4Q+k6GnAhrHffDbeQAEAy4LIXwMeVA1e+6BpRTt/dGzxAAwKvouUH4yS6SBs6XmveVLPTmAECosRiGYfi7CDMVFxcrPj5eRUVFiovzYJZbhCZfBZQJX1c9FwsAUCfufH/TcwNIVb05Cc28v98n2tKzAwAmY8wNcNL4/OqvvRlKzthXlJR9yHv7BwDYEW4AZ7KLpOf6Sfs+8cHOy6sHnj8ulb55V7rwKqnV1T44HgCED8bcAK54e2LVU8XNYomWsg6adzwACHDufH8TbgB35Zxf9SwqM0RYpT+/LTXtYs7xACBAufP9zWUpwF0nnx6efY6kCt8eq7JUeq5v9WXMrQMANSLcAJ7K/snx8pcHS9+s8eFx/zdWh5ADAA4RbgBvG7q06vfUxKqeF185/Q6s9D7SyH/77ngAECQYcwOYZfsa6dU/Sqo053j07AAIIQworgHhBgHDrMn96idK931jzrEAwEcYUAwEA0c9K74IPCUHeNgngLBCuAECycng8fC5klHmo2M4CFAEHgAhhHADBKLTJ/DLTpDkwyvIpweey+6T+k723fEAwIcYcwMEk7+lSBUl5h7TmvDr3D4A4CeMuQFC1YM/nrnM1wOTS48wZgdAUCHcAMHu1LDx1CXS4R0+Pt7JoBMpZR/27bEAwAOEGyCU3PXZr//t81vNbfToAAhIhBsgVGUXVT3NPP9Vcx70eXqYirBKUw74/rgAcBoGFAPhal5P6eAW847H4yEA1AEzFNeAcAM4sKCPVLDZnGNx+QqAB7hbCoB77lhb/fXjraVjDu7M8oaaxgL9canU6mrfHBdA2CDcADjTPduqv57RXDrxk++P++pgx8vp7QHgBsINgNpN3Pnrf5v1wM9Tcfs5ADcQbgC459ReFNODju3MY9KrA+A0hBsAnjPryeY11sCDQAFUR7gB4F2nBwu/XsaSVK++dO3jUqeh5tcBwC8i/F0AgBCXXSRZov13/IoS6d9jqgKPP4IWANMFRM/NvHnz9Nhjj6mgoEAdOnTQ008/rW7dujls++yzz+rFF1/UV199JUnq0qWLpk+f7rQ9gACQddD5un150nN9zauFMTtAyPP7JH5Lly7V8OHDtWDBAnXv3l1z5szRv/71L23fvl2JiYlntB86dKh69eqlnj17KiYmRjNnztQbb7yhLVu2KDU1tdbjMYkfECT83cvCnDtAQAmqGYq7d++uSy65RHPnzpUkVVZWKi0tTXfeeacmTpxY6/Y2m01nn3225s6dq+HDh9fannADBCF/Bx1JuvUDqWkXf1cBhK2gmaG4rKxMeXl5mjRpkn1ZRESEMjIytHHjRpf2UVJSovLycjVq1Mjh+tLSUpWWltpfFxcX161oAOYLhEHK1S6dMd8OEMj8Gm4OHTokm82mpKSkasuTkpK0bds2J1tVd//996tJkybKyMhwuD4nJ0cPP/xwnWsFEED8fgu6g/l2JCnmnOoTHgLwi4AYUOypGTNmaMmSJVq7dq1iYmIctpk0aZIyMzPtr4uLi5WWlmZWiQDMcmrgKdovPdHW/BpO/MSAZSAA+DXcNG7cWJGRkSosLKy2vLCwUMnJyTVu+/jjj2vGjBl6//33dfHFFzttZ7VaZbVavVIvgCARn+rnmZRP4ezYhB7AZ/wabqKjo9WlSxfl5uZq0KBBkqoGFOfm5mrcuHFOt3v00Uf1yCOP6J133lHXrl1NqhZA0AqEMTunY2ZlwGf8flkqMzNTI0aMUNeuXdWtWzfNmTNHx48f16hRoyRJw4cPV2pqqnJyciRJM2fO1JQpU/TKK68oPT1dBQUFkqQGDRqoQYMGfnsfAIKIsxBh9pw7pzs18BB0AI/5PdwMHjxYBw8e1JQpU1RQUKCOHTtqzZo19kHGe/bsUUTErxMpP/PMMyorK9Mf/vCHavvJyspSdna2maUDCDVNu1QPFQv6SAWb/VNLbb1LhB/AKb/Pc2M25rkB4LFAuJzlTIMU6R7X7jIFglHQzHMTyGw2m8rLy/1dBiRFRUUpMjLS32UAjntLnusn7fvE/FpOd+xH5+GL2ZYRZgg3pzEMQwUFBTpy5Ii/S8EpEhISlJycLIvF4u9SgOpufefMZYHWw/PqYOfr6idK931jXi2ACQg3pzkZbBITE1W/fn2+TP3MMAyVlJTowIEDkqSUlBQ/VwS4wNl4mJzzpdIjppZSq5IDDGRGyCHcnMJms9mDzTnnnOPvcvA/sbGxkqQDBw4oMTGRS1QIXpN2n7ks0Hp5mJcHIYBwc4qTY2zq16/v50pwupN/JuXl5YQbhJZAmWywNszLgyBCuHGAS1GBhz8ThIXawkKghR8eNYEARbgBgGDh9weG1oJLWggQhBt4RZ8+fdSxY0fNmTPH4fqRI0fqyJEjWrFihcP26enpGj9+vMaPH29KvUDIcBYcpiVJthPm1uIMoQcmI9yEiJEjR2rx4sXKycnRxIkT7ctXrFihG264QXWZq9Fms+mxxx7TokWLtHv3bsXGxurCCy/U6NGjdeutt7q0jyeffLJONQBw00OFztdtfln69xjzanHm9NBTr7704I/+qQUhhXATQmJiYjRz5kzdfvvtOvvss72234cfflh///vfNXfuXHXt2lXFxcX6/PPP9fPPP7u8j/j4AOo6B8Jdp6FVPyfN6ykd3OK/ek6qKHHcy3Ph1dLQpebXg6BFuHFRSVmF03URFotioiK92rZ+tPt/NBkZGfr222+Vk5OjRx991Gm7119/XVOmTNG3336rlJQU3XnnnfrrX//qtP3KlSs1ZswY3XjjjfZlHTp0qLGWVatWaciQIZo/f76GDh16xmUpAAFk7AbHy7PPkeT888w036xh8DLcQrhxUdspDmYh/Z/LW52rF0Z1s7/uMu19/VJuc9i2e7NGWnp7D/vr3878UIePl53R7vsZ17pdY2RkpKZPn64hQ4borrvuUtOmTc9ok5eXp5tuuknZ2dkaPHiwNmzYoDFjxuicc87RyJEjHe43OTlZH3zwgcaMGaNzzz231jpeeeUV3XHHHXrllVd03XXXuf0+AASI7J8cLAuQXlhuTUcNCDch5oYbblDHjh2VlZWl559//oz1s2fP1hVXXKGHHnpIktSyZUt9/fXXeuyxx5yGm9mzZ+sPf/iDkpOTddFFF6lnz54aOHCgrrnmmjPazps3T5MnT9abb76p3r17e/W9AQgApweIQAk7Er07sCPcuOjrqf2cros4bQ6WvIcyXG677v7L61aYAzNnzlTfvn11zz33nLFu69atGjhwYLVlvXr10pw5c2Sz2RxOkNe2bVt99dVXysvL0/r16/Xxxx9rwIABGjlypJ577jl7u2XLlunAgQNav369LrnkEq+/LwAByFmACITQQ+9O2CLcuMidMTC+auuqyy67TP369dOkSZOc9sa4KyIiQpdccokuueQSjR8/Xv/85z81bNgwTZ48Wc2aNZMkderUSZs2bdLChQvVtWtXJt4Dwlmghp7Tj29NcPxYDAQ1wk2ImjFjhjp27KhWrVpVW96mTRutX7++2rL169erZcuWbj3WoG3btpKk48eP25e1aNFCs2bNUp8+fRQZGam5c+fW4R0ACEmBNhFh6RF6eEIQ4SZEtW/fXkOHDtVTTz1Vbflf//pXXXLJJZo2bZoGDx6sjRs3au7cuZo/f77Tff3hD39Qr1691LNnTyUnJ2vXrl2aNGmSWrZsqdatW1dr27JlS3344Yfq06eP6tWr53RSPwCwC8ReHsbvBDXCTQibOnWqli6tPjdE586d9dprr2nKlCmaNm2aUlJSNHXq1BovX/Xr10+vvvqqcnJyVFRUpOTkZPXt21fZ2dmqV+/Mv0KtWrXSBx98YO/BmTVrlrffGoBwEEiDl5llOahYjDCbNra4uFjx8fEqKipSXFxctXUnTpzQrl271KxZM8XExPipQjjCnw0Ah/w9hscRAo9P1PT9fTp6bgAAwSuQendqqoHAYyrCDQAgdATagOXaaiD0+AThBgAQ2gI18EgMXPYRwg0AIPwEauChh8crCDcAAEiBOX7nJMbxuIVwAwCAI4E4/86pCDxOEW4AAHCHowAxNVGqLDW/ltNxWUsS4QYAgLqbcuDMZYHSwyOF3cBlwg0AAL4QyJe1QjzsRPi7AASH9PT0Oj0natGiRUpISPBaPQAQtLKLqv8Eguz46j9Bjp6bEDFy5EgdOXJEK1as8Mn+P/vsM5111lkutU1PT9f48eM1fvx4+7LBgwerf//+PqkNAIJaIPbwnHrsQAlgbiDc+FLRfunwd1KjFlJ8qr+rqZNzzz23TtvHxsYqNjbWS9UAQBgIlLl4gvASFpelamMYUtlx938+fVaa005aPKDq96fPur8PLz3T9KOPPlK3bt1ktVqVkpKiiRMnqqKiwr7+6NGjGjp0qM466yylpKToiSeeUJ8+far1vJx6WcowDGVnZ+u8886T1WpVkyZNdNddd0mS+vTpo927d2vChAmyWCyyWCySHF+WevPNN3XJJZcoJiZGjRs31g033OCV9wsAIev0S1r+CBpBcAmLnpvalJdI05vUbR9GpbT6nqofdzzwgxTt2qUgZ/bv36/+/ftr5MiRevHFF7Vt2zaNHj1aMTExys7OliRlZmZq/fr1WrlypZKSkjRlyhRt2rRJHTt2dLjP119/XU888YSWLFmiiy66SAUFBfriiy8kScuXL1eHDh102223afTo0U7rWrVqlW644QZNnjxZL774osrKyrR69eo6vVcACEv+vqwVgD07hJsQN3/+fKWlpWnu3LmyWCxq3bq1fvjhB91///2aMmWKjh8/rsWLF+uVV17RFVdcIUl64YUX1KSJ80C3Z88eJScnKyMjQ1FRUTrvvPPUrVs3SVKjRo0UGRmphg0bKjk52ek+HnnkEd188816+OGH7cs6dOjgpXcNAPDbjMsnj+PHkEO4qU1U/aoeFHcU/yDN61bVY3OSJVIa+18pzo1eoKj67h3Xga1bt6pHjx72y0OS1KtXLx07dkz79u3Tzz//rPLycns4kaT4+Hi1atXK6T5vvPFGzZkzR82bN9fVV1+t/v37a8CAAapXz/W/Tvn5+TX27AAAvMzssJMd77eAw5ib2lgsVZeG3PlpfKE04MmqQCNV/R4wp2q5O/s5JZAEkrS0NG3fvl3z589XbGysxowZo8suu0zl5eUu74PBxQDgZ2aM3fHTmBzCja90Hi6N/1Ia8VbV787D/VJGmzZttHHjRhmnDE5ev369GjZsqKZNm6p58+aKiorSZ599Zl9fVFSkHTt21Ljf2NhYDRgwQE899ZTWrl2rjRs36ssvv5QkRUdHy2az1bj9xRdfrNzc3Dq8MwCAV/kq6Pgh4HBZypfiU029BbyoqEj5+fnVlt12222aM2eO7rzzTo0bN07bt29XVlaWMjMzFRERoYYNG2rEiBG699571ahRIyUmJiorK0sRERHVLmWdatGiRbLZbOrevbvq16+vf/7zn4qNjdX5558vqerOqo8//lg333yzrFarGjdufMY+srKydMUVV6hFixa6+eabVVFRodWrV+v+++/3+nkBALgpkJ+Q7gLCTQhZu3atOnXqVG3ZLbfcotWrV+vee+9Vhw4d1KhRI91yyy168MEH7W1mz56tO+64Q9ddd53i4uJ03333ae/evYqJiXF4nISEBM2YMUOZmZmy2Wxq37693nzzTZ1zzjmSpKlTp+r2229XixYtVFpaWq3X6KQ+ffroX//6l6ZNm6YZM2YoLi5Ol112mRfPBgDAa4Is7FgMR988Iay4uFjx8fEqKipSXFxctXUnTpzQrl271KxZM6df7OHg+PHjSk1N1axZs3TLLbf4uxxJ/NkAQECrKex46TJXTd/fp6PnBtq8ebO2bdumbt26qaioSFOnTpUkDRw40M+VAQCCwskAEyBz3hBuIEl6/PHHtX37dkVHR6tLly76z3/+43CsDAAATgXABH4S4QaSOnXqpLy8PH+XAQCAV3ArOAAACCmEGwfCbIx1UODPBADgKsLNKaKioiRJJSUlfq4Epzv5Z3LyzwgAAGcYc3OKyMhIJSQk6MCBA5Kk+vXrO53IDuYwDEMlJSU6cOCAEhISFBkZ6e+SAAABjnBzmpNPsj4ZcBAYEhISanzKOAAAJxFuTmOxWJSSkqLExES3HgQJ34mKiqLHBgDgMsKNE5GRkXyhAgAQhBhQDAAAQgrhBgAAhBTCDQAACClhN+bm5GRwxcXFfq4EAAC46uT3tiuTuoZduDl69KgkKS0tzc+VAAAAdx09elTx8fE1trEYYTavfWVlpX744Qc1bNjQ6xP0FRcXKy0tTXv37lVcXJxX941fcZ7NwXk2B+fZPJxrc/jqPBuGoaNHj6pJkyaKiKh5VE3Y9dxERESoadOmPj1GXFwc/3BMwHk2B+fZHJxn83CuzeGL81xbj81JDCgGAAAhhXADAABCCuHGi6xWq7KysmS1Wv1dSkjjPJuD82wOzrN5ONfmCITzHHYDigEAQGij5wYAAIQUwg0AAAgphBsAABBSCDcAACCkEG7cNG/ePKWnpysmJkbdu3fXp59+WmP7f/3rX2rdurViYmLUvn17rV692qRKg5s75/nZZ5/VpZdeqrPPPltnn322MjIyav1zQRV3/z6ftGTJElksFg0aNMi3BYYId8/zkSNHNHbsWKWkpMhqtaply5Z8drjA3fM8Z84ctWrVSrGxsUpLS9OECRN04sQJk6oNTh9//LEGDBigJk2ayGKxaMWKFbVus3btWnXu3FlWq1UXXHCBFi1a5PM6ZcBlS5YsMaKjo42FCxcaW7ZsMUaPHm0kJCQYhYWFDtuvX7/eiIyMNB599FHj66+/Nh588EEjKirK+PLLL02uPLi4e56HDBlizJs3z9i8ebOxdetWY+TIkUZ8fLyxb98+kysPLu6e55N27dplpKamGpdeeqkxcOBAc4oNYu6e59LSUqNr165G//79jXXr1hm7du0y1q5da+Tn55tceXBx9zy//PLLhtVqNV5++WVj165dxjvvvGOkpKQYEyZMMLny4LJ69Wpj8uTJxvLlyw1JxhtvvFFj+507dxr169c3MjMzja+//tp4+umnjcjISGPNmjU+rZNw44Zu3boZY8eOtb+22WxGkyZNjJycHIftb7rpJuPaa6+ttqx79+7G7bff7tM6g5275/l0FRUVRsOGDY3Fixf7qsSQ4Ml5rqioMHr27Gk899xzxogRIwg3LnD3PD/zzDNG8+bNjbKyMrNKDAnunuexY8caffv2rbYsMzPT6NWrl0/rDCWuhJv77rvPuOiii6otGzx4sNGvXz8fVmYYXJZyUVlZmfLy8pSRkWFfFhERoYyMDG3cuNHhNhs3bqzWXpL69evntD08O8+nKykpUXl5uRo1auSrMoOep+d56tSpSkxM1C233GJGmUHPk/O8cuVK9ejRQ2PHjlVSUpLatWun6dOny2azmVV20PHkPPfs2VN5eXn2S1c7d+7U6tWr1b9/f1NqDhf++h4MuwdneurQoUOy2WxKSkqqtjwpKUnbtm1zuE1BQYHD9gUFBT6rM9h5cp5Pd//996tJkyZn/IPCrzw5z+vWrdPzzz+v/Px8EyoMDZ6c5507d+qDDz7Q0KFDtXr1an377bcaM2aMysvLlZWVZUbZQceT8zxkyBAdOnRIv/3tb2UYhioqKnTHHXfogQceMKPksOHse7C4uFi//PKLYmNjfXJcem4QUmbMmKElS5bojTfeUExMjL/LCRlHjx7VsGHD9Oyzz6px48b+LiekVVZWKjExUf/4xz/UpUsXDR48WJMnT9aCBQv8XVpIWbt2raZPn6758+dr06ZNWr58uVatWqVp06b5uzR4AT03LmrcuLEiIyNVWFhYbXlhYaGSk5MdbpOcnOxWe3h2nk96/PHHNWPGDL3//vu6+OKLfVlm0HP3PH/33Xf6/vvvNWDAAPuyyspKSVK9evW0fft2tWjRwrdFByFP/j6npKQoKipKkZGR9mVt2rRRQUGBysrKFB0d7dOag5En5/mhhx7SsGHDdOutt0qS2rdvr+PHj+u2227T5MmTFRHB//t7g7Pvwbi4OJ/12kj03LgsOjpaXbp0UW5urn1ZZWWlcnNz1aNHD4fb9OjRo1p7SXrvvfectodn51mSHn30UU2bNk1r1qxR165dzSg1qLl7nlu3bq0vv/xS+fn59p/rr79el19+ufLz85WWlmZm+UHDk7/PvXr10rfffmsPj5K0Y8cOpaSkEGyc8OQ8l5SUnBFgTgZKg0cueo3fvgd9Olw5xCxZssSwWq3GokWLjK+//tq47bbbjISEBKOgoMAwDMMYNmyYMXHiRHv79evXG/Xq1TMef/xxY+vWrUZWVha3grvA3fM8Y8YMIzo62li2bJnx448/2n+OHj3qr7cQFNw9z6fjbinXuHue9+zZYzRs2NAYN26csX37duOtt94yEhMTjb/97W/+egtBwd3znJWVZTRs2NB49dVXjZ07dxrvvvuu0aJFC+Omm27y11sICkePHjU2b95sbN682ZBkzJ4929i8ebOxe/duwzAMY+LEicawYcPs7U/eCn7vvfcaW7duNebNm8et4IHo6aefNs477zwjOjra6Natm/HJJ5/Y1/Xu3dsYMWJEtfavvfaa0bJlSyM6Otq46KKLjFWrVplccXBy5zyff/75hqQzfrKysswvPMi4+/f5VIQb17l7njds2GB0797dsFqtRvPmzY1HHnnEqKioMLnq4OPOeS4vLzeys7ONFi1aGDExMUZaWpoxZswY4+effza/8CDy4YcfOvy8PXluR4wYYfTu3fuMbTp27GhER0cbzZs3N1544QWf12kxDPrfAABA6GDMDQAACCmEGwAAEFIINwAAIKQQbgAAQEgh3AAAgJBCuAEAACGFcAMAAEIK4QYAAIQUwg0ASLJYLFqxYoUk6fvvv5fFYlF+fr5fawLgGcINAL8bOXKkLBaLLBaLoqKi1KxZM9133306ceKEv0sDEITq+bsAAJCkq6++Wi+88ILKy8uVl5enESNGyGKxaObMmf4uDUCQoecGQECwWq1KTk5WWlqaBg0apIyMDL333nuSpMrKSuXk5KhZs2aKjY1Vhw4dtGzZsmrbb9myRdddd53i4uLUsGFDXXrppfruu+8kSZ999pmuvPJKNW7cWPHx8erdu7c2bdpk+nsEYA7CDYCA89VXX2nDhg2Kjo6WJOXk5OjFF1/UggULtGXLFk2YMEF/+tOf9NFHH0mS9u/fr8suu0xWq1UffPCB8vLy9Oc//1kVFRWSpKNHj2rEiBFat26dPvnkE1144YXq37+/jh496rf3CMB3uCwFICC89dZbatCggSoqKlRaWqqIiAjNnTtXpaWlmj59ut5//3316NFDktS8eXOtW7dOf//739W7d2/NmzdP8fHxWrJkiaKioiRJLVu2tO+7b9++1Y71j3/8QwkJCfroo4903XXXmfcmAZiCcAMgIFx++eV65plndPz4cT3xxBOqV6+efv/732vLli0qKSnRlVdeWa19WVmZOnXqJEnKz8/XpZdeag82pyssLNSDDz6otWvX6sCBA7LZbCopKdGePXt8/r4AmI9wAyAgnHXWWbrgggskSQsXLlSHDh30/PPPq127dpKkVatWKTU1tdo2VqtVkhQbG1vjvkeMGKGffvpJTz75pM4//3xZrVb16NFDZWVlPngnAPyNcAMg4EREROiBBx5QZmamduzYIavVqj179qh3794O21988cVavHixysvLHfberF+/XvPnz1f//v0lSXv37tWhQ4d8+h4A+A8DigEEpBtvvFGRkZH6+9//rnvuuUcTJkzQ4sWL9d1332nTpk16+umntXjxYknSuHHjVFxcrJtvvlmff/65vvnmG7300kvavn27JOnCCy/USy+9pK1bt+q///2vhg4dWmtvD4DgRc8NgIBUr149jRs3To8++qh27dqlc889Vzk5Odq5c6cSEhLUuXNnPfDAA5Kkc845Rx988IHuvfde9e7dW5GRkerYsaN69eolSXr++ed12223qXPnzkpLS9P06dN1zz33+PPtAfAhi2EYhr+LAAAA8BYuSwEAgJBCuAEAACGFcAMAAEIK4QYAAIQUwg0AAAgphBsAABBSCDcAACCkEG4AAEBIIdwAAICQQrgBAAAhhXADAABCyv8DbNHwW7L5EC0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -3925,20 +5033,20 @@ "+------------------+---------------------+---------------------+\n", "| Confusion Matrix | Positive prediction | Negative prediction |\n", "+------------------+---------------------+---------------------+\n", - "| Positive class | 8 | 4876 |\n", - "| Negative class | 1 | 56618 |\n", + "| Positive class | 104 | 4780 |\n", + "| Negative class | 88 | 56531 |\n", "+------------------+---------------------+---------------------+\n", - "ROC AUC: 0.5008101698611951\n", - "Accuracy = 0.9207030551355219\n", - "Precision = 0.8888888888888888\n", - "Recall = 0.001638001638001638\n", - "F1 Score = 0.0032699775189045576\n", - "Fbeta Score = (0.49, 0.92, 0.91)\n", - " model tn fp fn tp FP+10*FN accuracy ROC_AUC \\\n", - "0 RFC_newFEATURE 56618 1 4876 8 48761 0.920703 0.50081 \n", + "ROC AUC: 0.5098698863601105\n", + "Accuracy = 0.9208493894606767\n", + "Precision = 0.5416666666666666\n", + "Recall = 0.021294021294021293\n", + "F1 Score = 0.04097714736012609\n", + "Fbeta Score = (0.5, 0.92, 0.91)\n", + " model tn fp fn tp FP+10*FN accuracy ROC_AUC precision \\\n", + "0 XGB_Shap002 56531 88 4780 104 47888 0.920849 0.50987 0.541667 \n", "\n", - " precision recall F1_Score Fbeta_macro Fbeta_micro Fbeta_weighted \n", - "0 0.888889 0.001638 0.00327 0.49 0.92 0.91 \n", + " recall F1_Score Fbeta_macro Fbeta_micro Fbeta_weighted \n", + "0 0.021294 0.040977 0.5 0.92 0.91 \n", "---------------------------------\n", "start find_optimal_business_score\n", "prediction proba 61503\n", @@ -3946,23 +5054,23 @@ "Series([], Name: best, dtype: object)\n", "0 1\n", "Name: best, dtype: object\n", - "best b score 36534 1 0.1\n", + "best b score 32718 1 0.1\n", "Name: threshold, dtype: float64\n", " threshold tn fp fn tp FP+10*FN accuracy ROC_AUC \\\n", "0 0.0 0 56619 0 4884 56619 0.079411 0.500000 \n", - "1 0.1 36805 19814 1672 3212 36534 0.650651 0.653852 \n", - "2 0.2 52641 3978 3619 1265 40168 0.876478 0.594375 \n", - "3 0.3 55956 663 4560 324 46263 0.915077 0.527315 \n", - "4 0.4 56542 77 4826 58 48337 0.920280 0.505258 \n", - "5 0.5 56618 1 4875 9 48751 0.920719 0.500913 \n", + "1 0.1 43671 12948 1977 2907 32718 0.757329 0.683261 \n", + "2 0.2 53096 3523 3518 1366 38703 0.885518 0.608733 \n", + "3 0.3 55557 1062 4242 642 43482 0.913760 0.556346 \n", + "4 0.4 56298 321 4617 267 46491 0.919711 0.524499 \n", + "5 0.5 56531 88 4780 104 47888 0.920849 0.509870 \n", "\n", " precision recall F1_Score Fbeta_macro Fbeta_micro Fbeta_weighted \\\n", "0 0.079411 1.000000 0.147137 0.150668 0.079411 0.023929 \n", - "1 0.139494 0.657658 0.230168 0.535945 0.650651 0.669366 \n", - "2 0.241274 0.259009 0.249827 0.593089 0.876478 0.877266 \n", - "3 0.328267 0.066339 0.110373 0.526903 0.915077 0.903724 \n", - "4 0.429630 0.011876 0.023112 0.498453 0.920280 0.905340 \n", - "5 0.900000 0.001843 0.003678 0.492680 0.920719 0.905175 \n", + "1 0.183349 0.595209 0.280341 0.606554 0.757329 0.771304 \n", + "2 0.279403 0.279689 0.279546 0.608713 0.885518 0.885528 \n", + "3 0.376761 0.131450 0.194900 0.560737 0.913760 0.905289 \n", + "4 0.454082 0.054668 0.097588 0.522903 0.919711 0.906955 \n", + "5 0.541667 0.021294 0.040977 0.504263 0.920849 0.906266 \n", "\n", " best \n", "0 0 \n", @@ -3971,314 +5079,494 @@ "3 0 \n", "4 0 \n", "5 0 \n", - "Artifact PATH RFC_newFEATURE_artifactPATH\n", - "{'TN': 36805, 'FP': 19814, 'FN': 1672, 'TP': 3212, 'FP_10_FN': 36534, 'Accuracy': 0.6506511877469392, 'F1': 0.23016839842350412, 'Precision': 0.13949448449578736, 'Recall': 0.6576576576576577, 'ROC_AUC': 0.6538522308670138, 'threshold': 0.1, 'time_in_s': 12256.283957958221}\n", - "{'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100}\n" - ] - }, - { - "ename": "ValueError", - "evalue": "The feature names should match those that were passed during fit.\nFeature names unseen at fit time:\n- 0\n- 1\n- 10\n- 100\n- 101\n- ...\nFeature names seen at fit time, yet now missing:\n- AMT_ANNUITY\n- AMT_CREDIT\n- AMT_GOODS_PRICE\n- AMT_INCOME_TOTAL\n- AMT_REQ_CREDIT_BUREAU_MON\n- ...\n", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[203], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m RFC_model, best_RFC_params, time_RFC \u001b[38;5;241m=\u001b[39m RFC_model(new_X_train, Y_train)\n\u001b[1;32m 3\u001b[0m RFC_metrics, best_metrics_RFC \u001b[38;5;241m=\u001b[39m generate_model_report(RFC_model, run_name, new_X_test, Y_test, time_RFC)\n\u001b[0;32m----> 4\u001b[0m \u001b[43mrun_MLflow\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexperiment_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mRFC_metrics\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\n\u001b[1;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[43mbest_RFC_params\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mRFC_model\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mX_train\u001b[49m\u001b[43m)\u001b[49m\n", - "Cell \u001b[0;32mIn[122], line 14\u001b[0m, in \u001b[0;36mrun_MLflow\u001b[0;34m(experiment_name, run_name, metrics, params, model_obj, X_train)\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28mprint\u001b[39m(metrics)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28mprint\u001b[39m(params)\n\u001b[0;32m---> 14\u001b[0m signature \u001b[38;5;241m=\u001b[39m infer_signature(X_train, \u001b[43mmodel_obj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX_train\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 16\u001b[0m \u001b[38;5;66;03m# Initiate the MLflow run context\u001b[39;00m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m mlflow\u001b[38;5;241m.\u001b[39mstart_run(run_name\u001b[38;5;241m=\u001b[39mrun_name) \u001b[38;5;28;01mas\u001b[39;00m run:\n\u001b[1;32m 18\u001b[0m \u001b[38;5;66;03m#run = mlflow.active_run()\u001b[39;00m\n", - "File \u001b[0;32m~/opt/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py:823\u001b[0m, in \u001b[0;36mForestClassifier.predict\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 802\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpredict\u001b[39m(\u001b[38;5;28mself\u001b[39m, X):\n\u001b[1;32m 803\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 804\u001b[0m \u001b[38;5;124;03m Predict class for X.\u001b[39;00m\n\u001b[1;32m 805\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 821\u001b[0m \u001b[38;5;124;03m The predicted classes.\u001b[39;00m\n\u001b[1;32m 822\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 823\u001b[0m proba \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict_proba\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 825\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_outputs_ \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 826\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclasses_\u001b[38;5;241m.\u001b[39mtake(np\u001b[38;5;241m.\u001b[39margmax(proba, axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m), axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\n", - "File \u001b[0;32m~/opt/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py:865\u001b[0m, in \u001b[0;36mForestClassifier.predict_proba\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 863\u001b[0m check_is_fitted(\u001b[38;5;28mself\u001b[39m)\n\u001b[1;32m 864\u001b[0m \u001b[38;5;66;03m# Check data\u001b[39;00m\n\u001b[0;32m--> 865\u001b[0m X \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_validate_X_predict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 867\u001b[0m \u001b[38;5;66;03m# Assign chunk of trees to jobs\u001b[39;00m\n\u001b[1;32m 868\u001b[0m n_jobs, _, _ \u001b[38;5;241m=\u001b[39m _partition_estimators(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_estimators, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_jobs)\n", - "File \u001b[0;32m~/opt/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py:599\u001b[0m, in \u001b[0;36mBaseForest._validate_X_predict\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 596\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 597\u001b[0m \u001b[38;5;124;03mValidate X whenever one tries to predict, apply, predict_proba.\"\"\"\u001b[39;00m\n\u001b[1;32m 598\u001b[0m check_is_fitted(\u001b[38;5;28mself\u001b[39m)\n\u001b[0;32m--> 599\u001b[0m X \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_validate_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mDTYPE\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maccept_sparse\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcsr\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 600\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m issparse(X) \u001b[38;5;129;01mand\u001b[39;00m (X\u001b[38;5;241m.\u001b[39mindices\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m!=\u001b[39m np\u001b[38;5;241m.\u001b[39mintc \u001b[38;5;129;01mor\u001b[39;00m X\u001b[38;5;241m.\u001b[39mindptr\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m!=\u001b[39m np\u001b[38;5;241m.\u001b[39mintc):\n\u001b[1;32m 601\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo support for np.int64 index based sparse matrices\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "File \u001b[0;32m~/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:580\u001b[0m, in \u001b[0;36mBaseEstimator._validate_data\u001b[0;34m(self, X, y, reset, validate_separately, cast_to_ndarray, **check_params)\u001b[0m\n\u001b[1;32m 509\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_validate_data\u001b[39m(\n\u001b[1;32m 510\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 511\u001b[0m X\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mno_validation\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 516\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mcheck_params,\n\u001b[1;32m 517\u001b[0m ):\n\u001b[1;32m 518\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Validate input data and set or check the `n_features_in_` attribute.\u001b[39;00m\n\u001b[1;32m 519\u001b[0m \n\u001b[1;32m 520\u001b[0m \u001b[38;5;124;03m Parameters\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 578\u001b[0m \u001b[38;5;124;03m validated.\u001b[39;00m\n\u001b[1;32m 579\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 580\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_check_feature_names\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreset\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 582\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m y \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_get_tags()[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrequires_y\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n\u001b[1;32m 583\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 584\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThis \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m estimator \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 585\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrequires y to be passed, but the target y is None.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 586\u001b[0m )\n", - "File \u001b[0;32m~/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:507\u001b[0m, in \u001b[0;36mBaseEstimator._check_feature_names\u001b[0;34m(self, X, reset)\u001b[0m\n\u001b[1;32m 502\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m missing_names \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m unexpected_names:\n\u001b[1;32m 503\u001b[0m message \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 504\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFeature names must be in the same order as they were in fit.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 505\u001b[0m )\n\u001b[0;32m--> 507\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(message)\n", - "\u001b[0;31mValueError\u001b[0m: The feature names should match those that were passed during fit.\nFeature names unseen at fit time:\n- 0\n- 1\n- 10\n- 100\n- 101\n- ...\nFeature names seen at fit time, yet now missing:\n- AMT_ANNUITY\n- AMT_CREDIT\n- AMT_GOODS_PRICE\n- AMT_INCOME_TOTAL\n- AMT_REQ_CREDIT_BUREAU_MON\n- ...\n" + "Artifact PATH XGB_Shap002_artifactPATH\n", + "{'TN': 43671, 'FP': 12948, 'FN': 1977, 'TP': 2907, 'FP_10_FN': 32718, 'Accuracy': 0.7573289107848398, 'F1': 0.2803413857948792, 'Precision': 0.18334910122989592, 'Recall': 0.5952088452088452, 'ROC_AUC': 0.6832611809364312, 'threshold': 0.1, 'time_in_s': 401.3764216899872}\n", + "{'subsample': 0.3, 'n_estimators': 185, 'max_depth': 6, 'learning_rate': 0.1, 'colsample_bytree': 0.3}\n", + "Active run_id: 4448f13f29bd40f3bbfc7daa20c6e0f3\n" ] } ], "source": [ - "run_name = \"RFC_newFEATURE\"\n", - "RFC_model, best_RFC_params, time_RFC = RFC_model(new_X_train, Y_train)\n", - "RFC_metrics, best_metrics_RFC = generate_model_report(RFC_model, run_name, new_X_test, Y_test, time_RFC)\n", - "run_MLflow(experiment_name, run_name, RFC_metrics, \n", - " best_RFC_params, RFC_model, new_X_train)" - ] - }, - { - "cell_type": "markdown", - "id": "a84fbb96", - "metadata": {}, - "source": [ - "### Second attempt to improve feature selection and model improvement" + "run_name = \"XGB_Shap002\"\n", + "XGB_model_002, XGB_002_params, time_XGB_002 = train_XGBoost_model(new_X_train_002, Y_train)\n", + "XGB_002_metrics, best_metrics_XGB = generate_model_report(XGB_model_002, run_name, new_X_test_002, Y_test, time_XGB_002)\n", + "run_MLflow(experiment_name, run_name, XGB_002_metrics, \n", + " XGB_002_params, XGB_model_002, new_X_train_002)\n" ] }, { "cell_type": "code", - "execution_count": 217, - "id": "950f3154", + "execution_count": 251, + "id": "36e5f24d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "length important features 96\n", - "(246008, 96)\n", - "\n", - "RangeIndex: 246008 entries, 0 to 246007\n", - "Data columns (total 96 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 NAME_CONTRACT_TYPE 246008 non-null float64\n", - " 1 FLAG_OWN_CAR 246008 non-null float64\n", - " 2 FLAG_OWN_REALTY 246008 non-null float64\n", - " 3 CNT_CHILDREN 246008 non-null float64\n", - " 4 AMT_INCOME_TOTAL 246008 non-null float64\n", - " 5 AMT_CREDIT 246008 non-null float64\n", - " 6 AMT_ANNUITY 246008 non-null float64\n", - " 7 AMT_GOODS_PRICE 246008 non-null float64\n", - " 8 REGION_POPULATION_RELATIVE 246008 non-null float64\n", - " 9 DAYS_BIRTH 246008 non-null float64\n", - " 10 DAYS_EMPLOYED 246008 non-null float64\n", - " 11 DAYS_REGISTRATION 246008 non-null float64\n", - " 12 DAYS_ID_PUBLISH 246008 non-null float64\n", - " 13 OWN_CAR_AGE 246008 non-null float64\n", - " 14 FLAG_EMP_PHONE 246008 non-null float64\n", - " 15 FLAG_WORK_PHONE 246008 non-null float64\n", - " 16 FLAG_PHONE 246008 non-null float64\n", - " 17 FLAG_EMAIL 246008 non-null float64\n", - " 18 CNT_FAM_MEMBERS 246008 non-null float64\n", - " 19 REGION_RATING_CLIENT_W_CITY 246008 non-null float64\n", - " 20 HOUR_APPR_PROCESS_START 246008 non-null float64\n", - " 21 LIVE_REGION_NOT_WORK_REGION 246008 non-null float64\n", - " 22 REG_CITY_NOT_LIVE_CITY 246008 non-null float64\n", - " 23 REG_CITY_NOT_WORK_CITY 246008 non-null float64\n", - " 24 LIVE_CITY_NOT_WORK_CITY 246008 non-null float64\n", - " 25 EXT_SOURCE_1 246008 non-null float64\n", - " 26 EXT_SOURCE_2 246008 non-null float64\n", - " 27 EXT_SOURCE_3 246008 non-null float64\n", - " 28 APARTMENTS_AVG 246008 non-null float64\n", - " 29 BASEMENTAREA_AVG 246008 non-null float64\n", - " 30 YEARS_BEGINEXPLUATATION_AVG 246008 non-null float64\n", - " 31 YEARS_BUILD_AVG 246008 non-null float64\n", - " 32 COMMONAREA_AVG 246008 non-null float64\n", - " 33 ELEVATORS_AVG 246008 non-null float64\n", - " 34 ENTRANCES_AVG 246008 non-null float64\n", - " 35 FLOORSMAX_AVG 246008 non-null float64\n", - " 36 LANDAREA_AVG 246008 non-null float64\n", - " 37 LIVINGAPARTMENTS_AVG 246008 non-null float64\n", - " 38 LIVINGAREA_AVG 246008 non-null float64\n", - " 39 NONLIVINGAPARTMENTS_AVG 246008 non-null float64\n", - " 40 NONLIVINGAREA_AVG 246008 non-null float64\n", - " 41 APARTMENTS_MODE 246008 non-null float64\n", - " 42 BASEMENTAREA_MODE 246008 non-null float64\n", - " 43 YEARS_BEGINEXPLUATATION_MODE 246008 non-null float64\n", - " 44 YEARS_BUILD_MODE 246008 non-null float64\n", - " 45 COMMONAREA_MODE 246008 non-null float64\n", - " 46 ELEVATORS_MODE 246008 non-null float64\n", - " 47 LANDAREA_MODE 246008 non-null float64\n", - " 48 LIVINGAPARTMENTS_MODE 246008 non-null float64\n", - " 49 LIVINGAREA_MODE 246008 non-null float64\n", - " 50 APARTMENTS_MEDI 246008 non-null float64\n", - " 51 BASEMENTAREA_MEDI 246008 non-null float64\n", - " 52 YEARS_BEGINEXPLUATATION_MEDI 246008 non-null float64\n", - " 53 COMMONAREA_MEDI 246008 non-null float64\n", - " 54 ENTRANCES_MEDI 246008 non-null float64\n", - " 55 FLOORSMAX_MEDI 246008 non-null float64\n", - " 56 FLOORSMIN_MEDI 246008 non-null float64\n", - " 57 LANDAREA_MEDI 246008 non-null float64\n", - " 58 LIVINGAPARTMENTS_MEDI 246008 non-null float64\n", - " 59 LIVINGAREA_MEDI 246008 non-null float64\n", - " 60 NONLIVINGAREA_MEDI 246008 non-null float64\n", - " 61 TOTALAREA_MODE 246008 non-null float64\n", - " 62 DEF_30_CNT_SOCIAL_CIRCLE 246008 non-null float64\n", - " 63 OBS_60_CNT_SOCIAL_CIRCLE 246008 non-null float64\n", - " 64 DEF_60_CNT_SOCIAL_CIRCLE 246008 non-null float64\n", - " 65 DAYS_LAST_PHONE_CHANGE 246008 non-null float64\n", - " 66 FLAG_DOCUMENT_3 246008 non-null float64\n", - " 67 FLAG_DOCUMENT_9 246008 non-null float64\n", - " 68 AMT_REQ_CREDIT_BUREAU_MON 246008 non-null float64\n", - " 69 AMT_REQ_CREDIT_BUREAU_QRT 246008 non-null float64\n", - " 70 AMT_REQ_CREDIT_BUREAU_YEAR 246008 non-null float64\n", - " 71 CODE_GENDER_F 246008 non-null float64\n", - " 72 CODE_GENDER_M 246008 non-null float64\n", - " 73 NAME_TYPE_SUITE_Unaccompanied 246008 non-null float64\n", - " 74 NAME_INCOME_TYPE_Pensioner 246008 non-null float64\n", - " 75 NAME_INCOME_TYPE_State servant 246008 non-null float64\n", - " 76 NAME_INCOME_TYPE_Working 246008 non-null float64\n", - " 77 NAME_EDUCATION_TYPE_Higher education 246008 non-null float64\n", - " 78 NAME_EDUCATION_TYPE_Secondary / secondary special 246008 non-null float64\n", - " 79 NAME_FAMILY_STATUS_Civil marriage 246008 non-null float64\n", - " 80 NAME_FAMILY_STATUS_Married 246008 non-null float64\n", - " 81 NAME_FAMILY_STATUS_Single / not married 246008 non-null float64\n", - " 82 NAME_HOUSING_TYPE_Municipal apartment 246008 non-null float64\n", - " 83 OCCUPATION_TYPE_Core staff 246008 non-null float64\n", - " 84 OCCUPATION_TYPE_High skill tech staff 246008 non-null float64\n", - " 85 OCCUPATION_TYPE_Laborers 246008 non-null float64\n", - " 86 WEEKDAY_APPR_PROCESS_START_TUESDAY 246008 non-null float64\n", - " 87 WEEKDAY_APPR_PROCESS_START_WEDNESDAY 246008 non-null float64\n", - " 88 ORGANIZATION_TYPE_Business Entity Type 3 246008 non-null float64\n", - " 89 ORGANIZATION_TYPE_Military 246008 non-null float64\n", - " 90 ORGANIZATION_TYPE_Self-employed 246008 non-null float64\n", - " 91 ORGANIZATION_TYPE_XNA 246008 non-null float64\n", - " 92 FONDKAPREMONT_MODE_reg oper account 246008 non-null float64\n", - " 93 WALLSMATERIAL_MODE_Stone, brick 246008 non-null float64\n", - " 94 EMERGENCYSTATE_MODE_No 246008 non-null float64\n", - " 95 DAYS_EMPLOYED_ANOM 246008 non-null float64\n", - "dtypes: float64(96)\n", - "memory usage: 180.2 MB\n", - "None\n", - "length important features 96\n", - "(61503, 96)\n", - "\n", - "RangeIndex: 61503 entries, 0 to 61502\n", - "Data columns (total 96 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 NAME_CONTRACT_TYPE 61503 non-null int64 \n", - " 1 FLAG_OWN_CAR 61503 non-null int64 \n", - " 2 FLAG_OWN_REALTY 61503 non-null int64 \n", - " 3 CNT_CHILDREN 61503 non-null int64 \n", - " 4 AMT_INCOME_TOTAL 61503 non-null float64\n", - " 5 AMT_CREDIT 61503 non-null float64\n", - " 6 AMT_ANNUITY 61503 non-null float64\n", - " 7 AMT_GOODS_PRICE 61503 non-null float64\n", - " 8 REGION_POPULATION_RELATIVE 61503 non-null float64\n", - " 9 DAYS_BIRTH 61503 non-null int64 \n", - " 10 DAYS_EMPLOYED 61503 non-null float64\n", - " 11 DAYS_REGISTRATION 61503 non-null float64\n", - " 12 DAYS_ID_PUBLISH 61503 non-null int64 \n", - " 13 OWN_CAR_AGE 61503 non-null float64\n", - " 14 FLAG_EMP_PHONE 61503 non-null int64 \n", - " 15 FLAG_WORK_PHONE 61503 non-null int64 \n", - " 16 FLAG_PHONE 61503 non-null int64 \n", - " 17 FLAG_EMAIL 61503 non-null int64 \n", - " 18 CNT_FAM_MEMBERS 61503 non-null float64\n", - " 19 REGION_RATING_CLIENT_W_CITY 61503 non-null int64 \n", - " 20 HOUR_APPR_PROCESS_START 61503 non-null int64 \n", - " 21 LIVE_REGION_NOT_WORK_REGION 61503 non-null int64 \n", - " 22 REG_CITY_NOT_LIVE_CITY 61503 non-null int64 \n", - " 23 REG_CITY_NOT_WORK_CITY 61503 non-null int64 \n", - " 24 LIVE_CITY_NOT_WORK_CITY 61503 non-null int64 \n", - " 25 EXT_SOURCE_1 61503 non-null float64\n", - " 26 EXT_SOURCE_2 61503 non-null float64\n", - " 27 EXT_SOURCE_3 61503 non-null float64\n", - " 28 APARTMENTS_AVG 61503 non-null float64\n", - " 29 BASEMENTAREA_AVG 61503 non-null float64\n", - " 30 YEARS_BEGINEXPLUATATION_AVG 61503 non-null float64\n", - " 31 YEARS_BUILD_AVG 61503 non-null float64\n", - " 32 COMMONAREA_AVG 61503 non-null float64\n", - " 33 ELEVATORS_AVG 61503 non-null float64\n", - " 34 ENTRANCES_AVG 61503 non-null float64\n", - " 35 FLOORSMAX_AVG 61503 non-null float64\n", - " 36 LANDAREA_AVG 61503 non-null float64\n", - " 37 LIVINGAPARTMENTS_AVG 61503 non-null float64\n", - " 38 LIVINGAREA_AVG 61503 non-null float64\n", - " 39 NONLIVINGAPARTMENTS_AVG 61503 non-null float64\n", - " 40 NONLIVINGAREA_AVG 61503 non-null float64\n", - " 41 APARTMENTS_MODE 61503 non-null float64\n", - " 42 BASEMENTAREA_MODE 61503 non-null float64\n", - " 43 YEARS_BEGINEXPLUATATION_MODE 61503 non-null float64\n", - " 44 YEARS_BUILD_MODE 61503 non-null float64\n", - " 45 COMMONAREA_MODE 61503 non-null float64\n", - " 46 ELEVATORS_MODE 61503 non-null float64\n", - " 47 LANDAREA_MODE 61503 non-null float64\n", - " 48 LIVINGAPARTMENTS_MODE 61503 non-null float64\n", - " 49 LIVINGAREA_MODE 61503 non-null float64\n", - " 50 APARTMENTS_MEDI 61503 non-null float64\n", - " 51 BASEMENTAREA_MEDI 61503 non-null float64\n", - " 52 YEARS_BEGINEXPLUATATION_MEDI 61503 non-null float64\n", - " 53 COMMONAREA_MEDI 61503 non-null float64\n", - " 54 ENTRANCES_MEDI 61503 non-null float64\n", - " 55 FLOORSMAX_MEDI 61503 non-null float64\n", - " 56 FLOORSMIN_MEDI 61503 non-null float64\n", - " 57 LANDAREA_MEDI 61503 non-null float64\n", - " 58 LIVINGAPARTMENTS_MEDI 61503 non-null float64\n", - " 59 LIVINGAREA_MEDI 61503 non-null float64\n", - " 60 NONLIVINGAREA_MEDI 61503 non-null float64\n", - " 61 TOTALAREA_MODE 61503 non-null float64\n", - " 62 DEF_30_CNT_SOCIAL_CIRCLE 61503 non-null float64\n", - " 63 OBS_60_CNT_SOCIAL_CIRCLE 61503 non-null float64\n", - " 64 DEF_60_CNT_SOCIAL_CIRCLE 61503 non-null float64\n", - " 65 DAYS_LAST_PHONE_CHANGE 61503 non-null float64\n", - " 66 FLAG_DOCUMENT_3 61503 non-null int64 \n", - " 67 FLAG_DOCUMENT_9 61503 non-null int64 \n", - " 68 AMT_REQ_CREDIT_BUREAU_MON 61503 non-null float64\n", - " 69 AMT_REQ_CREDIT_BUREAU_QRT 61503 non-null float64\n", - " 70 AMT_REQ_CREDIT_BUREAU_YEAR 61503 non-null float64\n", - " 71 CODE_GENDER_F 61503 non-null bool \n", - " 72 CODE_GENDER_M 61503 non-null bool \n", - " 73 NAME_TYPE_SUITE_Unaccompanied 61503 non-null bool \n", - " 74 NAME_INCOME_TYPE_Pensioner 61503 non-null bool \n", - " 75 NAME_INCOME_TYPE_State servant 61503 non-null bool \n", - " 76 NAME_INCOME_TYPE_Working 61503 non-null bool \n", - " 77 NAME_EDUCATION_TYPE_Higher education 61503 non-null bool \n", - " 78 NAME_EDUCATION_TYPE_Secondary / secondary special 61503 non-null bool \n", - " 79 NAME_FAMILY_STATUS_Civil marriage 61503 non-null bool \n", - " 80 NAME_FAMILY_STATUS_Married 61503 non-null bool \n", - " 81 NAME_FAMILY_STATUS_Single / not married 61503 non-null bool \n", - " 82 NAME_HOUSING_TYPE_Municipal apartment 61503 non-null bool \n", - " 83 OCCUPATION_TYPE_Core staff 61503 non-null bool \n", - " 84 OCCUPATION_TYPE_High skill tech staff 61503 non-null bool \n", - " 85 OCCUPATION_TYPE_Laborers 61503 non-null bool \n", - " 86 WEEKDAY_APPR_PROCESS_START_TUESDAY 61503 non-null bool \n", - " 87 WEEKDAY_APPR_PROCESS_START_WEDNESDAY 61503 non-null bool \n", - " 88 ORGANIZATION_TYPE_Business Entity Type 3 61503 non-null bool \n", - " 89 ORGANIZATION_TYPE_Military 61503 non-null bool \n", - " 90 ORGANIZATION_TYPE_Self-employed 61503 non-null bool \n", - " 91 ORGANIZATION_TYPE_XNA 61503 non-null bool \n", - " 92 FONDKAPREMONT_MODE_reg oper account 61503 non-null bool \n", - " 93 WALLSMATERIAL_MODE_Stone, brick 61503 non-null bool \n", - " 94 EMERGENCYSTATE_MODE_No 61503 non-null bool \n", - " 95 DAYS_EMPLOYED_ANOM 61503 non-null bool \n", - "dtypes: bool(25), float64(53), int64(18)\n", - "memory usage: 34.8 MB\n", - "None\n" + "START time Sat Mar 2 23:53:42 2024\n", + "Fitting 5 folds for each of 1 candidates, totalling 5 fits\n" ] - } - ], - "source": [ - "new_X_train_002 = select_columns(X_train, feature_names, shap_df, 0.002)\n", - "new_X_test_002 = select_columns(X_test, feature_names, shap_df, 0.002)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b9deda1f", - "metadata": {}, - "outputs": [ + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The total space of parameters 1 is smaller than n_iter=50. Running 1 iterations. For exhaustive searches, use GridSearchCV.\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "START time Fri Mar 1 23:17:00 2024\n" + "[CV 1/5] END boosting_type=gbdt, class_weight=balanced, learning_rate=0.05, metric=binary_logloss, n_estimators=10000, num_leaves=31, objective=binary, reg_alpha=0.1, reg_lambda=0.1, subsample=0.8;, score=nan total time= 1.5s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "A worker stopped while some jobs were given to the executor. This can be caused by a too short worker timeout or by a memory leak.\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n", - "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py:1152: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", - " return fit_method(estimator, *args, **kwargs)\n" + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:97: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, warn=True)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:132: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[CV 4/5] END boosting_type=gbdt, class_weight=balanced, learning_rate=0.05, metric=binary_logloss, n_estimators=10000, num_leaves=31, objective=binary, reg_alpha=0.1, reg_lambda=0.1, subsample=0.8;, score=nan total time= 1.4s\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:97: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, warn=True)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:132: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[CV 3/5] END boosting_type=gbdt, class_weight=balanced, learning_rate=0.05, metric=binary_logloss, n_estimators=10000, num_leaves=31, objective=binary, reg_alpha=0.1, reg_lambda=0.1, subsample=0.8;, score=nan total time= 1.5s\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:97: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, warn=True)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:132: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[CV 2/5] END boosting_type=gbdt, class_weight=balanced, learning_rate=0.05, metric=binary_logloss, n_estimators=10000, num_leaves=31, objective=binary, reg_alpha=0.1, reg_lambda=0.1, subsample=0.8;, score=nan total time= 1.5s\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:97: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, warn=True)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:132: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[CV 5/5] END boosting_type=gbdt, class_weight=balanced, learning_rate=0.05, metric=binary_logloss, n_estimators=10000, num_leaves=31, objective=binary, reg_alpha=0.1, reg_lambda=0.1, subsample=0.8;, score=nan total time= 1.5s\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:97: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, warn=True)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:132: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)\n", + "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[LightGBM] [Info] Number of positive: 19941, number of negative: 226067\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.043252 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 10313\n", + "[LightGBM] [Info] Number of data points in the train set: 246008, number of used features: 96\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000\n", + "[LightGBM] [Info] Start training from score 0.000000\n", + "START time Sat Mar 2 23:53:42 2024\n", + "END time Sun Mar 3 00:02:10 2024 duration 8.468631815910339 min\n", + "\n", + "---------------------------------\n", + "start generate_model_report\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABVs0lEQVR4nO3deVhU5d8G8HvYQVlFVlFcwBVRQRHN1CJxyaVNc89Ks8xUXNLcylLLLPWXW+72qmFZLrmmKCaKogju4gaCCygquzAw87x/GCdHBmQQOAzcn+viYs5znjPznTPDzM1ZnqMQQggQERERycRA7gKIiIioamMYISIiIlkxjBAREZGsGEaIiIhIVgwjREREJCuGESIiIpIVwwgRERHJimGEiIiIZGUkdwHFoVarcefOHVhaWkKhUMhdDhERERWDEALp6elwcXGBgUHh2z/0IozcuXMHbm5ucpdBREREJZCQkIBatWoVOl8vwoilpSWAJ0/GyspK5mqIiIioONLS0uDm5iZ9jxdGL8JI/q4ZKysrhhEiIiI987xDLHgAKxEREcmKYYSIiIhkxTBCREREsmIYISIiIlkxjBAREZGsGEaIiIhIVgwjREREJCuGESIiIpIVwwgRERHJSucw8s8//6Bnz55wcXGBQqHAtm3bnrtMaGgoWrVqBVNTUzRo0ADr1q0rQalERERUGekcRjIzM+Ht7Y0lS5YUq39sbCx69OiBzp07Izo6GmPHjsWHH36Iffv26VwsERERVT46X5umW7du6NatW7H7L1++HHXr1sUPP/wAAGjcuDHCwsKwYMECBAYG6vrwREREVMmU+YXywsPDERAQoNEWGBiIsWPHFrpMTk4OcnJypOm0tLSyKo+IiKjKyc5VYe/5RJy7nQojQwWyclT4uFN9uNiYy1JPmYeRxMREODo6arQ5OjoiLS0Njx8/hrl5wSc+d+5cfPXVV2VdGhERUaUihEBadh5yVWpcupuG/wu/icuJ6XCyMsODzBzcevQYeWoBlVoUWPaNVq6VN4yUxJQpUxAUFCRNp6Wlwc3NTcaKiIiIKh4hBO6kZuNwzH3M3XMJ6dl5WvvFP8wq9D46eNijZW1bOFiallWZz1XmYcTJyQlJSUkabUlJSbCystK6VQQATE1NYWoq30ohIiKqqO6n52Dn2Tv48e8rSM/RHj4AwNhQgdp2FvCuZQMPR0s0cKgOI0MFPByqw8zYEHYWJjAwUJRj5YUr8zDi7++P3bt3a7Tt378f/v7+Zf3QREREeu/WoyxsOhGPXyPi8Sgrt9B+9tVN0cPLCUGvNYSVuREUiooRNIpD5zCSkZGBa9euSdOxsbGIjo6GnZ0dateujSlTpuD27dv45ZdfAAAjR47E4sWLMWnSJLz//vs4ePAgfvvtN+zatav0ngUREZGey1WpcfDyPUTEPsTao7HQcliHBhNDA0wMbIjB/nVgZmxYPkWWEZ3DyKlTp9C5c2dpOv/YjqFDh2LdunW4e/cu4uPjpfl169bFrl27MG7cOCxatAi1atXCqlWreFovERFVackZObialIHNJ+OxLfrOc/vXtDTFKw0dMOwldzRysiqHCsuPQgjxnOwlv7S0NFhbWyM1NRVWVpXrBSAiospPpRbYFnUbR68n48jVZNxPzymyv19dOzSvZY23fdzgZGUGawvjcqq0dBX3+7tCnk1DRESkr3LyVDh/Ow0HLiVh59k7SHuch9THhR/r0cChOsyMDTDmVU909KwJE6Oqd9k4hhEiIqIXFJecifAbD7D2aCyuJGUU2s/M2ADdmjmjmas1eno7w8HSrByrrLgYRoiIiHSQp1LjcmI6TsY9xJJD15GcoX2Xi4u1GQSAtvVq4I2WrmjtbgdzE/0+0LSsMIwQERE9R65KjVVHYrH+WBwS07IL7dfIyRLdvZzxaecGFWYMD33AMEJERKRFTp4K/wu5il8jEvAwU6m1T2NnK9S2M8eYVz3R2NlSr8b2qEgYRoiIiABk5uTh6r0M/H0hEeuPxSFTqdLab2TH+hgb4KH3Y3tUJAwjRERU5Sjz1Lj1KAt7LyRCCOCng1eRnavW2rdGNRPMedMLAY0dYchdL2WCYYSIiKqEi3fS8N7aCNx7zhgfRgYKeDpaok1dO0zu1ohbQMoBwwgREVVKj5Uq/H0xESv+uYELd9KK7DvArzYaO1lioF8dHngqA4YRIiLSe8o8NbZG3cKJGw/xZ9TtIvt6OFTH6qGt4WZnzgNOKwiGESIi0ktJadnYEnkLu87excW7RW/5GN6hLgb41UFd+2rlVB3pgmGEiIgqNLVa4PDV+zhwMQkxiem4ei+jyOHVB/rVRsvatnjZ054jnOoJhhEiIqqQVh25gS2Rt3A5Mb3Ifm3c7fBKYwcM9KsNSzP9vKBcVccwQkREFYJaLXA/Iwf/C7mKjSfiC8yvV7MaXG3M0cTZCh6OlmjibMWBxioJhhEiIpKNEAJbIm/h539u4No97ReYm9ytEbo3c0btGhblXB2VF4YRIiIqN7kqNeKSM7EpIh5rj8YV2s9AAcx90wv9Wtcuv+JINgwjRERUpg7F3MPOM3fxx+lbRfYb8XI9fPaqB6qb8qupquErTkREpS42ORM/hVwtcswPL1drfNSxHgIaO3KU0yqOYYSIiF7IY6UK3++LwZ2Ux9h7IbHQfh087NG1mRP6+rrB2NCgHCukio5hhIiIdJaalYvfTiVg9u5LRfbzr1cDX/ZqioZOluVUGekjhhEiInqux0oVZu28iHO3U3D+tvbRTlvVtsGbrWrBwsQQHTxqoqalaTlXSfqKYYSIiLQSQmDZ4etYsP8KclVCax9zY0MMaVcH4wI8edwHlRjDCBERaYhNzsS8vZex53zB4z9cbcwxrL07ujRx4rgfVGoYRoiICKlZuRi7OQqn41O0Xvfl4071EfSaJw88pTLBMEJEVEWlZuViwpYz2H8xSev8Nu52+OaNZvB05MGnVLYYRoiIqpjMnDx0WfAPbqc8LjCvnn01rBrqi7r21XjNFyo3DCNERFXAw0wlIm8+wrRt55CUlqMx782Wrvi8WyM4WJoygJAsGEaIiCqxBfuvYFHIVa3zPByqY+dnL8HUiGfBkLwYRoiIKokHGTmISUrHphPxOHotGY+yCh6IamyoQLdmzljQrwUMDbgVhCoGhhEiIj2V+jgXR67ex8ojsTiTkFJoPyMDBXaP6cADUanCYhghItIjianZ+DPqFubtjSm0j4mhAeo7VMeYVz3QvJY1XGzMy7FCIt0xjBAR6YHp287j/47f1DrPQAG0cLPB2ABPdPCw50GopHcYRoiIKqhj15OxLPQ6jlxN1jr/k071MaFLQxjw2A/ScwwjREQVTOTNR3hr2TGt87aNao8WbjblWxBRGWMYISKqIC4npqHrwiMF2j/pVB/vtXeHg6WZDFURlT2GESIimd24n4GAHw9D/cyFcT/pVB+TujaSpyiicsQwQkRUjtRqgRvJGdh8MgG7zt5FenYe0nPypPmGBgoEveaJUZ0byFglUfliGCEiKgc5eSq8tewYzt9OK7TPoLa18U0fr3KsiqhiYBghIipD1+5lYMjqE7iTml1gXp0aFvCvVwM9vV3Qtl4NjohKVRbDCBFRGfjtZAIm/XG2QHtd+2rYO7YDrwdD9BSGESKiUhKTmI6lodewPfqO1vn7x70MDw7JTlQAwwgR0QtQ5qkxckMkDl6+p3X+2mGt0bmhQzlXRaRfGEaIiErgsVKFGdvP4/fIWwXmNXWxwoiX66FncxeOjkpUDAwjREQ6EEJgUchVLDxwVaO9kZMlFg9ohQYO1WWqjEh/MYwQERXDzQeZGBMcjeiEFI32xs5WWP9+a46OSvQCGEaIiApxN/Ux+v18HPEPswrMq2tfDb+83wZudhYyVEZUuTCMEBE949q9dHy/Lwb7LiQVmOfpWB1r3muNWrYMIUSlhWGEiOhf26JuY+zm6ALt3rWsMf8db56WS1RGGEaIqMo7ei0ZSw5dw7HrDzTae7dwwfdve8PEyECmyoiqBoYRIqqyDsXcw7C1Jwu0L+zXAn1auspQEVHVxDBCRFXKstDrWLD/CpQqdYF5I16uh8+7NuI1YojKGcMIEVV6yjw11h+Lw+zdl7TO/+jlepjcrREUCoYQIjkwjBBRpXU6/hGWHrqGA5cKDtX+eddGGOBXG9bmxjJURkRPYxghokon4WEWRm6IxIU7aRrt5saG2PBhG/jUsZOpMiLShmGEiCqFjJw8bIu6jWnbzmu0mxoZoGszJ8zq3YxbQYgqKIYRItJbQgiM2nQau88lap2/6N0W6N2CZ8UQVXQMI0Skd9RqgY0nbmL69gsF5pkZG2DMq54Y3qEujAw5PgiRPijRX+qSJUvg7u4OMzMz+Pn5ISIiosj+CxcuRMOGDWFubg43NzeMGzcO2dnZJSqYiKouIQQWH7yKel/s1ggirjbmODKpM2Lndsflr7vh4071GUSI9IjOW0Y2b96MoKAgLF++HH5+fli4cCECAwMRExMDBweHAv03bdqEyZMnY82aNWjXrh2uXLmC9957DwqFAj/++GOpPAkiqvy2R9/GmODoAu0/vOONt3xqlX9BRFRqFEIIocsCfn5+aN26NRYvXgwAUKvVcHNzw+jRozF58uQC/T/99FNcunQJISEhUtv48eNx4sQJhIWFFesx09LSYG1tjdTUVFhZWelSLhHpubCryRi0+kSB9j8+9udZMUQVXHG/v3XaMqJUKhEZGYkpU6ZIbQYGBggICEB4eLjWZdq1a4cNGzYgIiICbdq0wY0bN7B7924MHjy40MfJyclBTk6OxpMhoqoj4WEWBqw6joSHjwvMWzusNTo3LLgVloj0l05hJDk5GSqVCo6Ojhrtjo6OuHz5stZlBgwYgOTkZLz00ksQQiAvLw8jR47EF198UejjzJ07F1999ZUupRFRJaDMU2PImhM4fuNhgXkTAxtiVOcGMlRFRGWtzM+mCQ0NxZw5c7B06VL4+fnh2rVrGDNmDL7++mtMnz5d6zJTpkxBUFCQNJ2WlgY3N7eyLpWIZJCdq8Luc3fxS/hNRCekaMx7qYE9vnu7OVxtzOUpjojKhU5hxN7eHoaGhkhKStJoT0pKgpOTk9Zlpk+fjsGDB+PDDz8EAHh5eSEzMxMjRozA1KlTYWBQ8Ih3U1NTmJqa6lIaEemhY9eTMWBlweNBmteyRvCItrAw4egDRFWBTue+mZiYwMfHR+NgVLVajZCQEPj7+2tdJisrq0DgMDQ0BPDkND0iqpoWHbiqEUQMDRTo5+uGi7MCsePTlxhEiKoQnf/ag4KCMHToUPj6+qJNmzZYuHAhMjMzMWzYMADAkCFD4Orqirlz5wIAevbsiR9//BEtW7aUdtNMnz4dPXv2lEIJEVUdQgi8sfSYxi6Z3Z91QBMXnilHVFXpHEb69euH+/fvY8aMGUhMTESLFi2wd+9e6aDW+Ph4jS0h06ZNg0KhwLRp03D79m3UrFkTPXv2xOzZs0vvWRBRhZerUmPs5mjsOntXo/3wxE6oU6OaTFURUUWg8zgjcuA4I0T67bFShcYz9mq0tXCzwYYP/VDdlLtjiCqrMhlnhIhIF5k5eeiz5Ciu3suQ2ro0ccSs3s3gZG0mY2VEVJEwjBBRqRJCYN+FRIzccLrAvDdbueLHvi3KvygiqtAYRoio1Cw5dA3f74sp0D64bR181aspDAwUMlRFRBUdwwgRvbBLd9PQbdERjba69tXwVitXDGnnDiszY5kqIyJ9wDBCRCWWlp2L7/ZcxsYT8Rrt+8a+jIZOljJVRUT6hmGEiHSWmJqN6dvPY/9FzdGYv+nTDIPa1pGpKiLSVwwjRPRcKrVAbHIm/jpzB4tCrhaY72pjjs0ftUUtWwsZqiMifccwQkSFyslTYfSmKPz9zBaQfK81ccTXPE2XiF4QwwgRFZCRk4f31kTg1M1HBeY1crLERx3roU8LVygUPDuGiF4cwwgRaTh7KwW9Fh/VaHOxNsOuzzrAtpqJTFURUWXGMEJEAIAb9zPwyg+HNdreaOmKL7o3Rk1LU5mqIqKqgGGEqIrbe/6u1tFSlwxohR7NnWWoiIiqGoYRoipICIGFB65qPTOmTwsXLOjXgseDEFG5YRghqmLOJKSg95KjBdo5RggRyYVhhKgKyMzJw1d/XcCx6w9w69FjjXk7Pm2P5rVs5CmMiAgMI0SV2tWkdPRcHIbsXLVGu4mRARb1a4FuXjwmhIjkxzBCVAlFxD7E0DUReJyrKjBv8YCW6NbMGYa8gi4RVRAMI0SVSE6eCl/uuIBfIxI02t9r545pPRrDyNBApsqIiArHMEJUSYTG3MN7a09qtC3s1wJ9WrrKVBERUfEwjBBVArN3XcTKI7HSdNt6dljYryWvGUNEeoFhhEiP3U55jPbfHtRoWzawFQ9MJSK9wjBCpKcOxdzDsGd2y0RMfRUOltwaQkT6hWGESA/N2X0JK/65IU339a2FeW97y1gREVHJMYwQ6ZGTcQ/xzvJwjbbgEW3Rtl4NmSoiInpxDCNEeuLS3TSNIOJqY44jkzrDgOOFEJGeYxghquCEEOi1+CjO3U6V2iYGNsSozg1krIqIqPQwjBBVYHvPJ2LkhkiNtvXvt0FHz5oyVUREVPoYRogqqKtJ6QWCyJVvusHEiKOoElHlwjBCVMEcu5aMmTsu4Oq9DKmNI6kSUWXGMEJUQeSp1Bi27iSOXE3WaP+pf0v09HaRqSoiorLHMEJUAaRn58Lry7812kZ1ro/Rr3jAzNhQpqqIiMoHwwiRzMKuJmPQ6hPStKuNOQ5P7MQr7BJRlcEwQiSj4Ih4TP7znDTN68oQUVXEMEIkg1yVGv5zDyI5IwfAk60hf37SDo5WvK4MEVU9DCNE5UilFnh53iHcTnms0b57TAdYmxvLVBURkbwYRojKSWjMPbz3zFV2h/jXwVe9mkKh4JDuRFR1MYwQlbF76dloMztEo61LE0csHtCKA5gREYFhhKjMJGfkoPP3oUjPydNoX/RuC/RuwQHMiIjyMYwQlYHw6w/Qf+VxjbbuXk5YMqAVd8kQET2DYYSolK0Oi8XXOy9K050a1sTSga1gYcI/NyIibfjpSFRK0rJz8fr/whD/MEtq++4tL/RrXVvGqoiIKj6GEaJSIIRA86eGczc2VODcl4Ecyp2IqBh4KD/RC/r58HXUnbJbmm5Z2wYxX3djECEiKiZuGSF6ASv+uY65ey5L0wGNHbFqqK+MFRER6R+GEaISUKsF3lx2DNEJKVLbtlHt0cLNRraaiIj0FcMIkY7UaoF6X+zWaIuY+iocLHldGSKikmAYIdLBs0HEvropTnzxKgwNOHYIEVFJMYwQFYMQAgsOXMX/Qq5KbQ0dLbF3bAcOYkZE9IIYRoie4+fDmgepAoB7DQvsG/eyTBUREVUuDCNEhchVqdFs5j7k5Kk12jd96Id2DexlqoqIqPJhGCHSIi07F32Xh2sEkc0j2sKvXg0ZqyIiqpwYRoiecSruId5eHi5Njw3wwNgATxkrIiKq3BhGiP6lUgsMXn0Cx64/kNqm9WiMDzvUk7EqIqLKj2GECEDIpSR8sP6URtus3k0xxN9dnoKIiKoQhhGq8sYGR2Fb9B1p2shAgQuzAmFqxGvLEBGVB4YRqtLCrz/QCCIbPvDDSx48U4aIqDyV6Kq9S5Ysgbu7O8zMzODn54eIiIgi+6ekpGDUqFFwdnaGqakpPD09sXv37iKXISprv51MQP+Vx6Xpy193ZRAhIpKBzltGNm/ejKCgICxfvhx+fn5YuHAhAgMDERMTAwcHhwL9lUolXnvtNTg4OGDLli1wdXXFzZs3YWNjUxr1E+lMrRaY9MdZbIm8JbX99pE/zIy5W4aISA4KIYTQZQE/Pz+0bt0aixcvBgCo1Wq4ublh9OjRmDx5coH+y5cvx/fff4/Lly/D2Ni4REWmpaXB2toaqampsLKyKtF9EAFPhnX3mxOCe+k5UlvEF6/CwYoXuSMiKm3F/f7WaTeNUqlEZGQkAgIC/rsDAwMEBAQgPDxc6zI7duyAv78/Ro0aBUdHRzRr1gxz5syBSqUq9HFycnKQlpam8UNUGrouPCIFkc4Na+LSrK4MIkREMtMpjCQnJ0OlUsHR0VGj3dHREYmJiVqXuXHjBrZs2QKVSoXdu3dj+vTp+OGHH/DNN98U+jhz586FtbW19OPm5qZLmURa/d/xm4hJSgcAtHa3xdphbWBuwl0zRERyK9EBrLpQq9VwcHDAihUr4OPjg379+mHq1KlYvnx5octMmTIFqamp0k9CQkJZl0mV3Ld7LmP6tvMAAO9a1vh9ZDuZKyIionw6HcBqb28PQ0NDJCUlabQnJSXByclJ6zLOzs4wNjaGoeF//4E2btwYiYmJUCqVMDExKbCMqakpTE1NdSmNqFCHYu5h+eHr0vQvH/jJWA0RET1Lpy0jJiYm8PHxQUhIiNSmVqsREhICf39/rcu0b98e165dg1r93wXHrly5AmdnZ61BhKg0RSekYNjak9J01PTXYG1esgOpiYiobOi8myYoKAgrV67E+vXrcenSJXz88cfIzMzEsGHDAABDhgzBlClTpP4ff/wxHj58iDFjxuDKlSvYtWsX5syZg1GjRpXesyDS4vztVLy17Jg0vXqoL2yrMQATEVU0Oo8z0q9fP9y/fx8zZsxAYmIiWrRogb1790oHtcbHx8PA4L+M4+bmhn379mHcuHFo3rw5XF1dMWbMGHz++eel9yyInnEy7iHeeerKu4cndkKdGtVkrIiIiAqj8zgjcuA4I1RcYVeTMWj1CY22A0Evo4GDpUwVERFVXcX9/ua1aajS+PHvGPzv4DWNtuARbRlEiIgqOIYRqhSGrY3AoZj70vT/+rdEL28XGSsiIqLiYhghvXY/PQcBPx5G6uNcqe3SrK4czIyISI8wjJDe2nn2Dj7dFKXRFvHFqwwiRER6hmGE9NKmE/H4Yus5abqhoyX+Gv0STIzKfFBhIiIqZQwjpFcibz7EW8s0L8p4cVYgLEz4ViYi0lf8N5L0hrYgsulDPwYRIiI9x09x0gurjtzAN7suSdMbP/RD+wb2MlZERESlhWGEKrT/O35Tutpuvr8+fQletaxlqoiIiEobwwhVWM9uDQGAk1MDUNOSV3QmIqpMGEaowslVqTFzxwVsOhEvtS0Z0Ao9mjvLWBUREZUVhhGqUC4npqHrwiOabV93hZkxxw4hIqqseDYNVRiPMpUaQaRODQucmhbAIEJEVMlxywhVCEIItPx6vzT93Vte6Ne6towVERFReeGWEZKdMk+NulN2S9M9vV0YRIiIqhCGEZJdvxX/DWTWvJY1/vduC/mKISKicsfdNCSb7FwVXvruIJIzlACArk2dsHywj8xVERFReWMYIVlkKfPQZMY+jbbv32kuUzVERCQnhhEqd7kqtUYQ6dbMCUsHtoJCoZCxKiIikgvDCJW75l/+Ld2e0q0RPupYX8ZqiIhIbjyAlcqNMk+NxtP34nGuCgDwenNnBhEiIuKWESofarWA57Q90rSTlRkWD2glY0VERFRRcMsIlbmj15JR74v/xhGxr26K8CmvyFgRERFVJNwyQmXqp5Cr+GH/FWl6Zs8mGNa+rowVERFRRcMwQmVmxvbz+CX8pjQ9q3dTDPF3l68gIiKqkBhGqEx8uP4UDlxKAgDUsjXHwfGdYGLEvYJERFQQwwiVusuJaVIQaepihZ2jX+IYIkREVCj+q0ql6lGmEgNXnpCm//qUQYSIiIrGLSNUaqLiH+GNpcek6dVDfWFgwCBCRERF45YRKhVXktI1gsi8t5vj1caOMlZERET6gmGEXpgyT40uC/6Rpr/q1RR9fd1krIiIiPQJd9PQC/vs1yjp9vdvN8c7DCJERKQDbhmhF/LxhkjsvZAIAGjoaMkgQkREOmMYoRJbfPAq9pxPlKZ3j+kgYzVERKSvGEaoRI5dS8b8v58M8+5qY47Yud1hyDNniIioBBhGSGdCCLy37qQ0HTK+I8cSISKiEmMYIZ3EP8hC3Sm7ocxTAwC2jPSHmbGhzFUREZE+YxihYgu5lISXvz8kTfdo7gxfdzsZKyIiosqAp/ZSsew4c0fjFN6f+rdET28XGSsiIqLKgmGEnmvfhUSNIPLXpy/Bq5a1jBUREVFlwjBCRcrOVeGj/4uUpo9PeRVO1mYyVkRERJUNjxmhQqnVAo2m75Wmd45+iUGEiIhKHcMIaaVSC7T79qA0PTGwIZq5ctcMERGVPoYR0mrUxtNITMsGAPTzdcOozg1kroiIiCorhhEq4ODlJOl6Mz51bPHd281lroiIiCozhhHSoFYLTN92QZr+vw/ayFgNERFVBQwjpOGLredwO+UxAOCPj9vBwoQnXBERUdliGCHJzrN3EHwyAQAw+pUG8KljK3NFRERUFTCMEADg0t00fLrpv4HNxgZ4ylgNERFVJQwjBAAYvDpCun3uyy4wNOBVeImIqHwwjBB2n7uL5IwcAMCid1vA0sxY5oqIiKgqYRip4s7eSsEnG08DADp42KN3C1eZKyIioqqGYaQKS83KRa/FR6XpuW96yVgNERFVVQwjVVRSWja8Z/0tTS8d2Aq1bC1krIiIiKoqhpEqKDUrF35zQqTp2W80Q3cvZxkrIiKiqowjWlVBvrP3S7fnvOGFAX61ZayGiIiquhJtGVmyZAnc3d1hZmYGPz8/REREPH8hAMHBwVAoFOjTp09JHpZKwa6zd5GrEgAA71rWDCJERCQ7ncPI5s2bERQUhJkzZ+L06dPw9vZGYGAg7t27V+RycXFxmDBhAjp06FDiYunFHLl6H6N/PS1N//lJexmrISIiekLnMPLjjz9i+PDhGDZsGJo0aYLly5fDwsICa9asKXQZlUqFgQMH4quvvkK9evVeqGAqmVuPsjB4dQTUArCxMMblr7tyYDMiIqoQdAojSqUSkZGRCAgI+O8ODAwQEBCA8PDwQpebNWsWHBwc8MEHHxTrcXJycpCWlqbxQy/mfyFXpdt/fNwOZsaGMlZDRET0H53CSHJyMlQqFRwdHTXaHR0dkZiYqHWZsLAwrF69GitXriz248ydOxfW1tbSj5ubmy5l0jP2nk/Eb6duAQC+6tUU9WtWl7kiIiKi/5Tpqb3p6ekYPHgwVq5cCXt7+2IvN2XKFKSmpko/CQkJZVhl5bbn3F2M3BAJALC1MMYQ/zoyV0RERKRJp1N77e3tYWhoiKSkJI32pKQkODk5Feh//fp1xMXFoWfPnlKbWq1+8sBGRoiJiUH9+vULLGdqagpTU1NdSiMt4pIz8fHG/w5YXT7IBwoFjxMhIqKKRactIyYmJvDx8UFIyH8DZqnVaoSEhMDf379A/0aNGuHcuXOIjo6Wfnr16oXOnTsjOjqau1/K0N7zieg0P1SaXjusNfzq1ZCvICIiokLoPOhZUFAQhg4dCl9fX7Rp0wYLFy5EZmYmhg0bBgAYMmQIXF1dMXfuXJiZmaFZs2Yay9vY2ABAgXYqPYcu35N2zQDAz4N90Lmhg4wVERERFU7nMNKvXz/cv38fM2bMQGJiIlq0aIG9e/dKB7XGx8fDwICjzMslT6XG5D/PStPLB/kgsGnBXWhEREQVhUIIIeQu4nnS0tJgbW2N1NRUWFlZyV1OhTbil1P4++KTY3qOTOoMNzte/I6IiORR3O9vbsKoRH47lSAFkf5tajOIEBGRXmAYqSRUaoFJW57snqlrXw1z3/SSuSIiIqLiYRipJGbvuiTdXjHYR8ZKiIiIdMMwUgncfJCJNUdjAQBt6trBw9FS5oqIiIiKj2GkEuj4fah0e+UQX/kKISIiKgGGET330ncHpdtBr3nC2txYxmqIiIh0p/M4I1QxCCHQb8Vx3Hr0GADgW8cWn73qIXNVREREumMY0VOtZ4cgOSNHmt7ycTsZqyEiIio57qbRQ6uO3JCCSE1LU8TO7S5zRURERCXHLSN65ti1ZHzz72m8de2r4dCETvIWRERE9IK4ZUSPpGXnYsCqE9L0njEdZKyGiIiodDCM6JE+i49Kt49M6gwzY0MZqyEiIiodDCN64s2lR3EjORMAMLxDXV53hoiIKg2GET2Q8DALp+NTpOkvujeWrxgiIqJSxjCiBxYcuAIAcLIyQ9y3PaBQKGSuiIiIqPQwjFRw99Kz8efp2wCAfq3dZK6GiIio9DGMVHCfbzkr3f6kc30ZKyEiIiobDCMV2JGr93Eo5j4A4KOX68HUiGfPEBFR5cMwUkE9yMjB4NUR0vSEwIYyVkNERFR2GEYqqDVHY6Xbv33kD2NDvlRERFQ58RuuArp4Jw1LDl0HALzfvi7a1LWTuSIiIqKywzBSAc3efVG6Pay9u3yFEBERlQOGkQpm/r4YHL32AAAwuVsjjrRKRESVHsNIBbP40DXp9kcv15OxEiIiovLBMFKBzN713+6Z8CmvcKRVIiKqEhhGKogrSelYeeTJGTQKBeBsbS5zRUREROWDYaSC+HLHBen2PxM7y1gJERFR+WIYqQDO307FsetPDloNes2TB60SEVGVwjBSASz596BVSzMjfNyJ158hIqKqhWFEZmq1wJ7ziQCASYENOdIqERFVOfzmk9nQtf9df6ZtvRoyVkJERCQPhhEZnb+diiNXkwEAbevZwcPRUuaKiIiIyh/DiIz6/hwu3f55sK+MlRAREcmHYUQmBy8nIUupAgB806cZrM2NZa6IiIhIHgwjMtl0Ih4AUM3EEIPa1pG5GiIiIvkwjMgg9XEuDly6BwAY8TJP5SUioqqNYUQGXRYclm6P6swwQkREVRvDSDn76q8LSErLAQAM71AXRhxXhIiIqjh+E5az304mAADq2VfD1B5NZK6GiIhIfgwj5Wh1WCwy/z2DZvlgH5mrISIiqhgYRspJ5M1H+HrnRQBA+wY14MkBzoiIiAAwjJQLIQTeWnZMml45hAOcERER5WMYKQe7zyVKt3/s6w0LEyMZqyEiIqpYGEbKwaaImwAAVxtzvNmqlszVEBERVSwMI2Xsxv0MHL32AACweEBLmashIiKqeBhGytjkP84BABytTNGytq3M1RAREVU8DCNlKC07F6fjHwEA2tarIXM1REREFRPDSBl6f+1J5KkFAOC7t5rLXA0REVHFxDBSRu6n5+DUzSdbRSZ3awQzY0OZKyIiIqqYGEbKyJJD1wAAtWzN8dHL9WSuhoiIqOJiGCkDKrXA/otJAICOnjWhUChkroiIiKjiYhgpAwsPXMHtlMdQKIDRr3jIXQ4REVGFxjBSyjJz8vDTwSe7aN5o6QonazOZKyIiIqrYGEZKWf7F8ABg5utNZayEiIhIPzCMlKK45EwEn0wAAEzr0RjWFsYyV0RERFTxMYyUol6LwwAA9eyr4cMOPIOGiIioOEoURpYsWQJ3d3eYmZnBz88PERERhfZduXIlOnToAFtbW9ja2iIgIKDI/voqOiEFadl5AIBv+jSTuRoiIiL9oXMY2bx5M4KCgjBz5kycPn0a3t7eCAwMxL1797T2Dw0NRf/+/XHo0CGEh4fDzc0NXbp0we3bt1+4+Irkq78uAADsq5ugXQN7mashIiLSHwohhNBlAT8/P7Ru3RqLFy8GAKjVari5uWH06NGYPHnyc5dXqVSwtbXF4sWLMWTIkGI9ZlpaGqytrZGamgorKytdyi0XQgjUnbIbADC8Q11M7dFE5oqIiIjkV9zvb522jCiVSkRGRiIgIOC/OzAwQEBAAMLDw4t1H1lZWcjNzYWdnV2hfXJycpCWlqbxU5H98PcV6fb4Lg1lrISIiEj/6BRGkpOToVKp4OjoqNHu6OiIxMTEYt3H559/DhcXF41A86y5c+fC2tpa+nFzc9OlzHKVnavC4n+Hfn+rVS1eg4aIiEhH5Xo2zbfffovg4GBs3boVZmaFDwY2ZcoUpKamSj8JCQnlWKVufjv1X23TX28sYyVERET6yUiXzvb29jA0NERSUpJGe1JSEpycnIpcdv78+fj2229x4MABNG/evMi+pqamMDU11aU02fy4/8kumjdbucLGwkTmaoiIiPSPTltGTExM4OPjg5CQEKlNrVYjJCQE/v7+hS43b948fP3119i7dy98fX1LXm0Fk5OnQkpWLgCgpZuNvMUQERHpKZ22jABAUFAQhg4dCl9fX7Rp0wYLFy5EZmYmhg0bBgAYMmQIXF1dMXfuXADAd999hxkzZmDTpk1wd3eXji2pXr06qlevXopPpfztiL4j3X7Ht+Ie10JERFSR6RxG+vXrh/v372PGjBlITExEixYtsHfvXumg1vj4eBgY/LfBZdmyZVAqlXj77bc17mfmzJn48ssvX6x6mU3bdh4AENDYgQeuEhERlZDO44zIoSKOM5KYmo22c5/srlo2sBW6eTnLXBEREVHFUibjjNB/1h2Lk26/1sSx8I5ERERUJIaREoqKfwQA6NbMCUaGXI1EREQlxW/REshS5uFE7EMAwDu+tWSuhoiISL8xjJTAvgv/jTbbwaOmjJUQERHpP4aREtj+7ym9PbycYcxdNERERC+E36Q6ylWpERpzHwDQu4WLzNUQERHpP4YRHZ29lSLdDmjMs2iIiIheFMOIjr7eeQnAk4HODAwUMldDRESk/xhGdJCrUiM6IQUA0NObu2iIiIhKA8OIDr7dc1m6/XpzhhEiIqLSwDBSTEIIrA6LBQA0dbGCIXfREBERlQqGkWI6/e+IqwAw7+3mMlZCRERUuTCMFNPSQ9cBAObGhmjqYi1zNURERJUHw0gxqNUCIZfvAQA6N+KIq0RERKWJYaQYdpy5I93+7FUPGSshIiKqfBhGimH/xSQAQDNXKzRyspK5GiIiosqFYeQ51GqBE7EPAACD/OrIXA0REVHlwzDyHBfvpiE5QwkDBQc6IyIiKgsMI89x/MaTrSLebjaoZmokczVERESVD8PIc+RfobdNXTuZKyEiIqqcGEaKkKXMw7HryQCA7s2cZa6GiIiocmIYKcKJGw+hFoCVmRGa1+JAZ0RERGWBYaQIG0/EAwBe9qwJhYLXoiEiIioLDCOFUKsFDl5+Mr4Ih38nIiIqOwwjhdh+5jbU4snt/m3c5C2GiIioEmMYKcTmkwkAgAYO1WFjYSJzNURERJUXw4gWeSo1TsU9AgCM4bVoiIiIyhTDiBZXkjKQ9+8+mm7NnGSuhoiIqHJjGNFidVgsAKC1uy2MDLmKiIiIyhK/abW4fj8DAFCnRjWZKyEiIqr8GEaekZqVi+iEFADARy/Xk7cYIiKiKoBh5Bn5w7+bGBmggUN1mashIiKq/BhGnnHs+pOr9DZxtuKoq0REROWAYeQZcQ8yAQAta9vIWwgREVEVwTDyFJVa4PTNJ+OLBDblKb1ERETlgWHkKWdupSBTqYKhgQK+dWzlLoeIiKhKYBh5SujlewCAuvbVOL4IERFROeE37lOC/70eTQcPe5krISIiqjoYRp7yIFMJAPCtYydzJURERFUHw8i/7qfnQPXv9Wg6eHLLCBERUXlhGPnX8RtPxhdxtTGHlZmxzNUQERFVHQwj/7r57/gilmZGMldCRERUtTCM/Csi7sn4Im+2cpW5EiIioqqFYQSAWi0QGfcQAODlaiNvMURERFXMC++TUKvVUCqVpVFLoZRKJerUqQOlUons7OxSv//Y5EzYmAJ25kZo6mheJo9BRERU2RgbG8PQ0PCF70chhBAlXVipVCI2NhZqtfqFCymKWq1GQkIC3NzcYGBQ+htzUrKUyMhRwcRQAQcrs1K/fyIiosrKxsYGTk5OWi8um5aWBmtra6SmpsLKyqrQ+yjxlhEhBO7evQtDQ8MyCwn5VCoVHj9+DHd391JJYM+6ei8dFmoBWwsThhEiIqJiEEIgKysL9+49Gb3c2dm5xPdV4jCSl5eHrKwsuLi4wMLCosQFFIdKpQIAmJmZlUkYMTZWQqlSo5qFOczMTEv9/omIiCojc3NzAMC9e/fg4OBQ4u/oEm/OyA8IJiYmJb2LCiFXpYZS9WQ3k7U5xxchIiLSRf4Gidzc3BLfxwvvW9G2j0ifZOf+G6qMDHhxPCIiIh2VRg6o8t++GTl5AABTo9Lf/UNERETPV+XDSG7ek5OJjA31ewsPFe69995Dnz59iuwTGhoKhUKBlJSUcqlJX3Xq1Aljx46ttI9HRPKosmEkPDwchoaGGNS3DwDNYeCL+mJyd3fHwoULNdoOHTqE7t27o0aNGrCwsECTJk0wfvx43L59u9DHd3d3h0KhgEKhgIWFBby8vLBq1aoC/VQqFRYsWAAvLy+YmZnB1tYW3bp1w9GjRwv0VSqVmDdvHry9vWFhYQF7e3u0b98ea9euLXJfnhACK1asgJ+fH6pXrw4bGxv4+vpi4cKFyMrKKnQ5fbFo0SKsW7dOmi6LL7iPPvoIhoaG+P3330v1fnVVWPCq6GGrotenT+Lj49GjRw9YWFjAwcEBEydORF5eXqH989e9tp+TJ08CALKzs/Hee+/By8sLRkZGhYb7JUuWoHHjxjA3N0fDhg3xyy+/FPq4wcHBUCgUBe7ryy+/RKNGjVCtWjXY2toiICAAJ06c0Ohz5coV9O7dG/b29rCyssJLL72EQ4cOafTR9nyCg4M1+uTk5GDq1KmoU6cOTE1N4e7ujjVr1uhUb2Hr7vvvv5f69OrVC7Vr14aZmRmcnZ0xePBg3LlzR5ofExODzp07w9HREWZmZqhXrx6mTZtW6Of2i6y7hw8fYuDAgbCysoKNjQ0++OADZGRkaH2ca9euwdLSEjY2Nlrnl6YqG0ZWr16NTz/9FJEnwnEv8S7MjUu2m+bnn39GQEAAnJyc8Mcff+DixYtYvnw5UlNT8cMPPxS57KxZs3D37l2cP38egwYNwvDhw7Fnzx5pvhAC7777LmbNmoUxY8bg0qVLCA0NhZubGzp16oRt27ZJfZVKJQIDA/Htt99ixIgROHbsGCIiIjBq1Cj89NNPuHDhQqF1DB48GGPHjkXv3r1x6NAhREdHY/r06di+fTv+/vvvEq2X/JoqAmtr6zL9Y8rKykJwcDAmTZpU6AfZ0yrKepGDSqUq83GJ5FBRXlOVSoUePXpAqVTi2LFjWL9+PdatW4cZM2YUuky7du1w9+5djZ8PP/wQdevWha+vr3S/5ubm+OyzzxAQEKD1fpYtW4YpU6bgyy+/xIULF/DVV19h1KhR+Ouvvwr0jYuLw4QJE9ChQ4cC8zw9PbF48WKcO3cOYWFhcHd3R5cuXXD//n2pz+uvv468vDwcPHgQkZGR8Pb2xuuvv47ExESN+1q7dq3G83r2y7tv374ICQnB6tWrERMTg19//RUNGzbUqd5n192aNWugUCjw1ltvSX06d+6M3377DTExMfjjjz9w/fp1vP3229J8Y2NjDBkyBH///TdiYmKwcOFCrFy5EjNnziz1dTdw4EBcuHAB+/fvx86dO/HPP/9gxIgRBe4rNzcX/fv31/o4ZUKU0OPHj8XFixfF48ePS3oXxZaXlydOnjwp8vLySuX+0tPTRfXq1UX02QsisOcbYvSkaUKtVkvzDx06JACIR48eFVi2Tp06YsGCBUIIIRISEoSJiYkYO3as1sfRtry2+8lnZ2cnxo0bJ00HBwcLAGLHjh0Fln/zzTdFjRo1REZGhhBCiO+++04YGBiI06dPF+irVCqlfs/avHmzACC2bdtWYJ5arRYpKSlCCCE6duwoxowZozG/d+/eYujQoRrPadasWWLw4MHC0tJSDB06VPj7+4tJkyZpLHfv3j1hZGQkDh8+LIQQIjs7W4wfP164uLgICwsL0aZNG3Ho0CGt9QohxPjx40WPHj2k6QULFggAYs+ePVJb/fr1xcqVK4UQQgwdOlT07t1bug1A4yc2NlZ6zQ8cOCB8fHyEubm58Pf3F5cvXy60jnzr1q0Tbdu2FSkpKcLCwkLEx8drzM9//G+++UY4OzsLd3d3IYQQ8fHx4p133hHW1tbC1tZW9OrVS8TGxkrLRUREiICAAFGjRg1hZWUlXn75ZREZGVlkLU8/16c9+56eOXOm8Pb2Fr/88ouoU6eOsLKyEv369RNpaWnSMhkZGWLw4MGiWrVqwsnJScyfP7/A++B5r93atWuFtbW12L59u2jcuLEwNDTUeI5CCBEbG1vgNcl/X3Xs2FGMHj1aTJw4Udja2gpHR0cxc+ZMjeUfPXokPvjgA2Fvby8sLS1F586dRXR0dJHrKSEhQbz77rvC1tZWWFhYCB8fH3H8+PFC1+GYMWNEx44dpemOHTuKUaNGiTFjxogaNWqITp06if79+4u+fftqLKdUKkWNGjXE+vXrhRBCqFQqMWfOHOHu7i7MzMxE8+bNxe+//15krbrYvXu3MDAwEImJiVLbsmXLhJWVlcjJySnWfSiVSlGzZk0xa9YsrfMLe4/5+/uLCRMmaLQFBQWJ9u3ba7Tl5eWJdu3aiVWrVhV6X09LTU2V/jaFEOL+/fsCgPjnn3+kPmlpaQKA2L9/v9QGQGzdurXQ+92zZ4+wtrYWDx48KPLxda23d+/e4pVXXimyz/bt24VCoRBKpbLQPuPGjRMvvfTSC9Xy7Lq7ePGiACBOnjwp9dmzZ49QKBTi9u3bGstOmjRJDBo0SPobLkpReSC/htTU1CLvo9S2jAghkKXMK7Of7LzC71/oOIjsb7/9hkaNGqFO/Qbo8WZfbPttY4me8++//w6lUolJkyZpnV/c/8bVajX++OMPPHr0SONU6U2bNsHT0xM9e/YssMz48ePx4MED7N+/HwCwceNGBAQEoGXLlgX6Ghsbo1q1alofe+PGjWjYsCF69+5dYJ5CoYC1tXWxnkO++fPnw9vbG1FRUZg+fToGDhyI4OBgjddo8+bNcHFxkRL3p59+ivDwcAQHB+Ps2bN455130LVrV1y9elXrY3Ts2BFhYWHS6eWHDx+Gvb09QkNDAQC3b9/G9evX0alTpwLLLlq0CP7+/hg+fLj0n4ybm5s0f+rUqfjhhx9w6tQpGBkZ4f3333/uc169ejUGDRoEa2trdOvWTWOXUL6QkBDExMRI/43k5uYiMDAQlpaWOHLkCI4ePYrq1auja9eu0n/Z6enpGDp0KMLCwnD8+HF4eHige/fuSE9Pf25NxXH9+nVs27YNO3fuxM6dO3H48GF8++230vyJEyfi8OHD0hay0NBQnD59WuM+ivPaZWVl4bvvvsOqVatw4cIFODg4aNyHm5sb/vjjDwBPNlffvXsXixYtkuavX78e1apVw4kTJzBv3jzMmjVLet8DwDvvvIN79+5hz549iIyMRKtWrfDqq6/i4cOHWp93RkYGOnbsiNu3b2PHjh04c+YMJk2apPMWm/Xr18PExARHjx7F8uXLMXDgQPz1118am7z37duHrKwsvPHGGwCAuXPn4pdffsHy5ctx4cIFjBs3DoMGDcLhw4cLfZyRI0eievXqRf7kCw8Ph5eXFxwdHaW2wMBApKWlFbl19Gk7duzAgwcPMGzYMJ3WR05ODszMNAeNNDc3R0REhMbuhlmzZsHBwQEffPDBc+9TqVRixYoVsLa2hre3NwCgRo0a0i6gzMxM5OXl4eeff4aDgwN8fHw0lh81ahTs7e3Rpk0brFmzRuNzaMeOHfD19cW8efPg6uoKT09PTJgwAY8fP9a4D13qTUpKwq5du4rs+/DhQ2zcuBHt2rWDsbH24SSuXbuGvXv3omPHjiWuRdu6Cw8Pl3bD5wsICICBgYHG7pyDBw/i999/x5IlS577OKWlRIOeLVmyBJs2bcKMGTOgVqufHP9gbIomM/aVdn2ath3Q2nxxViAsTIr/VPK/PPLUAu07BWDmhE9x+PBhrV9eRbl69SqsrKxKPOrc559/jmnTpiEnJwd5eXmws7PDhx9+KM2/cuUKGjdurHXZ/PYrV65Itehaf/5y2jZLltQrr7yC8ePHS9N9+/bF2LFjERYWJoWPTZs2oX///lAoFIiPj8fatWsRHx8PFxcXAMCECROwd+9erF27FnPmzCnwGB06dEB6ejqioqLg4+ODf/75BxMnTpR2W4WGhsLV1RUNGjQosKy1tTVMTExgYWEBJyenAvNnz54tfQBMnjwZPXr0QHZ2doEP2XxXr17F8ePH8eeffwIABg0ahKCgIEybNk3jdLdq1aph1apVUtjcsGED1Go1Vq1aJfVbu3YtbGxsEBoaii5duuCVV17ReKwVK1bAxsYGhw8fxuuvv661Hl2o1WqsW7cOlpaWAJ7srgsJCcHs2bORkZGB1atXY8OGDXj11VcBPPnyrVWrlrR8cV+73NxcLF26VPpAfJahoSHs7OwAAA4ODgVCfPPmzaXN1R4eHli8eDFCQkLw2muvISwsDBEREbh37x5MTZ8MWDh//nxs27YNW7Zs0br5edOmTbh//z5OnjwpPa6298rzeHh4YN68edJ0/fr1Ua1aNWzduhWDBw+WHqtXr16wtLRETk4O5syZgwMHDsDf3x8AUK9ePYSFheHnn38u8MWTb9asWZgwYUKxakpMTNQIIgCk6Wd3YRRm9erVCAwM1HitiyMwMBCrVq1Cnz590KpVK0RGRmLVqlXIzc1FcnIynJ2dERYWhtWrVyM6OrrI+9q5cyfeffddZGVlwdnZGfv374e9vT2AJ/8kHThwAH369IGlpSUMDAzg4OCAvXv3wtbWVrqPWbNm4ZVXXoGFhQX+/vtvfPLJJ8jIyMBnn30GALhx4wbCwsJgZmaGrVu3Ijk5GZ988gkePHiAtWvXAkCx6823fv16WFpa4s033yww7/PPP8fixYuRlZWFtm3bYufOnQX6tGvXDqdPn0ZOTg5GjBiBWbNmSfNKY90lJiYW+GfAyMgIdnZ20vvjwYMHeO+997Bhw4Yih28vbTpvGdm8eTOCgoIwatQoODs7w8zMDFeuXHmhwU7KU0xMDCIiItC/f3+o1AJGRkbo1edtrF69Wuf7EkK80PnVEydORHR0NA4ePAg/Pz8sWLCgwIdicbf66Lp16EWXK8zTiRsAatasiS5dumDjxidbn2JjYxEeHo6BAwcCAM6dOweVSgVPT0+N//QOHz6M69eva30MGxsbeHt7IzQ0FOfOnYOJiQlGjBiBqKgoZGRk4PDhw4V+sD9P8+bNpdv5ITN/qGNt1qxZg8DAQOmPvXv37khNTcXBgwc1+nl5eWls9Tpz5ox0cFj+c7azs0N2drb0vJOSkjB8+HB4eHjA2toaVlZWyMjIQHx8fIme27Pc3d2lIJL/fPOf6/Xr16FUKuHn5yfNt7Oz0wiuxX3tTExMNNarrp5d9uk6z5w5g4yMDNSoUUOjhtjY2ELfP9HR0WjZsqUURErq2f/CjYyM0LdvX+m9npmZie3bt0vv9WvXriErKwuvvfaaRq2//PJLobUCTwJagwYNivwpLbdu3cK+ffuK9Z/3s6ZPn45u3bqhbdu2MDY2Ru/evTF06FAAgIGBAdLT0zF48GCsXLlS+nspTOfOnREdHY1jx46ha9eu6Nu3r/SaCyEwatQoODg44MiRI4iIiECfPn3Qs2dP3L17V6Oe9u3bo2XLlvj8888xadIkjYNK1Wo1FAoFNm7ciDZt2qB79+748ccfsX79ejx+/FinevOtWbMGAwcO1PrPy8SJExEVFYW///4bhoaGGDJkSIHP382bN+P06dPYtGkTdu3ahfnz5wNAqa274hg+fDgGDBiAl19+udjLlAadt4z8+OOPGD58ON58803ExsbCxcUFGRkZyEx9hIuzAgv0v3HjyYX0GjSoL7XFXI6BuYUFatd2K9BfG5VKhTNnzsLbu7nWoWZ1Ofh09erVyMvLk/6TA568uU1NTbF48WLpQx8AUlNTC/yXlpKSIu268PT0RGpqKu7evVuirSP29vbSh8nvv/8OLy8v+Pr6okmTJtL9X7p0Seuy+e2enp7S78uXL+tcQ3GXMzAwKPCHoy2AatsdNHDgQHz22Wf46aefsGnTJnh5ecHLywvAk03mhoaGiIyMLPDaPr35+VmdOnVCaGgoTE1N0bFjR9jZ2aFx48YICwvD4cOHNbbO6OLpzab5QbOwzfcqlQrr169HYmIijIyMNNrXrFkjbVEACq6XjIwM+Pj4SF9cT6tZsyYAYOjQoXjw4AEWLVokHe3v7+9f5MGSVlZWuHnzZoH2lJQUGBoaatTx7CZihUKh066K4r525ubmLxTai6ozIyMDzs7O0i66pxW2mzR/+OrCvOh7vWPHjrh37x72798Pc3NzdO3aVaoVAHbt2gVXV1eN5fK36mgzcuRIbNiwocia8+/byckJERERGvOSkpKkec+zdu1a1KhRA7169Xpu32eZm5tjzZo1+Pnnn5GUlARnZ2esWLEClpaWqFmzJs6ePYu4uDiN3c75r6ORkRFiYmJQv/6T74lq1apJn41t27aFh4cHVq9ejSlTpuDgwYPYuXMnHj16JH1WL126FPv378f69esxefJkrfX5+fnh66+/Rk5ODkxNTeHs7AxXV1eNXdGNGzeGEAK3bt1CZmZmsesFgCNHjiAmJgabN2/W+vj29vawt7eHp6cnGjduDDc3Nxw/flzaSgZA2mXcpEkTqFQqjBgxAuPHj8f169dLZd05OTkVCCZ5eXl4+PCh9P44ePAgduzYIQUhIQTUajWMjIywYsWKYu26LgmdwohSqURkZCSmTJkitSkUClhZWT25To2WXSVq5WM4Ojpq7EZxqGGDlJSUQnetqNVqjQ8DFRQwM1LAwsToha5Nk5eXh19++QU//PADunTpgpjEtCf1WJlh2IC++PXXXzFy5Eh4eHjAwMAAkZGRqFOnjrT8jRs3kJqaKgWAt99+G5MnT8a8efOwYMGCAo+XkpJS7ONG3Nzc0K9fP0yZMgXbt28HALz77rsYMGAA/vrrrwLHjfzwww+oUaMGXnvtNQDAgAED8MUXXyAqKqrAcSO5ublQKpVaPzwHDBiAd999F9u3by9w3IgQQrriYs2aNTX+61CpVDh//jw6d+783OfWu3dvjBgxAnv37sWmTZswZMgQaV7Lli2hUqlw7949nY7a7tixI9asWQMjIyPpw75Tp0749ddfceXKlSJ3WZmYmEjHm7yI3bt3S7uLnn5fnj9/HsOGDSvy9W/VqhU2b94MBweHQjeFHj16FEuXLkX37t0BAAkJCUhOTi6ypoYNGyI4OFj6wM13+vRp1K1bt9B91M+qX78+jI2NceLECdSuXRsA8OjRI1y5ckXa6lTS106b/K1Gur4urVq1ksKgu7t7sZZp3rw5Vq1ahYcPH2rdOlKzZk2cP39eoy06OrpY665du3Zwc3PD5s2bsWfPHrzzzjvSck2aNIGpqSni4+N12nKny24af39/zJ49W7pOCADs378fVlZW0j85hRFCYO3atRgyZEix3yfaGBsbS7t4goOD8frrr8PAwACNGjXCuXPnNPpOmzYN6enpWLRokcaxW89Sq9XIyckBAGm4gWcvzmpgYFBkmI6Ojoatra30d9G+fXv8/vvvyMjIkMLzlStXYGBggFq1akGhUOhU7+rVq+Hj41Po7shnnw8A6TkV1ic3NxdqtbrU1p2/vz9SUlIQGRkpbdk7ePAg1Gq1tBU0PDxc4+9w+/bt+O6773Ds2LECIbpUFXl46zNu374tAIhjx45pHD2bkJAgLl68qHWZU6dOieTkZI22pKQkERUVVeTjnDx5ssDPi55Ns3XrVmFiYiKdIXL5bpo4k/BIpD1WikmTJglfX1+p74gRI4S7u7vYvn27uHHjhjh8+LBo27ataNu2rcaZN0uWLBEKhUK8//77IjQ0VMTFxYmwsDAxYsQIERQUVGgt2s6muXDhglAoFNKRzmq1WrzxxhvC1tZWrFq1SsTGxoozZ86IESNGCCMjI40jxbOzs0WHDh2Era2tWLx4sYiOjhbXr18XmzdvFq1atSp0favVatGvXz9hbm4uZs+eLU6ePCni4uLEX3/9JV555RXpMZYvXy4sLCzEzp07xaVLl8Tw4cOFlZVVgbNpnn1O+QYOHCi8vb2FQqEQN2/eLDDP3d1d/PHHH+LGjRvixIkTYs6cOWLnzp2Frr+HDx8KAwMDYWhoKC5duiSEePL6GhoaCmdnZ42+zx51Pnz4cNG6dWsRGxsr7t+/L1QqldYzqKKioqSzbbTp3bu36NevX4F2lUolnJycxOLFi7U+vhBCZGZmCg8PD9GpUyfxzz//iBs3bohDhw6J0aNHi4SEBCGEEC1bthSvvfaauHjxojh+/Ljo0KGDMDc3L3QdC/HkzBIHBwfRt29fcerUKXH16lWxevVqYWlpKZYtWyb1yz+b5mkLFiwQderUkaZHjhwp6tSpI0JCQsS5c+dEr169RPXq1TXOpnnea1ecI/GFEOLWrVtCoVCIdevWiXv37on09HQhxPPP4lKr1eKll14S3t7eYt++fSI2NlYcPXpUfPHFFxpnDDwtJydHeHp6ig4dOoiwsDBx/fp1sWXLFnHs2DEhhBB79+4VCoVCrF+/Xly5ckXMmDFDWFlZFTib5tm68k2dOlU0adJEGBkZiSNHjhSYV6NGDbFu3Tpx7do1ERkZKf73v/+JdevWPXcdFUdeXp5o1qyZ6NKli4iOjhZ79+4VNWvWFFOmTJH6nDhxQjRs2FDcunVLY9kDBw4IANLf07MuXLggoqKiRM+ePUWnTp1EVFSUxudKTEyM+L//+z9x5coVceLECdGvXz9hZ2dX6N+PEAX/NjIyMsSUKVNEeHi4iIuLE6dOnRLDhg0Tpqam4vz580KIJ2fT1KhRQ7z55psiOjpaxMTEiAkTJghjY2PpLKodO3aIlStXinPnzomrV6+KpUuXCgsLCzFjxgzpsdLT00WtWrXE22+/LS5cuCAOHz4sPDw8xIcffljsevOlpqYKCwsLjb+xfMePHxc//fSTiIqKEnFxcSIkJES0a9dO1K9fX2RnZwshhNiwYYPYvHmzuHjxovS57eLiIgYOHFiq604IIbp27SpatmwpTpw4IcLCwoSHh4fo379/oY9TXmfTVMgwolKpRF5envSTk5NTKmHk9ddfF927d5emk9Ozxf30bKFWq8WJEycEAHHmzBkhxJOVO3PmTNGoUSNhbm4u6tatK0aMGCHu379f4H73798vAgMDha2trTAzMxONGjUSEyZMEHfu3Cm0lsK+uAMDA0W3bt2k6dzcXPH999+Lpk2bChMTE2FlZSUCAwNFWFhYgWWzs7PF3LlzhZeXlzAzMxN2dnaiffv2Yt26dSI3N7fQWlQqlVi2bJlo3bq1sLCwEFZWVsLHx0csWrRIZGVlCSGenO738ccfCzs7O+Hg4CDmzp2r9dTewr4od+/eLQCIl19+ucA8pVIpZsyYIdzd3YWxsbFwdnYWb7zxhjh79myhNQshhLe3t3BycpKmHzx4IBQKhXj33Xc1+j37RxsTEyPatm0rzM3NC5zaW9wwkpiYKIyMjMRvv/2mtbaPP/5YtGzZUuvj57t7964YMmSIsLe3F6ampqJevXpi+PDh0h/t6dOnha+vrzAzMxMeHh7i999/L3IdP/383njjDeHi4iKqVasmvL29xcqVKzVCdHHCSHp6uhg0aJCwsLAQjo6OYt68eQW+hJ/32hU3jAghxKxZs4STk5NQKBQap/Y+75TytLQ0MXr0aOHi4iKMjY2Fm5ubGDhwYIFTrJ8WFxcn3nrrLWFlZSUsLCyEr6+vOHHihDR/xowZwtHRUVhbW4tx48aJTz/9tNhhJP/0yTp16miscyGehKeFCxeKhg0bCmNjY1GzZk0RGBgoneZeGuLi4kS3bt2Eubm5sLe3F+PHj9f4+89/rz/7vu7fv79o165dofdbp06dAqdgP/3/7MWLF0WLFi2Eubm5sLKyEr17937uqfHP/m08fvxYeu+amJgIZ2dn0atXLxEREaGx3MmTJ0WXLl2EnZ2dsLS0FG3bthW7d++W5u/Zs0e0aNFCVK9eXfobWL58uVCpVBr3c+nSJREQECDMzc1FrVq1RFBQkPSZV5x68/3888/C3Nxc+kf3aWfPnhWdO3cWdnZ2wtTUVLi7u4uRI0dqhMHg4GDRqlUrqd4mTZqIOXPmFDl0RknX3YMHD0T//v1F9erVhZWVlRg2bJgU/rUprzCiEKL4RzAqlUpYWFhgy5Yt6Nq1K2JjY1G3bl3cvXsXKpVK64FUZ8+ehaOjo8YR3rdv30ZKSgqaNm1arMdVqVTS7ocX2U1DREREpSs7O1vKA88evJu/qz81NbXIs3N0OpvGxMQEPj4+CAkJkdrEv8cVFDaORbVq1ZCWllaguKIOTiQiIqKqQ+dTe4OCgrBy5Ups3boVubm5uHPnDtRqtXS6UWxsLG7duiX1d3R0RFpaGhITE/H48WPcuXMHWVlZBc51JiIioqpJ5zDSr18/zJ8/Hz/99BPu3LmD7OxseHh4SEdfK5VKjdPgqlevjrp16yI5ORkXL17Eo0eP0KBBg+eeXkdERERVg07HjDytqH1EpY3HjBAREVVM5X7MCBEREVFpe+EwUsINK0RERFQJ6HqRSW1KdKE84MkoewqFAvfv30fNmjVfaLjn58kfDS47O5u7aYiIiCoAIQSUSiXu378PAwMDjetv6arEYcTQ0BC1atXCrVu3EBcXV+ICikOtViM5ORlxcXEFhgAmIiIi+VhYWKB27dov9P1c4gNY86lUqjK/Ym9GRgZ8fX1x6tQpjk9CRERUQRgaGsLIyKjQvSPFPYC1xFtGni6krHedKJVK3Lx5EyYmJmV+5g4RERGVL+7zICIiIlkxjBAREZGsGEaIiIhIVi98zEh5yD/G9tkL7hEREVHFlf+9/bxzZfQijKSnpwMA3NzcZK6EiIiIdJWeng5ra+tC57/wqb3lQa1W486dO7C0tCzVwdXS0tLg5uaGhISEIk85ohfD9Vx+uK7LB9dz+eB6Lh9luZ6FEEhPT4eLi0uR45DoxZYRAwMD1KpVq8zu38rKim/0csD1XH64rssH13P54HouH2W1novaIpKPB7ASERGRrBhGiIiISFZVOoyYmppi5syZMDU1lbuUSo3rufxwXZcPrufywfVcPirCetaLA1iJiIio8qrSW0aIiIhIfgwjREREJCuGESIiIpIVwwgRERHJqtKHkSVLlsDd3R1mZmbw8/NDREREkf1///13NGrUCGZmZvDy8sLu3bvLqVL9pst6XrlyJTp06ABbW1vY2toiICDgua8L/UfX93S+4OBgKBQK9OnTp2wLrCR0Xc8pKSkYNWoUnJ2dYWpqCk9PT35+FIOu63nhwoVo2LAhzM3N4ebmhnHjxiE7O7ucqtVP//zzD3r27AkXFxcoFAps27btucuEhoaiVatWMDU1RYMGDbBu3bqyLVJUYsHBwcLExESsWbNGXLhwQQwfPlzY2NiIpKQkrf2PHj0qDA0Nxbx588TFixfFtGnThLGxsTh37lw5V65fdF3PAwYMEEuWLBFRUVHi0qVL4r333hPW1tbi1q1b5Vy5/tF1XeeLjY0Vrq6uokOHDqJ3797lU6we03U95+TkCF9fX9G9e3cRFhYmYmNjRWhoqIiOji7nyvWLrut548aNwtTUVGzcuFHExsaKffv2CWdnZzFu3Lhyrly/7N69W0ydOlX8+eefAoDYunVrkf1v3LghLCwsRFBQkLh48aL46aefhKGhodi7d2+Z1Vipw0ibNm3EqFGjpGmVSiVcXFzE3Llztfbv27ev6NGjh0abn5+f+Oijj8q0Tn2n63p+Vl5enrC0tBTr168vqxIrjZKs67y8PNGuXTuxatUqMXToUIaRYtB1PS9btkzUq1dPKJXK8iqxUtB1PY8aNUq88sorGm1BQUGiffv2ZVpnZVKcMDJp0iTRtGlTjbZ+/fqJwMDAMqur0u6mUSqViIyMREBAgNRmYGCAgIAAhIeHa10mPDxcoz8ABAYGFtqfSraen5WVlYXc3FzY2dmVVZmVQknX9axZs+Dg4IAPPvigPMrUeyVZzzt27IC/vz9GjRoFR0dHNGvWDHPmzIFKpSqvsvVOSdZzu3btEBkZKe3KuXHjBnbv3o3u3buXS81VhRzfhXpxobySSE5OhkqlgqOjo0a7o6MjLl++rHWZxMRErf0TExPLrE59V5L1/KzPP/8cLi4uBd78pKkk6zosLAyrV69GdHR0OVRYOZRkPd+4cQMHDx7EwIEDsXv3bly7dg2ffPIJcnNzMXPmzPIoW++UZD0PGDAAycnJeOmllyCEQF5eHkaOHIkvvviiPEquMgr7LkxLS8Pjx49hbm5e6o9ZabeMkH749ttvERwcjK1bt8LMzEzuciqV9PR0DB48GCtXroS9vb3c5VRqarUaDg4OWLFiBXx8fNCvXz9MnToVy5cvl7u0SiU0NBRz5szB0qVLcfr0afz555/YtWsXvv76a7lLoxdUabeM2Nvbw9DQEElJSRrtSUlJcHJy0rqMk5OTTv2pZOs53/z58/Htt9/iwIEDaN68eVmWWSnouq6vX7+OuLg49OzZU2pTq9UAACMjI8TExKB+/fplW7QeKsl72tnZGcbGxjA0NJTaGjdujMTERCiVSpiYmJRpzfqoJOt5+vTpGDx4MD788EMAgJeXFzIzMzFixAhMnToVBgb8/7o0FPZdaGVlVSZbRYBKvGXExMQEPj4+CAkJkdrUajVCQkLg7++vdRl/f3+N/gCwf//+QvtTydYzAMybNw9ff/019u7dC19f3/IoVe/puq4bNWqEc+fOITo6Wvrp1asXOnfujOjoaLi5uZVn+XqjJO/p9u3b49q1a1LYA4ArV67A2dmZQaQQJVnPWVlZBQJHfgAUvMxaqZHlu7DMDo2tAIKDg4WpqalYt26duHjxohgxYoSwsbERiYmJQgghBg8eLCZPniz1P3r0qDAyMhLz588Xly5dEjNnzuSpvcWg63r+9ttvhYmJidiyZYu4e/eu9JOeni7XU9Abuq7rZ/FsmuLRdT3Hx8cLS0tL8emnn4qYmBixc+dO4eDgIL755hu5noJe0HU9z5w5U1haWopff/1V3LhxQ/z999+ifv36om/fvnI9Bb2Qnp4uoqKiRFRUlAAgfvzxRxEVFSVu3rwphBBi8uTJYvDgwVL//FN7J06cKC5duiSWLFnCU3tf1E8//SRq164tTExMRJs2bcTx48eleR07dhRDhw7V6P/bb78JT09PYWJiIpo2bSp27dpVzhXrJ13Wc506dQSAAj8zZ84s/8L1kK7v6acxjBSfruv52LFjws/PT5iamop69eqJ2bNni7y8vHKuWv/osp5zc3PFl19+KerXry/MzMyEm5ub+OSTT8SjR4/Kv3A9cujQIa2fufnrdujQoaJjx44FlmnRooUwMTER9erVE2vXri3TGhVCcNsWERERyafSHjNCRERE+oFhhIiIiGTFMEJERESyYhghIiIiWTGMEBERkawYRoiIiEhWDCNEREQkK4YRIiIikhXDCBEREcmKYYSIiIhkxTBCREREsmIYISIiIln9P4hkKAi83Ud3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Logistic: f1=0.268 auc=0.210\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABAfElEQVR4nO3dfVxUZf7/8fcwwqCbjJoBihRqqZnmbbLolmaUZetm360sXe8yu9M2ZbvxHtMSrVTavOtG092ttDXX1TTLMCvNslD6lZmZWt4Faq6gmCBwfn9MjKIzyAxzwxxez8djHjBnrnPOZ4468/Y61zmXxTAMQwAAACYRFuwCAAAAfIlwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATKVGsAsItJKSEh08eFC1a9eWxWIJdjkAAKACDMPQ8ePH1bBhQ4WFld83U+3CzcGDBxUfHx/sMgAAgBf27dunRo0aldum2oWb2rVrS3IcnKioqCBXAwAAKiIvL0/x8fHO7/HyVLtwU3oqKioqinADAECIqciQEgYUAwAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUwlquPn444/Vq1cvNWzYUBaLRcuXL7/gOuvXr1f79u1ls9l0+eWXa+HChX6vEwAAhI6ghpv8/Hy1adNGs2fPrlD7PXv26NZbb9X111+vrKwsjRgxQvfdd5/ee+89P1daQbkHpD0fO34CAICgCOrEmbfccotuueWWCrefN2+eGjdurOnTp0uSrrzySm3YsEEzZ85Ujx49/FVmxXyxQFr9N8kokWEJU+EtM1Xc9i9lmoRZLIoMtzqfnywscru5yrT9tbBYhgyXbS2yqGaEd21PnS5WieG6rSTViqgR9LY1w63OSdUKiopVXOKbtpE1rAoLc7QtLCpRUUmJT9raalhl9aLt6eISnS523zbCGqYa1jCP2xYVl6iwnLbh1jCFe9G2uMRQQVGx27Y1wsIUUcPztiUlhk75qK01zCJbDcffd8Mw9Otp37QN1L97PiMq1pbPCIdAfEYEU0jNCr5p0yYlJyeXWdajRw+NGDHC7ToFBQUqKChwPs/Ly/N9YbkHnMFGkixGiayrRqrrsjBl62Jns+ubX6LXBndyPu8w+QO3H4qJjetpyQNJzud/mPahjuYXumx7dSO7Vgz/g/N58oyPdODYry7bXhF9kdamdHU+/9OsDdp56ITLtnF1amrjqO7O53e9tEn/b3+uy7b1fhehLeNvdD4fuGCzPt9z1GXbmuFWbZ98s/P5Q//K1Ic7DrtsK0k/Tr3V+XvKW1la/XW227bfTurh/KAbs+wbvb1lv9u2meOSdfFFNknS0+9s1z8/+8lt20+euF7x9WpJkp5/f4de/ni327bvj7xOzWJqS5Jmf/iDXsjY6bbtf4d1UZv4OpKk1zbuUdq737lt++bQ3yupqePv05ub92rCf7e5bbtgUEd1bxEjSVq+9YAeX/r/3Lad3be9br26gSTpvW05GvbGFrdtn7vjat3ZMV6S9PHOw7p34Zdu20667SoNSEqQJG3ec1T3vPKZ27ajb2mhB7o2lSR9cyBXt83e6LbtozdcoZE3NpMk/XD4hG6a+bHbtvdf10Rjel4pSTpw7Fdd++yHbtv2//1lmty7lSTpaH6hOjz9gdu2f27fSNPvaiNJ+vV0sVpOcN973LN1rOb06+B8Xl5bPiMc+Iw4I5Q/I4Ip+PHKA9nZ2YqJiSmzLCYmRnl5efr1V9f/UNPS0mS3252P+Hg/HPSju5zBplQNS4kSwnJ8vy8AAFAui2GU038XQBaLRf/5z3/Uu3dvt22aNWumwYMHa/To0c5lq1ev1q233qqTJ0+qZs2a563jqucmPj5eubm5ioqK8k3xuQek9FZlAo5hserUsK0youKcy+hy9n9bupwdOC3leVtOSznwGeFdWz4jHPx5WiovL092u71C398hdVoqNjZWOTlle0NycnIUFRXlMthIks1mk81m829h9jipy0hpg2MskCxWWXqlq2b9y8pd7ex/kBfiSduzP2x82fbsD8dQaFv65ePrthE1whRRwU5Pf7X15APEk7Y1zvoQ82Vba5ilwn+HPWkb5qe2Fot/2kr++3fPZ4TnbfmM8LytJ//ug6nqV3iWpKQkZWRklFm2du1aJSUluVkjgJr/NjD6ohhpxNdS+wHBrQcAgGoqqOHmxIkTysrKUlZWliTHpd5ZWVnau3evJGn06NEaMOBMSHjwwQe1e/duPfHEE/ruu+80Z84cvfXWWxo5cmQwynctvKajJwcAAARFUMPNl19+qXbt2qldu3aSpJSUFLVr104TJkyQJP3888/OoCNJjRs31qpVq7R27Vq1adNG06dP16uvvhr8y8ABAECVUWUGFAeKJwOSPLLvC2l+slQ3QXr0K99tFwAAePT9HVJjbgAAAC6EcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEwl6OFm9uzZSkhIUGRkpBITE7V58+Zy26enp6t58+aqWbOm4uPjNXLkSJ06dSpA1QIAgKouqOFmyZIlSklJUWpqqrZs2aI2bdqoR48eOnTokMv2b7zxhkaNGqXU1FRt375d8+fP15IlSzRmzJgAVw4AAKqqoIabGTNmaOjQoRo8eLBatmypefPmqVatWlqwYIHL9p9++qm6dOmivn37KiEhQTfddJPuueeecnt7CgoKlJeXV+YBAADMK2jhprCwUJmZmUpOTj5TTFiYkpOTtWnTJpfrdO7cWZmZmc4ws3v3bq1evVo9e/Z0u5+0tDTZ7XbnIz4+3rdvBAAAVCk1grXjI0eOqLi4WDExMWWWx8TE6LvvvnO5Tt++fXXkyBH94Q9/kGEYKioq0oMPPljuaanRo0crJSXF+TwvL4+AAwCAiQV9QLEn1q9frylTpmjOnDnasmWLli1bplWrVmny5Mlu17HZbIqKiirzAAAA5hW0npv69evLarUqJyenzPKcnBzFxsa6XGf8+PHq37+/7rvvPklS69atlZ+fr/vvv19jx45VWFhIZTUAAOAHQUsDERER6tChgzIyMpzLSkpKlJGRoaSkJJfrnDx58rwAY7VaJUmGYfivWAAAEDKC1nMjSSkpKRo4cKA6duyoTp06KT09Xfn5+Ro8eLAkacCAAYqLi1NaWpokqVevXpoxY4batWunxMRE/fDDDxo/frx69erlDDkAAKB6C2q46dOnjw4fPqwJEyYoOztbbdu21Zo1a5yDjPfu3Vump2bcuHGyWCwaN26cDhw4oEsuuUS9evXSM888E6y3AAAAqhiLUc3O5+Tl5clutys3N9e3g4v3fSHNT5bqJkiPfuW77QIAAI++vxmBCwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVwAwAATIVw42unf5VyDwS7CgAAqi3Cja/seNfx80SOlN5K2vKP4NYDAEA1RbjxhdwD0saZZ54bJdLKEfTgAAAQBIQbXzi6yxFozmYUS0d3B6ceAACqMcKNL9RrKslSdpnFKtVrEpRyAACozgg3vmCPkxIfOPPcEib1SncsBwAAAUW48ZWm3c/8PvRDqf2A4NUCAEA1Rrjxh9qxwa4AAIBqi3ADAABMhXADAABMhXDjD8ezg10BAADVFuHGV3atO/P7K9dzh2IAAIKEcOMLuQekz18685w7FAMAEDSEG184ukuSUXYZdygGACAoCDe+4PIOxWHcoRgAgCAg3PjCuXcoliTDkHZlBKceAACqMcKNrzRoc84Cg3E3AAAEAeHGV47/fP4yxt0AABBwhBtfqRHpenl4rcDWAQBANUe48ZUTh1wvP7Y3sHUAAFDNEW4AAICpEG58pYbN9fLwmoGtAwCAai7o4Wb27NlKSEhQZGSkEhMTtXnz5nLbHzt2TMOGDVODBg1ks9nUrFkzrV69OkDVliPvoOvlR3cFtg4AAKq5GsHc+ZIlS5SSkqJ58+YpMTFR6enp6tGjh3bs2KHo6Ojz2hcWFurGG29UdHS0li5dqri4OP3000+qU6dO4Is/V84218vjfx/YOgAAqOaCGm5mzJihoUOHavDgwZKkefPmadWqVVqwYIFGjRp1XvsFCxbo6NGj+vTTTxUeHi5JSkhIKHcfBQUFKigocD7Py8vz3RsotT9TOrjF99sFAAAeC9ppqcLCQmVmZio5OflMMWFhSk5O1qZNm1yus2LFCiUlJWnYsGGKiYlRq1atNGXKFBUXF7vdT1pamux2u/MRHx/v8/eiva7rlSTt+8z3+wMAAG4FLdwcOXJExcXFiomJKbM8JiZG2dnZLtfZvXu3li5dquLiYq1evVrjx4/X9OnT9fTTT7vdz+jRo5Wbm+t87Nu3z6fvQ5J0aZL71zgtBQBAQAX1tJSnSkpKFB0drZdffllWq1UdOnTQgQMH9Nxzzyk1NdXlOjabTTabmyuZfKVRByk+Udr3+fmv1Y71774BAEAZQeu5qV+/vqxWq3Jycsosz8nJUWys60DQoEEDNWvWTFar1bnsyiuvVHZ2tgoLC/1a7wW566HZV/7VXwAAwLeCFm4iIiLUoUMHZWScmTm7pKREGRkZSkpyfZqnS5cu+uGHH1RSUuJc9v3336tBgwaKiIjwe83lyvnG/Wu5B6Q9HzOJJgAAARDU+9ykpKTolVde0aJFi7R9+3Y99NBDys/Pd149NWDAAI0ePdrZ/qGHHtLRo0f16KOP6vvvv9eqVas0ZcoUDRs2LFhvwSH3gLRrnevXcr6W0ltJi3o5fm75R2BrAwCgmgnqmJs+ffro8OHDmjBhgrKzs9W2bVutWbPGOch47969Cgs7k7/i4+P13nvvaeTIkbr66qsVFxenRx99VE8++WSw3oLD0V2SDNevfTL9zO9GibTir1LTGyR7XEBKAwCgurEYhuHmW9mc8vLyZLfblZubq6ioKN9sNPeANPMquQ045+o5Q+o0xDf7BgCgGvDk+9urnpvi4mItXLhQGRkZOnToUJkxMJK0bp2bUzRmZY+T2twjffVGxdr/tIFwAwCAn3gVbh599FEtXLhQt956q1q1aiWLxeLrukJPdIuKt83b7786AACo5rwKN4sXL9Zbb72lnj17+rqe0HV4R8XbVqsTgQBQdRUXF+v06dPBLgO/iYiIKDPW1ltehZuIiAhdfvnlld65qXhys75a9f1XBwDgggzDUHZ2to4dOxbsUnCWsLAwNW7cuNK3d/Eq3Pztb3/TCy+8oFmzZnFKqpTVg7sg16jpvzoAABdUGmyio6NVq1YtvsuqgJKSEh08eFA///yzLr300kr9mXgVbjZs2KAPP/xQ7777rq666irnDN2lli1b5nVBIau8m/idi39DABA0xcXFzmBz8cUXB7scnOWSSy7RwYMHVVRUdF628IRX4aZOnTq6/fbbvd6p6eQekLavrHj76nX1PQBUKaVjbGrVqhXkSnCu0tNRxcXFgQ83r732mtc7NKXybuLnCt2fABB0nIqqenz1Z1KpOxQfPnxYO3Y4rhJq3ry5LrnkEp8UFXLqNZXjXFMFAw4dNwAA+I1X11vl5+fr3nvvVYMGDXTdddfpuuuuU8OGDTVkyBCdPHnS1zVWffY4qcn1FW9fVA2PEQAg5HXr1k0jRoxw+/qgQYPUu3dvt+0TEhKUnp7ut/pKeRVuUlJS9NFHH2nlypU6duyYjh07pv/+97/66KOP9Le//c3XNYaG6Csr3vb7d6U5nf1XCwDAlAYNGiSLxaKpU6eWWb58+fJKn9IpLi7W1KlT1aJFC9WsWVP16tVTYmKiXn311Qpv44UXXtDChQsrVYcveHVa6u2339bSpUvVrVs357KePXuqZs2auuuuuzR37lxf1Rc66l/hWftD26SFf5IGrfBPPQAAU4qMjNS0adP0wAMPqG7duj7b7lNPPaWXXnpJs2bNUseOHZWXl6cvv/xS//vf/yq8Dbvd7rN6KsOrnpuTJ086Z+4+W3R0dPU8LeWtHz+S9mcGuwoAQAhJTk5WbGys0tLSym339ttv66qrrpLNZlNCQoKmT59ebvsVK1bo4Ycf1p133qnGjRurTZs2GjJkiB577DG366xatUp2u12vv/66pPNPSwWLV+EmKSlJqampOnXqlHPZr7/+qqeeekpJSUk+Ky6kHM/2br0vF/q0DACA904WFrl9nDpd7PO23rBarZoyZYpefPFF7d/veq7CzMxM3XXXXbr77rv19ddfa+LEiRo/fny5p4xiY2O1bt06HT58uEJ1vPHGG7rnnnv0+uuvq1+/ft68Fb/x6rTUCy+8oB49eqhRo0Zq06aNJOmrr75SZGSk3nvvPZ8WGDI8uUPx2Q5/59s6AABeaznB/XfY9c0v0WuDOzmfd5j8gX49J8SUSmxcT0seOPOf/T9M+1BH8wvPa/fj1Fu9qvP2229X27ZtlZqaqvnz55/3+owZM3TDDTdo/PjxkqRmzZrp22+/1XPPPadBgwa53OaMGTN0xx13KDY2VldddZU6d+6s2267Tbfccst5bWfPnq2xY8dq5cqV6tq1q1fvwZ+86rlp1aqVdu7cqbS0NLVt21Zt27bV1KlTtXPnTl111VW+rjE05Fcs6Z6/3iHf1gEAqBamTZumRYsWafv27ee9tn37dnXp0qXMsi5dumjnzp0qLnYdyFq2bKlvvvlGn332me69914dOnRIvXr10n333Vem3dKlSzVy5EitXbu2SgYbqRL3ualVq5aGDh3qy1pCm8XLm9ecOu7bOgAAXvt2Ug+3r4WdczVS5vjkCrfd8KQHtwupoOuuu049evTQ6NGj3fbGeCosLEzXXHONrrnmGo0YMUL/+te/1L9/f40dO1aNGzeWJLVr105btmzRggUL1LFjxyp5M8QKh5sVK1bolltuUXh4uFasKP8Knz/96U+VLizkXOzh1VKlap8/MBsAEBy1Iir+f35/tfXE1KlT1bZtWzVv3rzM8iuvvFIbN24ss2zjxo1q1qyZrFZrhbffsmVLSY7725Vq2rSppk+frm7duslqtWrWrFmVeAf+UeGj3bt3b2VnZys6OrrckdAWi8Vtl5ep1fTycrzLb/JtHQCAaqN169bq16+f/v73v5dZ/re//U3XXHONJk+erD59+mjTpk2aNWuW5syZ43Zbd9xxh7p06aLOnTsrNjZWe/bs0ejRo9WsWTO1aNGiTNtmzZrpww8/VLdu3VSjRo2A3JjPExUec1NSUqLo6Gjn7+4e1TLYVEbdS4NdAQAghE2aNEklJSVllrVv315vvfWWFi9erFatWmnChAmaNGlSuaevevTooZUrV6pXr15q1qyZBg4cqBYtWuj9999XjRrn94U0b95c69at05tvvlnlbuBrMQzfTFF97Ngx1alTxxeb8qu8vDzZ7Xbl5uYqKirKdxv+6Hnpw8mer1f/Smn4Z76rAwBQrlOnTmnPnj1q3LixIiMjg10OzlLen40n399eXS01bdo0LVmyxPn8zjvvVL169RQXF6evvvrKm02Gvl++9269I9u5kR8AAD7kVbiZN2+e4uPjJUlr167VBx98oDVr1uiWW27R448/7tMCQ4a3A4olbuQHAIAPeTV8Ozs72xlu3nnnHd1111266aablJCQoMTERJ8WGDLqNXbzgkW6L0Namyr99InrJke4kR8AAL7iVc9N3bp1tW/fPknSmjVrlJzsuNbfMIzqO6B4zSjXyxt1khp1kG58qpyVq949AgAACFVe9dz83//9n/r27asrrrhCv/zyi/PWzFu3btXll1/u0wJDwtbX3d+heP/njjE1jTpI9kul3L3nt4lq5N/6AACoRrzquZk5c6aGDx+uli1bau3atbroooskST///LMefvhhnxYYEravLP/1fb9dDdXydtev2+N9Ww8AANWYVz034eHhLqdAHzlyZKULCklX9pK+f9f96/G/d/wsOX/SNMfyAt/XBABANcX0C77Qrp/0QarrU1ONEh2npCSpVn3X6+fu819tAABUM0y/4Cs3T5XeHnL+8gNfSrkHJHuclHfA9brfvXOmDQAAqBSmX/A3o1g6utvx+/4v3Ldb8Uhg6gEAwI2EhIRKzRO1cOHCKjFbgVcDiuEBi1Wq18Tx+wk3V1RJ0q4MR+8NAABuDBo0qNyzJ5X1xRdf6P77769QW1dBqE+fPvr+ey/v2O9DXoWbv/71r+fNQCpJs2bN0ogRIypbU2g6e4ouy2+H1WKVeqWfOd1UmH/eamW86+ZeOQAABMAll1yiWrVqeb1+zZo1nWd5gsmrcPP222+rS5cu5y3v3Lmzli5dWumiQt7N06SB70gjvpbaDziz3H6B+9nsfN+/dQEAfC/3gLTn46D3vn/00Ufq1KmTbDabGjRooFGjRqmoqMj5+vHjx9WvXz/97ne/U4MGDTRz5kx169atTKfE2b0xhmFo4sSJuvTSS2Wz2dSwYUP99a9/lSR169ZNP/30k0aOHCmLxSKLxXEzWlenpVauXKlrrrlGkZGRql+/vm6/3c1tUXzIq3Dzyy+/yG63n7c8KipKR44cqXRRIe93F0uNrz1/gPCNE8tfr/iU30oCAJTDMBy9654+Nr8ipbeSFvVy/Nz8iufbOLvn30sHDhxQz549dc011+irr77S3LlzNX/+fD399NPONikpKdq4caNWrFihtWvX6pNPPtGWLVvcbvPtt9/WzJkz9dJLL2nnzp1avny5WrduLUlatmyZGjVqpEmTJunnn3/Wzz//7HIbq1at0u23366ePXtq69atysjIUKdOnSr9fi/Eq/vcXH755VqzZo2GDx9eZvm7776rJk2a+KSw0OZmOoXmN0sXxUgnctyvWno3YwBA4Jw+KU1pWLltGCXS6sccD0+MOShF/K5Su54zZ47i4+M1a9YsWSwWtWjRQgcPHtSTTz6pCRMmKD8/X4sWLdIbb7yhG264QZL02muvqWFD9+957969io2NVXJyssLDw3XppZc6g0m9evVktVpVu3ZtxcbGut3GM888o7vvvltPPXVmCqI2bdpU6r1WhFfhJiUlRcOHD9fhw4fVvXt3SVJGRoamT59eqVHWpmEpZ66ox76XJp7f6+X09VLCDQDAI9u3b1dSUpLz9JAkdenSRSdOnND+/fv1v//9T6dPny7Ta2K329W8eXO327zzzjuVnp6uJk2a6Oabb1bPnj3Vq1cv1ahR8eiQlZWloUOHevemKsGrcHPvvfeqoKBAzzzzjCZPnizJcZ5u7ty5GjBgwAXWrg4uMBFm+3ulLQtcv3Zwq+/LAQCUL7yWowfFE3kHpdmdHD02pSxWadjnUpQHvUDh3g/g9af4+Hjt2LFDH3zwgdauXauHH35Yzz33nD766COFh4dXaBs1a9b0c5WueX0p+EMPPaT9+/crJydHeXl52r17N8GmVHk9N5LUtZwuy32bpI3nX4kGAPAji8VxasiTR/0rpF4vOAKNdOYK2fpXeLadC31nVMCVV16pTZs2yThr/M7GjRtVu3ZtNWrUSE2aNFF4eLi++OLM/dZyc3MveNl2zZo11atXL/3973/X+vXrtWnTJn399deSpIiIiAve2+7qq69WRkZGJd6Zd7zquZGkoqIirV+/Xrt27VLfvn0lSQcPHlRUVJRzIs3q5ewBYRf4i3qhOxGvHe/YXpdHK1sUAMCf2g+Qmt7guFlrvSYBudN8bm6usrKyyiy7//77lZ6erkceeUTDhw/Xjh07lJqaqpSUFIWFhal27doaOHCgHn/8cdWrV0/R0dFKTU1VWFhYmVNZZ1u4cKGKi4uVmJioWrVq6V//+pdq1qypyy67TJLjjM3HH3+su+++WzabTfXrnz/FUGpqqm644QY1bdpUd999t4qKirR69Wo9+eSTPj8uZ/Mq3Pz000+6+eabtXfvXhUUFOjGG29U7dq1NW3aNBUUFGjevHm+rjO0+CCFa+0EqdUdTMkAAFWdPS6gn9Xr169Xu3btyiwbMmSIVq9erccff1xt2rRRvXr1NGTIEI0bN87ZZsaMGXrwwQf1xz/+UVFRUXriiSe0b98+RUZGutxPnTp1NHXqVKWkpKi4uFitW7fWypUrdfHFF0uSJk2apAceeEBNmzZVQUFBmV6jUt26ddO///1vTZ48WVOnTlVUVJSuu+46Hx4N1yyGq2ouoHfv3qpdu7bmz5+viy++WF999ZWaNGmi9evXa+jQodq5c6c/avWJvLw82e125ebmKioqyncb/n9vSct+GzTV53Xpyj+W3/75ltKJC9wTofsE6bq/+aY+AIAk6dSpU9qzZ48aN27s9ou9OsjPz1dcXJymT5+uIUNczI0YBOX92Xjy/e3VmJtPPvlE48aNU0RERJnlCQkJOnCAKQQq1HNzw9gLt2HsDQDAR7Zu3ao333xTu3bt0pYtW9SvXz9J0m233RbkynzPq3DjboLM/fv3q3bt2pUuKvRVINy063fhNgXHHPe9AQDAB55//nm1adNGycnJys/P1yeffOJyrEyo8yrc3HTTTWXuZ2OxWHTixAmlpqaqZ8+evqotdFV0zM1Nz1y4zcq/Vq4WAAAktWvXTpmZmTpx4oSOHj2qtWvXOu84bDZehZvnn39eGzduVMuWLXXq1Cn17dvXeUpq2rRpvq4xBFUw3HQeLtW6QGLO+Sbo85UAABBKvLpaKj4+Xl999ZWWLFmir776SidOnNCQIUPUr1+/oN2wJ+jKzAruwdVST+ySJtaVVOK+zbzrpCd3eV0aAOB8XlxPAz/z1Z+Jx+Hm9OnTatGihd555x3169fPOSAJZzl51LP2bftJWf90//qvR6QdaxxzUwEAKqX07ronT56svv8hr6IKCwslSVartVLb8TjchIeH69QpZq8+z48bzvy+/CGp5LTj5k4V0XtW+eFGkpb8RZrAjOsAUFlWq1V16tTRoUOHJEm1atVyeyM7BE5JSYkOHz6sWrVqeTR/lSterT1s2DBNmzZNr776aqULMIXcA9LWs8OJIa0c4bhrZUVv7HTfOunV7u5fLzldmQoBAGcpncm6NOCgaggLC9Oll15a6bDpVTL54osvlJGRoffff1+tW7fW735Xdqr2ZcuWVaqokHN0l8pOvyDJKHbcjrui4aZRBymynnTKw1NaAACPWSwWNWjQQNHR0Tp9mv88VhUREREKC/N62ksnr8JNnTp19Oc//7nSOzeNek3luELq7EHFVsc8I54YtUeaaHf/+sYXmG8KAHzIarVWenwHqh6Pwk1JSYmee+45ff/99yosLFT37t01ceJEBmTZ46R2/aWt/3A8L50Z1pu5Ri5uIf3ynevXmG8KAIAL8qjv55lnntGYMWN00UUXKS4uTn//+981bNgwf9UWWhK6nPl9xNcVH0x8rpiW5b++4hHvtgsAQDXhUbj5xz/+oTlz5ui9997T8uXLtXLlSr3++usqKSnnHi3VUWV6VjoPL//1XRnc1A8AgHJ4FG727t1bZnqF5ORkWSwWHTx40OeFVVuNOkh1LzBWJ71tQEoBACAUeRRuioqKzpuCPDw8vNIjzWfPnq2EhARFRkYqMTFRmzdvrtB6ixcvlsViUe/evSu1/yrn0a3lv24UOgYe04MDAMB5PBpQbBiGBg0aJJvN5lx26tQpPfjgg2UuB/fkUvAlS5YoJSVF8+bNU2JiotLT09WjRw/t2LFD0dHRbtf78ccf9dhjj+naa6/15C2Yy8yWUvM/Sj2fZZAxAAC/8ajnZuDAgYqOjpbdbnc+/vKXv6hhw4ZllnlixowZGjp0qAYPHqyWLVtq3rx5qlWrlhYsWOB2neLiYvXr109PPfWUmjTx8HLrUFGRGcMlacc7jpAz0S69O8q/NQEAEAI86rl57bXXfLrzwsJCZWZmavTo0c5lYWFhSk5O1qZNm9yuN2nSJEVHR2vIkCH65JNPyt1HQUGBCgoKnM/z8vIqX3ggdB4uvT/Ws3U+n+t4XHGz1G+Jf+oCAKCKq/xtACvhyJEjKi4uVkxMTJnlMTExys7OdrnOhg0bNH/+fL3yyisV2kdaWlqZXqX4+PhK1+2SP2aXve4J79bbuUaaWMenpQAAECqCGm48dfz4cfXv31+vvPKK6tevX6F1Ro8erdzcXOdj3759fq7Sh7qPlSIu8nJlQ3q9j0/LAQAgFAR11sv69evLarUqJyenzPKcnBznpGZn27Vrl3788Uf16tXLuaz0Hjs1atTQjh071LRp0zLr2Gy2MgOgQ86YA9K6Z6SPn/V83Z1rpOXDHbOOAwBQTQS15yYiIkIdOnRQRkaGc1lJSYkyMjKUlJR0XvsWLVro66+/VlZWlvPxpz/9Sddff72ysrL8d8op2LqPlSbmSmFehLSsfzoGG5c+nm/h+/oAAKhCgtpzI0kpKSkaOHCgOnbsqE6dOik9PV35+fkaPHiwJGnAgAGKi4tTWlqaIiMj1apVqzLr16lTR5LOW25KEw5Jn87yfKDx2U78/FvQyfVdXQAAVCFBDzd9+vTR4cOHNWHCBGVnZ6tt27Zas2aNc5Dx3r17fTL9uWl0Hu54LLxN2veZY0byw9s8385Eu3TfOscdkQEAMBGLYfjjMp+qKy8vT3a7Xbm5uYqKivLdhrPelJY/6Pg90L0i3o7JkaQ2faXb5/q2HgAAfMyT72+6RHwmiBmx+1jJ6uWg6a/ekPZn+rYeAACCiHBjFuMPSTYve6Je7c5cVQAA0yDcmMnofdJtc7xff2ZLaePffVcPAABBQLgxm3b9HGN+Ii/2bv2146WNL/i2JgAAAijoV0vBT0btLvt8ogcTmq6dILW6g5nGAQAhiZ6b6sLTK7hmtvRPHQAA+BnhpjrxNOB40tsDAEAVQbjxlVC5XdDEXCm2nQft60k71vivHgAAfIwxN9XRg+vP/H7B3pli6c3fZhevFS09sdNfVQEA4BOEm+puYm7FTz+dPFS2bb1m0l+/8E9dAAB4idNSkK57wrv1jn7PuBwAQJVDuIFj+obKmGgn5AAAqgzCDRzuWVL5bRBwAABVAOEGDs1vlholVn47E+3SjFaV3w4AAF4i3PhMiFwKXp773nf04FzcrHLbydvnCDlpl/mmLgAAPMDVUiir+c2Ox9mmNpFO/eL5tgqO/TYex8ObBwIAUAn03ODCRu12BBRrpHfrMxYHABBA9Nyg4sbnnPl9SrxUmFfxdUsDDjcCBAD4GeEG3hmzz/HT016Zc28EGBUvpXzju7oAANUe4QaV48kdjl0pHXwsSfYEKfdHKcwmJU+QOg/3RYUAgGqGMTeovIm50shvJUt45baT+6PjZ0mB9P5YR+h5a3ClywMAVC/03PhKqMwK7i/2OCn1iON3Xw4g/naZNHGZ43dbHenmKVK7fr7bPgDAdOi5ge/569LvgmPSfx9mugcAQLkIN/CPibmOwcJ+3QcBBwBwPk5LwX9Kr4Lanym92t0/+zg74Nw2h1NWAADCDQKgUYeyp6pmtHJcJeVr/33Y8ZC4KzIAVGOclkLgpXzz2yXkfjx1xSkrAKi26LlBcJ17A7+3Bku710mnjlV+28xrBQDVEuHGZ6r5peC+ctdrZ37fnynNv1Eyir3f3kS7Y06ss6eOAACYGuEGVVejDlLq0bLLvDndVHzKsd51T0jdx/qmNgBAlcWYG4SWibnSFTd7t+7Hz565Rw5jcgDAtOi5Qejpt+TM7083kIpOered0oDDuBwAMBXCDULbuJ8dP7f8Q1rxiHfbcPbihEkte5cd9wMACDmcloI5tB/gmLyzUkp+m8uKU1cAEMoINzAPe5zjFFNCN99tk5ADACGHcOMr1X1W8Kpk0H99P46GgAMAIYNwA/OamCvVaezD7XG6CgBCAeEG5jYiyxFyEh+S7Jf6brsT7dLUJr7bHgDAZ7haCtXDLVMdj1LPXiGdPFS5bZ76xXUvDpeWA0BQEW5QPT2x0/Fzdmfp8Dbfbrs08CR0c4z/AQAEFOEG1duwT89f5qsxNT+ud70tS4SUetg3+wAAnIdwA5yr9LSSvwYOG4Vlt81pLADwKQYU+wyXgpvOxFwp/KIA7IersADAl+i5Acoz9sCZ39PbSsf2+Hd/5wYcenUAwGOEG6CiRmQ5fgayh+XcfUVeLI3aHbj9A0AIItwAnnLVm/J8C+nEz/7f97mXn9OzAwDnIdwAvvDYd46fuQekmS0Dt1+CDgCch3AD+FLp5J3n2p8pvdrdv/suDTqXXOX6EncAqCa4WgoIhEYdHKFnYq6kcP/u6/A2rrwCUK3Rc+MrzAqOipp45JznfgoipdvldBWAaoZwAwTbueHD12HH3fYIPQBMinADVDVnh453R0mfz/XTfs4JPdZIaXyOf/YFAAFEuAGqsnNnM5f8dxqr+NRvd0qmRwdAaCPcAKHm7PDhj6DDWB0AIY5wA4Sy0gDij/vrMFYHQIgi3ABmUHp/nUBcAn7uPmrUksYF4O7MAFBBVeI+N7Nnz1ZCQoIiIyOVmJiozZs3u237yiuv6Nprr1XdunVVt25dJScnl9s+cLgUHFVA6b10rJGB22fRSWY1B1ClBL3nZsmSJUpJSdG8efOUmJio9PR09ejRQzt27FB0dPR57devX6977rlHnTt3VmRkpKZNm6abbrpJ27ZtU1xcXBDeAVAFubrqaccaadVjUt4+/+33QgGHU1oAAsBiGMG9+1xiYqKuueYazZo1S5JUUlKi+Ph4PfLIIxo1atQF1y8uLlbdunU1a9YsDRgw4ILt8/LyZLfblZubq6ioqErX7/TlAumdkY7f+QBHKKkKPS78mwFwAZ58fwe156awsFCZmZkaPXq0c1lYWJiSk5O1adOmCm3j5MmTOn36tOrVq+fy9YKCAhUUFDif5+XlVa5owGwCNVan3Bpc7J/AA8BLQR1zc+TIERUXFysmJqbM8piYGGVnZ1doG08++aQaNmyo5ORkl6+npaXJbrc7H/Hx8ZWuGzCd0rE6bfsHu5IzSsfxTLQ7TqkBQAUFfcxNZUydOlWLFy/W+vXrFRnpegDl6NGjlZKS4nyel5dHwAHc6T3L8TjX5BjHTf6C5c0+7l9L6CYN+m/ASgFQ9QU13NSvX19Wq1U5OWUHP+bk5Cg2NrbcdZ9//nlNnTpVH3zwga6++mq37Ww2m2w2m0/qBaotVwOUg30qq9SP693UUkOa+EugqwFQBQT1tFRERIQ6dOigjIwM57KSkhJlZGQoKSnJ7XrPPvusJk+erDVr1qhjx46BKPXCmBUc1U3pqayoqtoTWlT21BaAaiPop6VSUlI0cOBAdezYUZ06dVJ6erry8/M1ePBgSdKAAQMUFxentLQ0SdK0adM0YcIEvfHGG0pISHCOzbnooot00UUXBe19ANVWyjflvz4pWiopKL9NIJwbcDidBZhW0MNNnz59dPjwYU2YMEHZ2dlq27at1qxZ4xxkvHfvXoWFnelgmjt3rgoLC3XHHXeU2U5qaqomTpwYyNIBVMSEQ66XB7s3xdXpLK7QAkwh6Pe5CTS/3efmi/nSqt8GLvMBCXgn2IGnPPy7BoIqZO5zAwBl+HvG88qglwcIGYQbAFVTeeFhf6b0avfA1eIKYQeosgg3AEJPow7nh4nlw6Udq6Vfg3T5N2EHqDIINz5TrYYuAVWPq5sPBvPU1rn7vm2O1K5fcGoBqhnCDQDzOrf35N1R0udzg1PLfx92PCrCVkca/ZNfywHMjHADoPq4ZarjcbanG0hFJ4NTjzsFx9z3OkVESWP2BbQcINQQbgBUb+N+dv9aVbtiS5IK85hFHbgAwg0AuHNuYKiKYadUebXVipae2Bm4WoAgI9wAQEWFUtg528lD7mu1RrqeGBUIYYQbAPDWuWHn9T7SzjXBqcVbxac4zQXTIdz4SvWaxQKAK/2WlH2edpljcHAoKq9XiuCDKo5wAwD+4unl3KFymquidRKCECSEGwCoKsoLA6ESfM5G7w+ChHADAKHAVRgIxcBTinE+8CPCDQCEqguFgVALP+7qJfTAQ4QbADArs5zmopcHHiLcAEB1FOqnuRjPg3IQbgAADuX29FwsqShgpVTKhUJancbSiKyAlILgINwAAC5s4i8VbBcCvT/H9pRTp0WaeCyQ1cAPCDcAAN8J+XE+BgObTYBwAwAIDDOP83G2IQBVBYQbAEDwuAsDoRR6znahugk/AUG4AQBUPaHey+MO4ScgCDcAgNAQ8uN5KoDxPj5BuPEVZgUHgOCpyJd/KAcgenw8QrgBAFQP7gLAu6Okz+cGthZfo8enDMINAKB6u2Wq4+HKpGippCCw9fhSNb2TM+EGAAB3Jhy6cJtQPd1l4uBDuAEAoDLMNju7VH7NCd2kQf8NWCneINwAAOBPZgs/P66v8r0+hBsAAILJzDcyDFLQIdz4DJeCAwB86II9PvUlnQ5IKV6baA9KwCHcAAAQiiYecbO8ivX4BCHgEG4AADCT6nAn5wsg3AAAUF1Uk+BDuAEAAOUHn8rcxZkxNwAAoMop7y7OUpWb/oFwAwAAKqcK3NvmbGHBLsA0mBUcAIAqgXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXDjM1wKDgBAVUC4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK48RVmBQcAoEog3AAAAFMh3AAAAFMh3AAAAFOpEuFm9uzZSkhIUGRkpBITE7V58+Zy2//73/9WixYtFBkZqdatW2v16tUBqhQAAFR1QQ83S5YsUUpKilJTU7Vlyxa1adNGPXr00KFDh1y2//TTT3XPPfdoyJAh2rp1q3r37q3evXvrm2++CXDl5cg9EOwKAACotiyGEdzLfBITE3XNNddo1qxZkqSSkhLFx8frkUce0ahRo85r36dPH+Xn5+udd95xLvv973+vtm3bat68eRfcX15enux2u3JzcxUVFeW7N/LvwdK2ZY7fLWFSrxek9gN8t30AAKoxT76/g9pzU1hYqMzMTCUnJzuXhYWFKTk5WZs2bXK5zqZNm8q0l6QePXq4bV9QUKC8vLwyD5/LPSBt+8+Z50aJtHIEPTgAAARBUMPNkSNHVFxcrJiYmDLLY2JilJ2d7XKd7Oxsj9qnpaXJbrc7H/Hx8b4p/mxHd0k6pwPMKJaO7vb9vgAAQLmCPubG30aPHq3c3FznY9++fb7fSb2mjlNRZ7NYpXpNfL8vAABQrqCGm/r168tqtSonJ6fM8pycHMXGxrpcJzY21qP2NptNUVFRZR4+Z49zjLGxWB3PLVapV7pjOQAACKighpuIiAh16NBBGRkZzmUlJSXKyMhQUlKSy3WSkpLKtJektWvXum0fMO0HSCO+lga+4/jJYGIAAIKiRrALSElJ0cCBA9WxY0d16tRJ6enpys/P1+DBgyVJAwYMUFxcnNLS0iRJjz76qLp27arp06fr1ltv1eLFi/Xll1/q5ZdfDubbcLDH0VsDAECQBT3c9OnTR4cPH9aECROUnZ2ttm3bas2aNc5Bw3v37lVY2JkOps6dO+uNN97QuHHjNGbMGF1xxRVavny5WrVqFay3AAAAqpCg3+cm0Px2nxsAAOA3IXOfGwAAAF8j3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMJ+vQLgVZ6Q+a8vLwgVwIAACqq9Hu7IhMrVLtwc/z4cUlSfHx8kCsBAACeOn78uOx2e7ltqt3cUiUlJTp48KBq164ti8Xi023n5eUpPj5e+/btY94qP+I4BwbHOTA4zoHDsQ4Mfx1nwzB0/PhxNWzYsMyE2q5Uu56bsLAwNWrUyK/7iIqK4h9OAHCcA4PjHBgc58DhWAeGP47zhXpsSjGgGAAAmArhBgAAmArhxodsNptSU1Nls9mCXYqpcZwDg+McGBznwOFYB0ZVOM7VbkAxAAAwN3puAACAqRBuAACAqRBuAACAqRBuAACAqRBuPDR79mwlJCQoMjJSiYmJ2rx5c7nt//3vf6tFixaKjIxU69attXr16gBVGto8Oc6vvPKKrr32WtWtW1d169ZVcnLyBf9c4ODp3+dSixcvlsViUe/evf1boEl4epyPHTumYcOGqUGDBrLZbGrWrBmfHRXg6XFOT09X8+bNVbNmTcXHx2vkyJE6depUgKoNTR9//LF69eqlhg0bymKxaPny5RdcZ/369Wrfvr1sNpsuv/xyLVy40O91ykCFLV682IiIiDAWLFhgbNu2zRg6dKhRp04dIycnx2X7jRs3Glar1Xj22WeNb7/91hg3bpwRHh5ufP311wGuPLR4epz79u1rzJ4929i6dauxfft2Y9CgQYbdbjf2798f4MpDi6fHudSePXuMuLg449prrzVuu+22wBQbwjw9zgUFBUbHjh2Nnj17Ghs2bDD27NljrF+/3sjKygpw5aHF0+P8+uuvGzabzXj99deNPXv2GO+9957RoEEDY+TIkQGuPLSsXr3aGDt2rLFs2TJDkvGf//yn3Pa7d+82atWqZaSkpBjffvut8eKLLxpWq9VYs2aNX+sk3HigU6dOxrBhw5zPi4uLjYYNGxppaWku2991113GrbfeWmZZYmKi8cADD/i1zlDn6XE+V1FRkVG7dm1j0aJF/irRFLw5zkVFRUbnzp2NV1991Rg4cCDhpgI8Pc5z5841mjRpYhQWFgaqRFPw9DgPGzbM6N69e5llKSkpRpcuXfxap5lUJNw88cQTxlVXXVVmWZ8+fYwePXr4sTLD4LRUBRUWFiozM1PJycnOZWFhYUpOTtamTZtcrrNp06Yy7SWpR48ebtvDu+N8rpMnT+r06dOqV6+ev8oMed4e50mTJik6OlpDhgwJRJkhz5vjvGLFCiUlJWnYsGGKiYlRq1atNGXKFBUXFweq7JDjzXHu3LmzMjMznaeudu/erdWrV6tnz54Bqbm6CNb3YLWbONNbR44cUXFxsWJiYsosj4mJ0XfffedynezsbJfts7Oz/VZnqPPmOJ/rySefVMOGDc/7B4UzvDnOGzZs0Pz585WVlRWACs3Bm+O8e/durVu3Tv369dPq1av1ww8/6OGHH9bp06eVmpoaiLJDjjfHuW/fvjpy5Ij+8Ic/yDAMFRUV6cEHH9SYMWMCUXK14e57MC8vT7/++qtq1qzpl/3ScwNTmTp1qhYvXqz//Oc/ioyMDHY5pnH8+HH1799fr7zyiurXrx/sckytpKRE0dHRevnll9WhQwf16dNHY8eO1bx584JdmqmsX79eU6ZM0Zw5c7RlyxYtW7ZMq1at0uTJk4NdGnyAnpsKql+/vqxWq3Jycsosz8nJUWxsrMt1YmNjPWoP745zqeeff15Tp07VBx98oKuvvtqfZYY8T4/zrl279OOPP6pXr17OZSUlJZKkGjVqaMeOHWratKl/iw5B3vx9btCggcLDw2W1Wp3LrrzySmVnZ6uwsFARERF+rTkUeXOcx48fr/79++u+++6TJLVu3Vr5+fm6//77NXbsWIWF8X9/X3D3PRgVFeW3XhuJnpsKi4iIUIcOHZSRkeFcVlJSooyMDCUlJblcJykpqUx7SVq7dq3b9vDuOEvSs88+q8mTJ2vNmjXq2LFjIEoNaZ4e5xYtWujrr79WVlaW8/GnP/1J119/vbKyshQfHx/I8kOGN3+fu3Tpoh9++MEZHiXp+++/V4MGDQg2bnhznE+ePHlegCkNlAZTLvpM0L4H/Tpc2WQWL15s2Gw2Y+HChca3335r3H///UadOnWM7OxswzAMo3///saoUaOc7Tdu3GjUqFHDeP75543t27cbqampXApeAZ4e56lTpxoRERHG0qVLjZ9//tn5OH78eLDeQkjw9Difi6ulKsbT47x3716jdu3axvDhw40dO3YY77zzjhEdHW08/fTTwXoLIcHT45yammrUrl3bePPNN43du3cb77//vtG0aVPjrrvuCtZbCAnHjx83tm7damzdutWQZMyYMcPYunWr8dNPPxmGYRijRo0y+vfv72xfein4448/bmzfvt2YPXs2l4JXRS+++KJx6aWXGhEREUanTp2Mzz77zPla165djYEDB5Zp/9ZbbxnNmjUzIiIijKuuuspYtWpVgCsOTZ4c58suu8yQdN4jNTU18IWHGE//Pp+NcFNxnh7nTz/91EhMTDRsNpvRpEkT45lnnjGKiooCXHXo8eQ4nz592pg4caLRtGlTIzIy0oiPjzcefvhh43//+1/gCw8hH374ocvP29JjO3DgQKNr167nrdO2bVsjIiLCaNKkifHaa6/5vU6LYdD/BgAAzIMxNwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAgyWKxaPny5ZKkH3/8URaLRVlZWUGtCYB3CDcAgm7QoEGyWCyyWCwKDw9X48aN9cQTT+jUqVPBLg1ACKoR7AIAQJJuvvlmvfbaazp9+rQyMzM1cOBAWSwWTZs2LdilAQgx9NwAqBJsNptiY2MVHx+v3r17Kzk5WWvXrpUklZSUKC0tTY0bN1bNmjXVpk0bLV26tMz627Zt0x//+EdFRUWpdu3auvbaa7Vr1y5J0hdffKEbb7xR9evXl91uV9euXbVly5aAv0cAgUG4AVDlfPPNN/r0008VEREhSUpLS9M//vEPzZs3T9u2bdPIkSP1l7/8RR999JEk6cCBA7ruuutks9m0bt06ZWZm6t5771VRUZEk6fjx4xo4cKA2bNigzz77TFdccYV69uyp48ePB+09AvAfTksBqBLeeecdXXTRRSoqKlJBQYHCwsI0a9YsFRQUaMqUKfrggw+UlJQkSWrSpIk2bNigl156SV27dtXs2bNlt9u1ePFihYeHS5KaNWvm3Hb37t3L7Ovll19WnTp19NFHH+mPf/xj4N4kgIAg3ACoEq6//nrNnTtX+fn5mjlzpmrUqKE///nP2rZtm06ePKkbb7yxTPvCwkK1a9dOkpSVlaVrr73WGWzOlZOTo3Hjxmn9+vU6dOiQiouLdfLkSe3du9fv7wtA4BFuAFQJv/vd73T55ZdLkhYsWKA2bdpo/vz5atWqlSRp1apViouLK7OOzWaTJNWsWbPcbQ8cOFC//PKLXnjhBV122WWy2WxKSkpSYWGhH94JgGAj3ACocsLCwjRmzBilpKTo+++/l81m0969e9W1a1eX7a+++motWrRIp0+fdtl7s3HjRs2ZM0c9e/aUJO3bt09Hjhzx63sAEDwMKAZQJd15552yWq166aWX9Nhjj2nkyJFatGiRdu3apS1btujFF1/UokWLJEnDhw9XXl6e7r77bn355ZfauXOn/vnPf2rHjh2SpCuuuEL//Oc/tX37dn3++efq16/fBXt7AIQuem4AVEk1atTQ8OHD9eyzz2rPnj265JJLlJaWpt27d6tOnTpq3769xowZI0m6+OKLtW7dOj3++OPq2rWrrFar2rZtqy5dukiS5s+fr/vvv1/t27dXfHy8pkyZosceeyyYbw+AH1kMwzCCXQQAAICvcFoKAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYyv8HesGlNRfJqJkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+------------------+---------------------+---------------------+\n", + "| Confusion Matrix | Positive prediction | Negative prediction |\n", + "+------------------+---------------------+---------------------+\n", + "| Positive class | True positive (TP) | False negative (FN) |\n", + "| Negative class | False positive (FP) | True negative (TN) |\n", + "+------------------+---------------------+---------------------+\n", + "+------------------+---------------------+---------------------+\n", + "| Confusion Matrix | Positive prediction | Negative prediction |\n", + "+------------------+---------------------+---------------------+\n", + "| Positive class | 1410 | 3474 |\n", + "| Negative class | 4219 | 52400 |\n", + "+------------------+---------------------+---------------------+\n", + "ROC AUC: 0.6070910833667152\n", + "Accuracy = 0.874916670731509\n", + "Precision = 0.2504885414816131\n", + "Recall = 0.28869778869778867\n", + "F1 Score = 0.2682393227432703\n", + "Fbeta Score = (0.6, 0.87, 0.88)\n", + " model tn fp fn tp FP+10*FN accuracy ROC_AUC \\\n", + "0 LGBM_Shap002 52400 4219 3474 1410 38959 0.874917 0.607091 \n", + "\n", + " precision recall F1_Score Fbeta_macro Fbeta_micro Fbeta_weighted \n", + "0 0.250489 0.288698 0.268239 0.6 0.87 0.88 \n", + "---------------------------------\n", + "start find_optimal_business_score\n", + "prediction proba 61503\n", + "Y_true 61503\n", + "Series([], Name: best, dtype: object)\n", + "0 1\n", + "Name: best, dtype: object\n", + "1 1\n", + "Name: best, dtype: object\n", + "best b score 35429 2 0.2\n", + "Name: threshold, dtype: float64\n", + " threshold tn fp fn tp FP+10*FN accuracy ROC_AUC \\\n", + "0 0.0 0 56619 0 4884 56619 0.079411 0.500000 \n", + "1 0.1 32717 23902 1292 3592 36822 0.590361 0.656654 \n", + "2 0.2 41480 15139 2029 2855 35429 0.720859 0.658589 \n", + "3 0.3 46602 10017 2563 2321 35647 0.795457 0.649153 \n", + "4 0.4 49946 6673 3032 1852 36993 0.842203 0.630670 \n", + "5 0.5 52400 4219 3474 1410 38959 0.874917 0.607091 \n", + "\n", + " precision recall F1_Score Fbeta_macro Fbeta_micro Fbeta_weighted \\\n", + "0 0.079411 1.000000 0.147137 0.150668 0.079411 0.023929 \n", + "1 0.130647 0.735463 0.221879 0.504943 0.590361 0.608457 \n", + "2 0.158664 0.584562 0.249585 0.574277 0.720859 0.737393 \n", + "3 0.188118 0.475225 0.269539 0.604714 0.795457 0.807122 \n", + "4 0.217243 0.379197 0.276232 0.611815 0.842203 0.848876 \n", + "5 0.250489 0.288698 0.268239 0.604039 0.874917 0.876486 \n", + "\n", + " best \n", + "0 0 \n", + "1 0 \n", + "2 1 \n", + "3 0 \n", + "4 0 \n", + "5 0 \n", + "Artifact PATH LGBM_Shap002_artifactPATH\n", + "{'TN': 41480, 'FP': 15139, 'FN': 2029, 'TP': 2855, 'FP_10_FN': 35429, 'Accuracy': 0.7208591450823537, 'F1': 0.24958475391205523, 'Precision': 0.15866399911081472, 'Recall': 0.5845618345618345, 'ROC_AUC': 0.6585890470606732, 'threshold': 0.2, 'time_in_s': 508.11790895462036}\n", + "{'subsample': 0.8, 'reg_lambda': 0.1, 'reg_alpha': 0.1, 'objective': 'binary', 'num_leaves': 31, 'n_estimators': 10000, 'metric': 'binary_logloss', 'learning_rate': 0.05, 'class_weight': 'balanced', 'boosting_type': 'gbdt'}\n", + "Active run_id: 9873d7bc673c478abe6a504a575e708a\n" ] } ], "source": [ - "run_name = \"RFC_newFEATURE_002\"\n", - "RFC_model_002, best_RFC_params, time_RFC = RFC_model(new_X_train_002, Y_train)\n", - "RFC_metrics, best_metrics_RFC = generate_model_report(RFC_model, run_name, new_X_test_002, Y_test, time_RFC)\n", - "run_MLflow(experiment_name, run_name, RFC_metrics, \n", - " best_RFC_params, RFC_model_002, new_X_train_002)" + "run_name = \"LGBM_Shap002\"\n", + "LGBM_model_002, LGBM_002_params, time_LGBM_002 = train_LightGBM_model(new_X_train_002, Y_train)\n", + "LGBM_002_metrics, best_metrics_LGBM = generate_model_report(LGBM_model_002, run_name, new_X_test_002, Y_test, time_LGBM_002)\n", + "run_MLflow(experiment_name, run_name, LGBM_002_metrics, \n", + " LGBM_002_params, LGBM_model_002, new_X_train_002)" + ] + }, + { + "cell_type": "code", + "execution_count": 245, + "id": "0ab66442", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NAME_CONTRACT_TYPEFLAG_OWN_CARFLAG_OWN_REALTYCNT_CHILDRENAMT_INCOME_TOTALAMT_CREDITAMT_ANNUITYAMT_GOODS_PRICEREGION_POPULATION_RELATIVEDAYS_BIRTH...WEEKDAY_APPR_PROCESS_START_TUESDAYWEEKDAY_APPR_PROCESS_START_WEDNESDAYORGANIZATION_TYPE_Business Entity Type 3ORGANIZATION_TYPE_MilitaryORGANIZATION_TYPE_Self-employedORGANIZATION_TYPE_XNAFONDKAPREMONT_MODE_reg oper accountWALLSMATERIAL_MODE_Stone, brickEMERGENCYSTATE_MODE_NoDAYS_EMPLOYED_ANOM
00.00.01.00.0202500.0406597.524700.5351000.00.0188019461.0...0.01.01.00.00.00.01.01.01.00.0
10.00.00.00.0270000.01293502.535698.51129500.00.00354116765.0...0.00.00.00.00.00.01.00.01.00.0
21.01.01.00.067500.0135000.06750.0135000.00.01003219046.0...0.00.00.00.00.00.00.00.00.00.0
30.00.01.00.0135000.0312682.529686.5297000.00.00801919005.0...0.01.01.00.00.00.00.00.00.00.0
40.00.01.00.0121500.0513000.021865.5513000.00.02866319932.0...0.00.00.00.00.00.00.00.00.00.0
\n", + "

5 rows × 96 columns

\n", + "
" + ], + "text/plain": [ + " NAME_CONTRACT_TYPE FLAG_OWN_CAR FLAG_OWN_REALTY CNT_CHILDREN \\\n", + "0 0.0 0.0 1.0 0.0 \n", + "1 0.0 0.0 0.0 0.0 \n", + "2 1.0 1.0 1.0 0.0 \n", + "3 0.0 0.0 1.0 0.0 \n", + "4 0.0 0.0 1.0 0.0 \n", + "\n", + " AMT_INCOME_TOTAL AMT_CREDIT AMT_ANNUITY AMT_GOODS_PRICE \\\n", + "0 202500.0 406597.5 24700.5 351000.0 \n", + "1 270000.0 1293502.5 35698.5 1129500.0 \n", + "2 67500.0 135000.0 6750.0 135000.0 \n", + "3 135000.0 312682.5 29686.5 297000.0 \n", + "4 121500.0 513000.0 21865.5 513000.0 \n", + "\n", + " REGION_POPULATION_RELATIVE DAYS_BIRTH ... \\\n", + "0 0.018801 9461.0 ... \n", + "1 0.003541 16765.0 ... \n", + "2 0.010032 19046.0 ... \n", + "3 0.008019 19005.0 ... \n", + "4 0.028663 19932.0 ... \n", + "\n", + " WEEKDAY_APPR_PROCESS_START_TUESDAY WEEKDAY_APPR_PROCESS_START_WEDNESDAY \\\n", + "0 0.0 1.0 \n", + "1 0.0 0.0 \n", + "2 0.0 0.0 \n", + "3 0.0 1.0 \n", + "4 0.0 0.0 \n", + "\n", + " ORGANIZATION_TYPE_Business Entity Type 3 ORGANIZATION_TYPE_Military \\\n", + "0 1.0 0.0 \n", + "1 0.0 0.0 \n", + "2 0.0 0.0 \n", + "3 1.0 0.0 \n", + "4 0.0 0.0 \n", + "\n", + " ORGANIZATION_TYPE_Self-employed ORGANIZATION_TYPE_XNA \\\n", + "0 0.0 0.0 \n", + "1 0.0 0.0 \n", + "2 0.0 0.0 \n", + "3 0.0 0.0 \n", + "4 0.0 0.0 \n", + "\n", + " FONDKAPREMONT_MODE_reg oper account WALLSMATERIAL_MODE_Stone, brick \\\n", + "0 1.0 1.0 \n", + "1 1.0 0.0 \n", + "2 0.0 0.0 \n", + "3 0.0 0.0 \n", + "4 0.0 0.0 \n", + "\n", + " EMERGENCYSTATE_MODE_No DAYS_EMPLOYED_ANOM \n", + "0 1.0 0.0 \n", + "1 1.0 0.0 \n", + "2 0.0 0.0 \n", + "3 0.0 0.0 \n", + "4 0.0 0.0 \n", + "\n", + "[5 rows x 96 columns]" + ] + }, + "execution_count": 245, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_X_train_002.head()" ] }, { diff --git a/2_Model_selection.ipynb b/2_Model_selection.ipynb index 108c169..bed19a4 100644 --- a/2_Model_selection.ipynb +++ b/2_Model_selection.ipynb @@ -45,7 +45,7 @@ }, { "cell_type": "code", - "execution_count": 139, + "execution_count": 258, "id": "1c8b0045", "metadata": {}, "outputs": [], @@ -58,6 +58,7 @@ "\n", "from sklearn.model_selection import train_test_split, GridSearchCV\n", "from sklearn.model_selection import RandomizedSearchCV\n", + "from sklearn.preprocessing import MinMaxScaler\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.metrics import precision_recall_curve\n", "from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score\n", @@ -127,18 +128,33 @@ }, { "cell_type": "code", - "execution_count": 252, - "id": "19dc90c7", + "execution_count": 255, + "id": "e615899c", "metadata": {}, "outputs": [], "source": [ "def scale_data(df_train, df_test):\n", - " # Scale the domainnomial features\n", - " scaler = MinMaxScaler(feature_range = (0, 1))\n", + " \"\"\"\n", + " Scale the features in the training and testing datasets using Min-Max scaling.\n", + "\n", + " Args:\n", + " df_train (DataFrame): The training dataset to be scaled.\n", + " df_test (DataFrame): The testing dataset to be scaled.\n", + "\n", + " Returns:\n", + " df_train_scaled (DataFrame): The scaled training dataset.\n", + " df_test_scaled (DataFrame): The scaled testing dataset.\n", + " \"\"\"\n", + " # Initialize MinMaxScaler with feature range between 0 and 1\n", + " scaler = MinMaxScaler(feature_range=(0, 1))\n", + "\n", + " # Fit and transform the training dataset\n", + " df_train_scaled = scaler.fit_transform(df_train)\n", "\n", - " df_train = scaler.fit_transform(df_train)\n", - " df_test = scaler.transform(df_test)\n", - " return df_train, df_test" + " # Transform the testing dataset using the same scaler fitted on the training data\n", + " df_test_scaled = scaler.transform(df_test)\n", + "\n", + " return df_train_scaled, df_test_scaled" ] }, { @@ -2518,7 +2534,7 @@ { "cell_type": "code", "execution_count": null, - "id": "44e60bc6", + "id": "4e456a3a", "metadata": {}, "outputs": [], "source": [ @@ -3256,7 +3272,7 @@ }, { "cell_type": "markdown", - "id": "ff16d6e2", + "id": "2d8e6c39", "metadata": {}, "source": [ "\n", @@ -3265,7 +3281,7 @@ }, { "cell_type": "markdown", - "id": "57009d8f", + "id": "1a2ff8da", "metadata": {}, "source": [ "## Filter not useful features" @@ -3364,7 +3380,7 @@ { "cell_type": "code", "execution_count": 237, - "id": "1e3c05c9", + "id": "f59f05e1", "metadata": {}, "outputs": [ { @@ -3588,7 +3604,7 @@ }, { "cell_type": "markdown", - "id": "659c04a5", + "id": "090091d6", "metadata": {}, "source": [ "### First attempt to improve feature selection and model training" @@ -4633,7 +4649,7 @@ }, { "cell_type": "markdown", - "id": "23408fe1", + "id": "aba1d118", "metadata": {}, "source": [ "### Second attempt to improve feature selection and model improvement" @@ -4642,7 +4658,7 @@ { "cell_type": "code", "execution_count": 253, - "id": "08d83fe3", + "id": "ebf04268", "metadata": {}, "outputs": [ { @@ -4832,7 +4848,7 @@ { "cell_type": "code", "execution_count": 228, - "id": "338f0ee3", + "id": "bf4fd419", "metadata": {}, "outputs": [ { @@ -4948,7 +4964,7 @@ { "cell_type": "code", "execution_count": 231, - "id": "482c7fea", + "id": "dc0d7d7a", "metadata": {}, "outputs": [ { @@ -5082,7 +5098,7 @@ { "cell_type": "code", "execution_count": 251, - "id": "d79df67a", + "id": "3af6dc9d", "metadata": {}, "outputs": [ { @@ -5312,7 +5328,7 @@ { "cell_type": "code", "execution_count": 245, - "id": "c59241fb", + "id": "069b126d", "metadata": {}, "outputs": [ { @@ -5554,6 +5570,133 @@ "new_X_train_002.head()" ] }, + { + "cell_type": "markdown", + "id": "d24f329c", + "metadata": {}, + "source": [ + "## Run with Shap filtered and scaled data to assess impact on metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 259, + "id": "5bc23e7c", + "metadata": {}, + "outputs": [], + "source": [ + "X_train_002_scale, X_test_002_scale = scale_data(new_X_train_002, new_X_test_002)" + ] + }, + { + "cell_type": "code", + "execution_count": 261, + "id": "19fc9fc7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "START time Mon Mar 4 10:37:28 2024\n", + "Fitting 5 folds for each of 1 candidates, totalling 5 fits\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The total space of parameters 1 is smaller than n_iter=50. Running 1 iterations. For exhaustive searches, use GridSearchCV.\n", + "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[LightGBM] [Info] Number of positive: 19941, number of negative: 226067\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.034363 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 10311\n", + "[LightGBM] [Info] Number of data points in the train set: 246008, number of used features: 96\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000\n", + "[LightGBM] [Info] Start training from score 0.000000\n", + "START time Mon Mar 4 10:37:28 2024\n", + "END time Mon Mar 4 10:45:34 2024 duration 8.090808200836182 min\n" + ] + }, + { + "ename": "NameError", + "evalue": "name 'X_test_002__scale' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[261], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m run_name \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLGBM_Shap002_scaled\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 2\u001b[0m LGBM_model_002_scale, LGBM_002_scale_params, time_LGBM_002 \u001b[38;5;241m=\u001b[39m train_LightGBM_model(X_train_002_scale, Y_train)\n\u001b[0;32m----> 3\u001b[0m LGBM_002_scale_metrics, best_metrics_LGBM_scale \u001b[38;5;241m=\u001b[39m generate_model_report(LGBM_model_002_scale, run_name, \u001b[43mX_test_002__scale\u001b[49m, Y_test, time_LGBM_002)\n\u001b[1;32m 4\u001b[0m run_MLflow(experiment_name, run_name, LGBM_002__scale_metrics, \n\u001b[1;32m 5\u001b[0m LGBM_002_scale_params, LGBM_model_002_scale, X_train_002_scale)\n", + "\u001b[0;31mNameError\u001b[0m: name 'X_test_002__scale' is not defined" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[LightGBM] [Info] Number of positive: 15953, number of negative: 180854\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.107711 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 10236\n", + "[LightGBM] [Info] Number of data points in the train set: 196807, number of used features: 96\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000\n", + "[LightGBM] [Info] Start training from score 0.000000\n", + "[CV 5/5] END boosting_type=gbdt, class_weight=balanced, learning_rate=0.05, metric=binary_logloss, n_estimators=10000, num_leaves=31, objective=binary, reg_alpha=0.1, reg_lambda=0.1, subsample=0.8;, score=0.888 total time= 5.5min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:97: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, warn=True)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:132: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[LightGBM] [Info] Number of positive: 15953, number of negative: 180854\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.049505 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 10305\n", + "[LightGBM] [Info] Number of data points in the train set: 196807, number of used features: 96\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000\n", + "[LightGBM] [Info] Start training from score 0.000000\n", + "[CV 4/5] END boosting_type=gbdt, class_weight=balanced, learning_rate=0.05, metric=binary_logloss, n_estimators=10000, num_leaves=31, objective=binary, reg_alpha=0.1, reg_lambda=0.1, subsample=0.8;, score=0.885 total time= 5.5min\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:97: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, warn=True)\n", + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/sklearn/preprocessing/_label.py:132: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + " y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)\n" + ] + } + ], + "source": [ + "run_name = \"LGBM_Shap002_scaled\"\n", + "LGBM_model_002_scale, LGBM_002_scale_params, time_LGBM_002 = train_LightGBM_model(X_train_002_scale, Y_train)\n", + "LGBM_002_scale_metrics, best_metrics_LGBM_scale = generate_model_report(LGBM_model_002_scale, run_name, X_test_002__scale, Y_test, time_LGBM_002)\n", + "run_MLflow(experiment_name, run_name, LGBM_002__scale_metrics, \n", + " LGBM_002_scale_params, LGBM_model_002_scale, X_train_002_scale)" + ] + }, { "cell_type": "markdown", "id": "8233f52e", diff --git a/Dashboard_test.ipynb b/Dashboard_test.ipynb index 9b2359e..b156125 100644 --- a/Dashboard_test.ipynb +++ b/Dashboard_test.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "a0978e99", + "id": "7efc518b", "metadata": {}, "outputs": [], "source": [ @@ -17,7 +17,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "04bba092", + "id": "c1f113fb", "metadata": {}, "outputs": [], "source": [ @@ -32,7 +32,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "f121a5e2", + "id": "fd130355", "metadata": {}, "outputs": [], "source": [ @@ -42,7 +42,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "3a873d08", + "id": "b456ff08", "metadata": {}, "outputs": [ { @@ -74,7 +74,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "16740718", + "id": "c53eb524", "metadata": {}, "outputs": [ { @@ -180,7 +180,7 @@ { "cell_type": "code", "execution_count": 13, - "id": "91ec1358", + "id": "728692d2", "metadata": {}, "outputs": [ { @@ -219,7 +219,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "94631221", + "id": "45137b70", "metadata": {}, "outputs": [ { @@ -251,7 +251,7 @@ { "cell_type": "code", "execution_count": 22, - "id": "204d873b", + "id": "644b855a", "metadata": {}, "outputs": [ { @@ -295,10 +295,69 @@ "plt.show(fig)" ] }, + { + "cell_type": "code", + "execution_count": 23, + "id": "87d7b2e7", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/markobriesemann/opt/anaconda3/lib/python3.8/site-packages/IPython/core/pylabtools.py:152: UserWarning: Creating legend with loc=\"best\" can be slow with large amounts of data.\n", + " fig.canvas.print_figure(bytes_io, **kw)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAHWCAYAAABkGsMqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACxg0lEQVR4nOzdd3gUZdfA4d/sJtn03klI6L13kKaAAqKAFBGlCihSFGzoJ4KKgAUBUSwvgiCKIuX1VVFBQIo0gdBrgAAhISGk9+zO90fIypIE0ifl3Ne1F+zsMzNnS2bPPlVRVVVFCCGEEKIS0GkdgBBCCCFESZHERgghhBCVhiQ2QgghhKg0JLERQgghRKUhiY0QQgghKg1JbIQQQghRaUhiI4QQQohKQxIbIYQQQlQaktgIIYQQotKQxKYAtm/fjqIo/Pjjj6V6nuDgYEaNGlXix7106RKKorBixYoSP/adVqxYgaIoXLp0ybwtODiYhx9+uNTPDf++V9u3by+T8xXFqFGjCA4O1joMC0lJSTz99NP4+vqiKArPP/+81iEJjRTmOlSWf9sAs2bNQlGUYu1748aNe5a98zUoznWlrL4/7kVRFGbNmlWm5yzO+1Uc5TaxOXbsGIMGDSIoKAhbW1uqVatGz549+fjjjy3Kvfvuu2zcuFGbIDWiKIr5ZmVlhbu7O61atWLq1KmcPHmyxM7z6aeflkkyVBTlMbZu3bpZvDfu7u60adOGr776CpPJVCLnKK3P+7vvvsuKFSt49tlnWbVqFU899VS+ZYODg83PUafT4erqSpMmTRg/fjz79u2763l+/fVXFEXB39/f4jWZN28eiqLw+++/57lfnz59cHFx4dq1a0B2Ivbmm2/SuHFjHBwc8PDwoHnz5kydOtVcpiBykv7bb87OzjRv3pwlS5ZgNBotynfr1o3GjRvn+3ooioKDgwNt27Zl5cqV+Z4jv9ulS5fu+UU4atQoHB0dC/wci+vkyZPMmjXL4sdKSVEUhUmTJuX5WM6PpH/++afEz1teffvttyxcuFCz89/5WdXr9VSvXp0BAwYQEhJSprH8/fffzJo1i7i4uELva1Xy4RTf33//Tffu3alevTrjxo3D19eXK1eusHfvXhYtWsTkyZPNZd99910GDRpE//79tQtYAz179mTEiBGoqkp8fDxHjhzh66+/5tNPP2X+/PlMmzbNXDYoKIjU1FSsra0LdY5PP/0UT0/PQtUiPfXUUzz++OMYDIZCnauw8outS5cupKamYmNjU6rnz09AQABz584FIDo6mpUrVzJ27FjOnj3LvHnzin380vq8b926lfbt2/Pmm28WqHzz5s2ZPn06AImJiZw6dYq1a9fy5Zdf8sILL7BgwYI891u9ejXBwcFcunSJrVu30qNHDwCmT5/Ot99+y8SJEzl+/Dh2dnbmfdauXcumTZv45JNP8Pf3JzMzky5dunD69GlGjhzJ5MmTSUpK4sSJE3z77bcMGDAAf3//Qj3/YcOG0adPHwDi4+P59ddfmTx5MmFhYbz//vuFej0iIiL4z3/+w8iRI0lPT+eJJ55g1apVFuU//PBDrl69ykcffWSx3cvLq1QSiMI4c+YMOt2/v3lPnjzJ7Nmz6datm+Y1jf/3f//Hq6++WubnLavryrfffsvx48c1rzHN+XswGo2cOnWKpUuXsmnTJvbu3Uvz5s0LfJzivF9///03s2fPZtSoUbi6uhZq33KZ2MyZMwcXFxcOHDiQ6wlFRUVpE1Q5U7duXZ588kmLbfPmzaNfv35Mnz6d+vXrmy/UiqJga2tbqvEkJyfj4OCAXq9Hr9eX6rnuRqfTlfpzvRsXFxeL92XChAnUq1ePJUuW8Pbbbxc6uSwrUVFRNGzYsMDlq1WrluvzN3/+fJ544gk++ugj6tSpw7PPPmvxeHJyMv/973+ZO3cuy5cvZ/Xq1ebExtrami+++IJOnTrx9ttv8+677wLZSdPzzz9P+/bteeaZZwDYuHEjhw8fZvXq1TzxxBMW50hLSyMjI6PQz79ly5YWz2fixIm0a9eOb7/9tkCJzZ2vx6hRo6hZsyYfffQR48aNy/VarVmzhtjY2Fzby4PS/lFSHFZWVlhZlf3XltbXlbJ2599Dp06deOSRR1i6dCmff/55gY+j2ftV5mcsgNDQUBo1apRnlubt7W3+v6IoJCcn8/XXX5urznJ+wYeFhTFx4kTq1auHnZ0dHh4eDB48OM9fQ3FxcbzwwgsEBwdjMBgICAhgxIgRd22LTU9P5+GHH8bFxYW///4bAJPJxMKFC2nUqBG2trb4+PgwYcIEYmNjLfZVVZV33nmHgIAA7O3t6d69OydOnCj8C3UHDw8P1qxZg5WVFXPmzDFvz6uPTWRkJKNHjyYgIACDwYCfnx+PPvqo+fUJDg7mxIkT/PXXX+bXtlu3bsC/VcR//fUXEydOxNvbm4CAAIvH8nqd//jjD5o3b46trS0NGzZk/fr1Fo/n1x575zHvFlt+beFr166lVatW2NnZ4enpyZNPPkl4eLhFmZwq/vDwcPr374+joyNeXl68+OKLuZokCsre3p727duTnJxMdHR0vuWSk5OZPn06gYGBGAwG6tWrxwcffICqquYyd/u85ycqKoqxY8fi4+ODra0tzZo14+uvvzY/nvN6Xbx4kV9++cWiSaSw7OzsWLVqFe7u7syZM8cidoANGzaQmprK4MGDefzxx1m/fj1paWnmx3OSlw8++MDcpPp///d/REVF8cUXX5hrEUJDQ4Hsi+2dbG1tcXZ2LnTsd1IUBR8fnyJflL28vKhfv7451rL2008/oSgKR48eNW9bt24diqIwcOBAi7INGjRg6NCh5vu39y9ZsWIFgwcPBqB79+7mz8edf1+7du2ibdu22NraUrNmTXMzXEnL6xqRmprKlClT8PT0xMnJiUceeYTw8PB8+5TExcWZawFcXFwYPXo0KSkpdz1vfteVTz75hJo1a2JnZ0fbtm3ZuXMn3bp1M1+PbmcymZgzZw4BAQHY2trywAMPcP78efPj3bp145dffiEsLMz8Ot9eQ5aens6bb75J7dq1MRgMBAYG8vLLL5Oenm5xnvT0dF544QW8vLzMr8fVq1fv+vzu5f777wfg4sWL5m0Fuabm9X7lND9u3LiRxo0bYzAYaNSoEb/99pvFfi+99BIANWrUKPR1qVzW2AQFBbFnzx6OHz+eqz37dqtWreLpp5+mbdu2jB8/HoBatWoBcODAAf7++28ef/xxAgICuHTpEkuXLqVbt26cPHkSe3t7ILutvnPnzpw6dYoxY8bQsmVLbty4wU8//cTVq1fx9PTMdd7U1FQeffRR/vnnH7Zs2UKbNm2A7F/nK1asYPTo0UyZMoWLFy+yZMkSDh8+zO7du82/1mfOnMk777xDnz596NOnD4cOHaJXr15F+qV5p+rVq9O1a1e2bdtGQkJCvhf5xx57jBMnTjB58mSCg4OJiopi8+bNXL58meDgYBYuXMjkyZNxdHTk9ddfB8DHx8fiGBMnTsTLy4uZM2eSnJx817jOnTvH0KFDeeaZZxg5ciTLly9n8ODB/Pbbb/Ts2bNQz7Egsd0u5z1p06YNc+fO5fr16yxatIjdu3dz+PBhiwTaaDTy4IMP0q5dOz744AO2bNnChx9+SK1atXLVQBTUhQsX0Ov1+VanqqrKI488wrZt2xg7dizNmzfn999/56WXXiI8PNzcXHG3z3teUlNT6datG+fPn2fSpEnUqFGDtWvXMmrUKOLi4pg6dSoNGjRg1apVvPDCCwQEBJibU7y8vIr0XB0dHRkwYADLli3j5MmTNGrUyPzY6tWr6d69O76+vjz++OO8+uqr/O9//zN/cQLMnTuXjRs3MmHCBBYuXMgnn3zCSy+9RJMmTcxlgoKCAFi5ciX/93//VyKdE1NSUsw/ZBISEti0aRO//fYbM2bMKNLxsrKyuHr1Km5ubkWOKTExMc8fV3d+keXlvvvuQ1EUduzYQdOmTQHYuXMnOp2OXbt2mctFR0dz+vTpfPu5dOnShSlTprB48WJee+01GjRoAGD+F+D8+fMMGjSIsWPHMnLkSL766itGjRpFq1atLN7//KSlpeX5PJOSku65L2T/IPnhhx946qmnaN++PX/99Rd9+/bNt/yQIUOoUaMGc+fO5dChQ/znP//B29ub+fPnF+h8OZYuXcqkSZPo3LkzL7zwApcuXaJ///64ubmZf+jdbt68eeh0Ol588UXi4+N57733GD58uLlf2uuvv058fLxFE2VOXyqTycQjjzzCrl27GD9+PA0aNODYsWN89NFHnD171qLf3dNPP80333zDE088QceOHdm6detdX4+CyEnQPTw8gMJdU/Oya9cu1q9fz8SJE3FycmLx4sU89thjXL58GQ8PDwYOHMjZs2f57rvv+Oijj8zfwwW+Lqnl0B9//KHq9XpVr9erHTp0UF9++WX1999/VzMyMnKVdXBwUEeOHJlre0pKSq5te/bsUQF15cqV5m0zZ85UAXX9+vW5yptMJlVVVXXbtm0qoK5du1ZNTExUu3btqnp6eqqHDx82l925c6cKqKtXr7Y4xm+//WaxPSoqSrWxsVH79u1rPr6qquprr72mAnk+lzsB6nPPPZfv41OnTlUB9ciRI6qqqurFixdVQF2+fLmqqqoaGxurAur7779/1/M0atRI7dq1a67ty5cvVwH1vvvuU7OysvJ87OLFi+ZtQUFBKqCuW7fOvC0+Pl718/NTW7RoYd725ptvqnl9JPM6Zn6x5bxX27ZtU1VVVTMyMlRvb2+1cePGampqqrnczz//rALqzJkzzdtGjhypAupbb71lccwWLVqorVq1ynWuO3Xt2lWtX7++Gh0drUZHR6unTp1Sp0yZogJqv379LM4TFBRkvr9x40YVUN955x2L4w0aNEhVFEU9f/68eVt+n/e8LFy4UAXUb775xrwtIyND7dChg+ro6KgmJCSYtwcFBal9+/Yt0HHvVfajjz5SAfW///2vedv169dVKysr9csvvzRv69ixo/roo4/m2v/HH39UAdXd3V2tWbNmrr/llJQUtV69eiqgBgUFqaNGjVKXLVumXr9+vUDx3y7nbyOv27PPPmvxN6qq2e9xo0aNLLYFBQWpvXr1Mr/vx44dU5966qm7/p327dvX4jNwu5zP8N1uDg4O93xujRo1UocMGWK+37JlS3Xw4MEqoJ46dUpVVVVdv369xbUi5/nc/hlbu3atxd/Unc8dUHfs2GHeFhUVpRoMBnX69On3jPFezxNQDxw4YC5/5zXi4MGDKqA+//zzFscdNWqUCqhvvvlmrn3HjBljUXbAgAGqh4dHrud1+2tw53UlPT1d9fDwUNu0aaNmZmaay61YsUIFLK5NOfs2aNBATU9PN29ftGiRCqjHjh0zb8vvc7Fq1SpVp9OpO3futNj+2WefqYC6e/duVVVVNSQkRAXUiRMnWpR74okncr0eecn5e5g9e7YaHR2tRkZGqtu3b1dbtGhhvoYX5pqa1zUdUG1sbCyua0eOHFEB9eOPPzZve//993Nd9wuqXDZF9ezZkz179vDII49w5MgR3nvvPR588EGqVavGTz/9VKBj3N75MDMzk5iYGGrXro2rqyuHDh0yP7Zu3TqaNWvGgAEDch3jzl+C8fHx9OrVi9OnT7N9+3aLTlRr167FxcWFnj17cuPGDfOtVatWODo6sm3bNgC2bNlCRkYGkydPtjh+SXYWy8nyExMT83zczs4OGxsbtm/fnquZrDDGjRtX4P40/v7+Fq+xs7MzI0aM4PDhw0RGRhY5hnv5559/iIqKYuLEiRZt5H379qV+/fr88ssvufbJ6cuRo3Pnzly4cKFA5zt9+jReXl54eXnRoEEDPv74Y/r27ctXX32V7z6//vorer2eKVOmWGyfPn06qqqyadOmAp07r+P6+voybNgw8zZra2umTJlCUlISf/31V5GOey95ff7WrFmDTqfjscceM28bNmwYmzZtyvUZfOyxx+jTpw83b97kk08+sfhbhuzP7759+8xV1StWrGDs2LH4+fkxefLkAtVo3Gn8+PFs3ryZzZs3s27dOp577jk+//xzi074d/PHH3+Y3/cmTZqwatUqRo8eXaD+OfmZOXOmOabbb7169SrQ/p07d2bnzp1A9ntx5MgRxo8fj6enp3n7zp07cXV1vWvN+L00bNiQzp07m+97eXlRr169Av/NPProo3k+z5z3925ymi8mTpxosf32ASZ3yuvvOyYmhoSEhALFC9nXlZiYGMaNG2fRXDl8+PB8a+lGjx5t0fk45zUryOu0du1aGjRoQP369S2+X3KaiHK+X3799VeAXNeSwn6/vPnmm3h5eeHr60u3bt0IDQ1l/vz5DBw4sEjX1Dv16NHDora5adOmODs7F/gzcy/lsikKoE2bNqxfv56MjAyOHDnChg0b+Oijjxg0aBAhISH37OiYmppq7qQYHh5u0d4fHx9v/n9oaKjFxfZunn/+edLS0jh8+HCuKtZz584RHx9v0QfodjmdnsPCwgCoU6eOxeNeXl7Fqra+XU4VrpOTU56PGwwG5s+fz/Tp0/Hx8aF9+/Y8/PDDjBgxAl9f3wKfp0aNGgUuW7t27VyJYt26dYHsPkCFOW9h5Lze9erVy/VY/fr1LarlIbuPxp3VnW5ubgVOAIODg/nyyy/NHbbr1KmT72fi9hj9/f1zvV851f05z6GwwsLCqFOnjsUIl5I47r3k9fn75ptvaNu2LTExMcTExADQokULMjIyWLt2rblpLUebNm349ddfad26dZ7ncHFx4b333uO9994jLCyMP//8kw8++IAlS5bg4uLCO++8U6iY69SpY+7IDDBw4EAURWHhwoWMGTPGoiksL+3ateOdd97BaDRy/Phx3nnnHWJjY4s1iqZJkyYWMeX45ptvCrR/586d+eyzzzh//jyhoaEoikKHDh3MCc+4cePYuXMnnTp1yvUZKYzq1avn2laYv5mAgIA8n2dB+oWEhYWh0+lyXYtq166d7z53xptz3Y2NjS1w/6ycv507z2NlZZXvyLG7nfdezp07x6lTp/Jtirn9+0Wn0+Vqos7r+nc348ePZ/DgwebpHBo1amTuVF7Ya2peivuZuZdym9jksLGxoU2bNrRp04a6desyevRo1q5de89hqZMnT2b58uU8//zzdOjQARcXFxRF4fHHHy/ynCKPPvooa9asYd68eaxcudLiYmAymfD29mb16tV57lvUPgtFcfz4cfR6/V0Tj+eff55+/fqxceNGfv/9d9544w3mzp3L1q1badGiRYHOc+cv6eLKr69EUTvuFkVxR3Q5ODjkeZGuSo4fPw78e9E/d+4cBw4cAHIn9JDd9+bOxKYwgoKCGDNmDAMGDKBmzZqsXr260IlNXh544AGWLFnCjh077pnYeHp6mt/3Bx98kPr16/Pwww+zaNGiAtf6lLT77rsPgB07dnDhwgVatmyJg4MDnTt3ZvHixSQlJXH48GGLgQZFkd/fjHpH5/HyQqt4i3Nek8lEkyZN8p1GITAwsFix3enORL+klfZ7UO4Tm9vl/HqLiIgwb8vvy/DHH39k5MiRfPjhh+ZtaWlpuSb7qVWrlvlCfC/9+/enV69ejBo1CicnJ5YuXWpxnC1bttCpU6e7fuHndHw8d+4cNWvWNG+Pjo4ukWz18uXL/PXXX3To0CHfGpvbY54+fTrTp0/n3LlzNG/enA8//ND8i7AkZ4w8f/48qqpaHPPs2bMA5l84Ob9g4uLiLDqf5VWzUNDYcl7vM2fOmKttc5w5c8b8uJaCgoLYsmULiYmJFu/Z6dOnzY/nKMx7EhQUxNGjRzGZTBZJeF7HLSlJSUls2LCBwMBAc83Q6tWrsba2ZtWqVbkuaLt27WLx4sVcvnw5z19xheHm5laov+d7ycrKAgreifV2ffv2pWvXrrz77rtMmDABBweHEompMKpXr0716tXZuXMnFy5cMDd9dOnShWnTprF27VqMRiNdunS563G0mDm2oIKCgjCZTFy8eNEiab59tFFpnTfnPN27dzdvz8rK4tKlS+YO24WV32tdq1Ytjhw5wgMPPHDX9yPn9QgNDbWoUTlz5kyR4snvHDnHLM1ranE+d+Wyj822bdvyzNxy2g9vf8McHBzynJlQr9fnOsbHH3+c69f/Y489Zm7qulNeMYwYMYLFixfz2Wef8corr5i3DxkyBKPRyNtvv51rn6ysLHOMPXr0wNramo8//tji+CUx2+TNmzcZNmwYRqPRPFooLykpKRbDbCH7D8fJycmif0J+r21RXLt2zeI1TkhIYOXKlTRv3tzcDJVTfbpjxw5zuZzhzXcqaGytW7fG29ubzz77zOK5bdq0iVOnThV7tEBJyJkIa8mSJRbbP/roIxRFoXfv3uZthXlP+vTpQ2RkJN9//715W1ZWFh9//DGOjo507dq1ROLPkZqaylNPPcXNmzd5/fXXzRem1atX07lzZ4YOHcqgQYMsbjn9KL777rsCn+fIkSN5jqIJCwvj5MmTha52z8///vc/AJo1a1ak/V955RViYmL48ssvSySeoujcuTNbt25l//795sSmefPmODk5MW/ePOzs7GjVqtVdj5GTlJXUtaAkPfjgg0D2hJ23u3OG+pLWunVrPDw8+PLLL80JMGR/1ovzA9XBwcGiq0SOIUOGEB4enudnKTU11TwqNedasXjxYosyJTmbcVldU4vzuSuXNTaTJ08mJSWFAQMGUL9+fTIyMvj777/5/vvvCQ4OZvTo0eayrVq1YsuWLSxYsAB/f39q1KhBu3btePjhh1m1ahUuLi40bNiQPXv2sGXLFvNwtRwvvfQSP/74I4MHD2bMmDG0atWKmzdv8tNPP/HZZ5/leVGbNGkSCQkJvP7667i4uPDaa6/RtWtXJkyYwNy5cwkJCaFXr15YW1tz7tw51q5dy6JFixg0aJB5XpS5c+fy8MMP06dPHw4fPsymTZvyHFqen7Nnz/LNN9+gqioJCQkcOXKEtWvXkpSUxIIFC3jooYfuuu8DDzzAkCFDaNiwIVZWVmzYsIHr16/z+OOPW7y2S5cu5Z133qF27dp4e3vnytALqm7duowdO5YDBw7g4+PDV199xfXr11m+fLm5TK9evahevTpjx47lpZdeQq/X89VXX+Hl5cXly5ctjlfQ2KytrZk/fz6jR4+ma9euDBs2zDw0MTg4mBdeeKFIz6ck9evXj+7du/P6669z6dIlmjVrxh9//MF///tfnn/+eYv28vw+73kZP348n3/+OaNGjeLgwYMEBwfz448/snv3bhYuXHjPGr27CQ8PN9fsJSUlcfLkSdauXUtkZCTTp09nwoQJAOzbt8883Dwv1apVo2XLlqxevdrih8LdbN68mTfffJNHHnmE9u3b4+joyIULF/jqq69IT08v0no4hw4dMj+fxMRE/vzzT9atW0fHjh0L3Fn3Tr1796Zx48YsWLCA5557TpPJGTt37szq1atRFMXcNKXX6+nYsSO///473bp1u2c/oObNm6PX65k/fz7x8fEYDAbuv//+e/YdKwutWrXiscceY+HChcTExJiHe+fUBpdWbZONjQ2zZs1i8uTJ3H///QwZMoRLly6xYsUKatWqVeTztmrViu+//55p06bRpk0bHB0d6devH0899RQ//PADzzzzDNu2baNTp04YjUZOnz7NDz/8wO+//07r1q1p3rw5w4YN49NPPyU+Pp6OHTvy559/lmgNVlldU3MS7tdff53HH38ca2tr+vXrV7Daz0KPoyoDmzZtUseMGaPWr19fdXR0VG1sbNTatWurkydPzjWk8/Tp02qXLl1UOzs7i+HSsbGx6ujRo1VPT0/V0dFRffDBB9XTp0/nGsanqqoaExOjTpo0Sa1WrZpqY2OjBgQEqCNHjlRv3LihqqrlcO/bvfzyyyqgLlmyxLztiy++UFu1aqXa2dmpTk5OapMmTdSXX35ZvXbtmrmM0WhUZ8+erfr5+al2dnZqt27d1OPHj+cZW164bSikTqdTXV1d1RYtWqhTp05VT5w4kav8ncO9b9y4oT733HNq/fr1VQcHB9XFxUVt166d+sMPP1jsFxkZqfbt21d1cnKyGMKYM/z69mGYOfIb7t23b1/1999/V5s2baoaDAa1fv36uV5PVc0evtmuXTvVxsZGrV69urpgwYI8j5lfbHcOy8zx/fffqy1atFANBoPq7u6uDh8+XL169apFmZEjR+Y5jDa/Yeh3ymsocF7uHO6tqqqamJiovvDCC6q/v79qbW2t1qlTR33//fdzDTfO7/Oen+vXr5v/DmxsbNQmTZqYPwe3K+xw75zPn6IoqrOzs9qoUSN13Lhx6r59+yzKTp48WQXU0NDQfI83a9asXEOOc17z6OjoXOUvXLigzpw5U23fvr3q7e2tWllZqV5eXmrfvn3VrVu3Fug55MhruLeVlZVas2ZN9aWXXlITExMtyuc33Du/1y5n+O+dr3lBhnvn9fehqvl/TvNy4sQJ81Dj273zzjsqoL7xxhu59snrOvTll1+qNWvWVPV6vcXfV37PvWvXrnlOx3An7jIkPq/rTF5/i8nJyepzzz2nuru7q46Ojmr//v3VM2fOqIA6b968XPve+ZnK75p1t+HeORYvXqwGBQWpBoNBbdu2rbp79261VatW6kMPPZRr3zvfzzuvy6qqqklJSeoTTzyhurq6mqczyJGRkaHOnz9fbdSokWowGFQ3Nze1VatW6uzZs9X4+HhzudTUVHXKlCmqh4eH6uDgoPbr10+9cuVKoYZ732sqEFUt2DU1v+Heeb3neX3u3n77bbVatWqqTqcr1NBv5daJhBBCiEohJCSEFi1a8M033zB8+PAyO6/JZMLLy4uBAwdq2gRZ1ZXLPjZCCCFEQaSmpubatnDhQnQ63T07RhdHWlparn6YK1eu5ObNm3kuqSDKTrnsYyOEEMWRkZHBzZs371rGxcWlxKcsEGXvvffe4+DBg3Tv3h0rKys2bdrEpk2bGD9+fIkPg77d3r17eeGFFxg8eDAeHh4cOnSIZcuW0bhxY4tlQkTZk6YoIUSls337dothuHlZvnz5PRcRFeXf5s2bmT17NidPniQpKYnq1avz1FNP8frrr5fqytKXLl1iypQp7N+/n5s3b+Lu7k6fPn2YN29euehYXZVJYiOEqHRiY2M5ePDgXcs0atQIPz+/MopICFFWJLERQgghRKUhnYeFEEIIUWlIYiOEEEKISkMSGyGEEEJUGpUmsdmxYwf9+vXD398fRVHYuHFjqZ5v1qxZKIpicatfv36pnlMIIYQQd1dpEpvk5GSaNWvGJ598UmbnbNSoEREREebbrl27yuzcQgghhMit0kzQ17t3b4tVkO+Unp7O66+/znfffUdcXByNGzdm/vz5xZoh0srKyrwytRBCCCG0V2lqbO5l0qRJ7NmzhzVr1nD06FEGDx7MQw89xLlz54p8zHPnzuHv70/NmjUZPnx4rhWohRBCCFG2KuU8NoqisGHDBvr37w/A5cuXqVmzJpcvX8bf399crkePHrRt25Z333230OfYtGkTSUlJ1KtXj4iICGbPnk14eDjHjx/HycmppJ6KEEIIIQqh0jRF3c2xY8cwGo3UrVvXYnt6ejoeHh4AnD59mgYNGtz1OK+88grz5s0DsGj2atq0Ke3atSMoKIgffviBsWPHlvAzEEIIIURBVInEJikpCb1ez8GDB9Hr9RaPOTo6AlCzZk1OnTp11+PkJEF5cXV1pW7dupw/f774AQshhBCiSKpEYtOiRQuMRiNRUVF07tw5zzI2NjbFGq6dlJREaGgoTz31VJGPIYQQQojiqTSJTVJSkkVtycWLFwkJCcHd3Z26desyfPhwRowYwYcffkiLFi2Ijo7mzz//pGnTpvTt27fQ53vxxRfp168fQUFBXLt2jTfffBO9Xs+wYcNK8mkJIYQQohAqTefh7du3071791zbR44cyYoVK8jMzOSdd95h5cqVhIeH4+npSfv27Zk9ezZNmjQp9Pkef/xxduzYQUxMDF5eXtx3333MmTOHWrVqlcTTEUIIIUQRVJrERgghhBCiysxjI4QQQojKTxIbIYQQQlQaFbrzsMlk4tq1azg5OaEoitbhCCGEEKIAVFUlMTERf39/dLqSrWOp0InNtWvXCAwM1DoMIYQQQhTBlStXCAgIKNFjVujEJmfpgitXruDs7KxxNEIIIYQoiISEBAIDA0tlCaIKndjkND85OztLYiOEEEJUMKXRjUQ6DwshhBCi0pDERgghhBCVhiQ2QgghhKg0KnQfGyGEEGA0GsnMzNQ6DCHMrK2t0ev1mpxbEhshhKigVFUlMjKSuLg4rUMRIhdXV1d8fX3LfJ45SWyEEKKCyklqvL29sbe3l4lKRbmgqiopKSlERUUB4OfnV6bnl8RGCCEqIKPRaE5qPDw8tA5HCAt2dnYAREVF4e3tXabNUtJ5WAghKqCcPjX29vYaRyJE3nI+m2Xd/0sSGyGEqMCk+UmUV1p9NiWxEUIIIUSlIYmNEEIIUcK2b9+OoigyYk0DktgIIYTQVGRkJJMnT6ZmzZoYDAYCAwPp168ff/75Z4H2X7FiBa6urqUbZCF17NiRiIgIXFxctA6lytE0sTEajbzxxhvUqFEDOzs7atWqxdtvv42qqlqGJYQQooxcunSJVq1asXXrVt5//32OHTvGb7/9Rvfu3Xnuuee0Dq9IMjMzsbGx0WQOF6FxYjN//nyWLl3KkiVLOHXqFPPnz+e9997j448/1jIsIYQQZWTixIkoisL+/ft57LHHqFu3Lo0aNWLatGns3bsXgAULFtCkSRMcHBwIDAxk4sSJJCUlAdlNPqNHjyY+Ph5FUVAUhVmzZgGQnp7Oiy++SLVq1XBwcKBdu3Zs377d4vxffvklgYGB2NvbM2DAABYsWJCr9mfp0qXUqlULGxsb6tWrx6pVqyweVxSFpUuX8sgjj+Dg4MCcOXPybIratWsXnTt3xs7OjsDAQKZMmUJycrL58U8//ZQ6depga2uLj48PgwYNKpkXuapRNdS3b191zJgxFtsGDhyoDh8+vED7x8fHq4AaHx9fGuEJIUS5lZqaqp48eVJNTU3VOpQii4mJURVFUd999927lvvoo4/UrVu3qhcvXlT//PNPtV69euqzzz6rqqqqpqenqwsXLlSdnZ3ViIgINSIiQk1MTFRVVVWffvpptWPHjuqOHTvU8+fPq++//75qMBjUs2fPqqqqqrt27VJ1Op36/vvvq2fOnFE/+eQT1d3dXXVxcTGfe/369aq1tbX6ySefqGfOnFE//PBDVa/Xq1u3bjWXAVRvb2/1q6++UkNDQ9WwsDB127ZtKqDGxsaqqqqq58+fVx0cHNSPPvpIPXv2rLp79261RYsW6qhRo1RVVdUDBw6oer1e/fbbb9VLly6phw4dUhctWlRSL7Um7vYZLc3vb00Tmzlz5qhBQUHqmTNnVFVV1ZCQENXb21v95ptv8iyflpamxsfHm29XrlyRxEZUeeOfm6IOeGK0xW38c1O0DkuUssqQ2Ozbt08F1PXr1xdqv7Vr16oeHh7m+8uXL7dIRlRVVcPCwlS9Xq+Gh4dbbH/ggQfUGTNmqKqqqkOHDlX79u1r8fjw4cMtjtWxY0d13LhxFmUGDx6s9unTx3wfUJ9//nmLMncmNmPHjlXHjx9vUWbnzp2qTqdTU1NT1XXr1qnOzs5qQkLCvV+ACkKrxEbTmYdfffVVEhISqF+/Pnq9HqPRyJw5cxg+fHie5efOncvs2bPLOEohyrfo2EQ6j3rVYtvOFfM0ikaIglML2J9yy5YtzJ07l9OnT5OQkEBWVhZpaWmkpKTkO0HhsWPHMBqN1K1b12J7enq6eabmM2fOMGDAAIvH27Zty88//2y+f+rUKcaPH29RplOnTixatMhiW+vWre/6HI4cOcLRo0dZvXq1eZuqqphMJi5evEjPnj0JCgqiZs2aPPTQQzz00EMMGDBAJmAsAk0Tmx9++IHVq1fz7bff0qhRI0JCQnj++efx9/dn5MiRucrPmDGDadOmme8nJCQQGBhYliELIYQoIXXq1EFRFE6fPp1vmUuXLvHwww/z7LPPMmfOHNzd3dm1axdjx44lIyMj3y/+pKQk9Ho9Bw8ezDWdv6OjY4k+DwAHB4e7Pp6UlMSECROYMmVKrseqV6+OjY0Nhw4dYvv27fzxxx/MnDmTWbNmceDAgXI34qu80zSxeemll3j11Vd5/PHHAWjSpAlhYWHMnTs3z8TGYDBgMBjKOkwhhBClwN3dnQcffJBPPvmEKVOm5EoO4uLiOHjwICaTiQ8//BCdLnu8yw8//GBRzsbGBqPRaLGtRYsWGI1GoqKi6Ny5c57nr1evHgcOHLDYduf9Bg0asHv3bovvpN27d9OwYcNCPdeWLVty8uRJateunW8ZKysrevToQY8ePXjzzTdxdXVl69atDBw4sFDnquo0HRWVkpJi/qDm0Ov1mEwmjSISQghRlj755BOMRiNt27Zl3bp1nDt3jlOnTrF48WI6dOhA7dq1yczM5OOPP+bChQusWrWKzz77zOIYwcHBJCUl8eeff3Ljxg1SUlKoW7cuw4cPZ8SIEaxfv56LFy+yf/9+5s6dyy+//ALA5MmT+fXXX1mwYAHnzp3j888/Z9OmTRZDtF966SVWrFjB0qVLOXfuHAsWLGD9+vW8+OKLhXqer7zyCn///TeTJk0iJCSEc+fO8d///pdJkyYB8PPPP7N48WJCQkIICwtj5cqVmEwm6tWrV8xXuAoq8V47hTBy5Ei1WrVq6s8//6xevHhRXb9+verp6am+/PLLBdpfRkUJoaoDnhitLvjjjMVtwBOjtQ5LlLLK0Hk4x7Vr19TnnntODQoKUm1sbNRq1aqpjzzyiLpt2zZVVVV1wYIFqp+fn2pnZ6c++OCD6sqVKy065qqqqj7zzDOqh4eHCqhvvvmmqqqqmpGRoc6cOVMNDg5Wra2tVT8/P3XAgAHq0aNHzft98cUXarVq1VQ7Ozu1f//+6jvvvKP6+vpaxPfpp5+qNWvWVK2trdW6deuqK1eutHgcUDds2GCx7c7Ow6qqqvv371d79uypOjo6qg4ODmrTpk3VOXPmqKqa3ZG4a9euqpubm2pnZ6c2bdpU/f7774v3wmpMq87DiqpqNxteYmIib7zxBhs2bCAqKgp/f3+GDRvGzJkzsbGxuef+CQkJuLi4EB8fj7OzcxlELETJmTBpKtGxibm2e7k58fmSRbm2x6VkcDU2lZQMI5lGEx6ONng72TJ2/DN0yaPz8PrVX5Va7EJ7aWlpXLx4kRo1amBra6t1OJXGuHHjOH36NDt37tQ6lArvbp/R0vz+1rSPjZOTEwsXLmThwoVahiGEJvIazQTw8fNDGTh8DCqQZPAkxiGIZBtP0q3z6fDo1ZPEYxEEutlR29sRe5v8/6wLm0wJUdl98MEH9OzZEwcHBzZt2sTXX3/Np59+qnVYohg0TWyEELllmsCn93PsCY0hLjXT4jF7Gz02Vjp0ikJqhpHUTCPYOnM+KonzUUlsPxtNdXd7rGx9MZlUdDrL6dzzS6ZkeLioqvbv3897771HYmIiNWvWZPHixTz99NNahyWKQRIbIcqR2JQMdB1Hs+l4JADWeoV6Pk7U9nZk3bvPMe7DFRblM40mPn5nBveNeIXQ6CSiEtMJi0kBr070/OgvJt9fh0ea+edKcIQQ2e4cYSUqPklshCgnwmKS+fV4JIpXLfQ6hdZBbrSs7oaN1a2Rg5mpufax1usg5hJta7jTtoY7sSkZHAuP58ilaEKjk3n++xA++yuUGX0a0LWuVxk/IyGEKHuaDvcWQmQ7ejWO/x65RkaWCTUmjKfaB9G+pse/SU0Budnb0KWOF02u/cpLD9bDydaK05GJjPxqP899e4gMnXQyFUJUblJjI0Qpy6/D7pFjx+gMHA+PZ9uZaAAa+Dpx/H9f4TKkR7HOqVezeK57bZ5sF8TiredY8fclfjkagc6vFx5X4mga4IJOkeYpIUTlI4mNEKUsvw67B6YM5XxUEltPRwHQKsiNTrU8OG4y5ipbVC721rzxcEMGtqzGaxuOc+RKHH+djeZURAK9Gvrg4SgzeQshKhdpihJCK24B/HY8EhVo5O9Mp1oeFjOelqRG/i6sf7YjgTcPYWOlIyoxne8OXOHw5dgCL0QohBAVgSQ2QmggLdOIrvVQjKpKTU8H7q/vXWpJTQ69TsEr+SIj2gcR5GGP0aSy49wNNoSEk6GXvjdCiMpBEhshypiqqmw+eR3F3g0XO2t6NfIp0/4uDgYrHm3mT7d6XljpFK7cTOWUT09+PRZRZjEIIURpkcRG5GvCpKkMHD4m123CpKlah1ahHbkaz4UbyajGLPo08cVgpS/zGBRFoVmAK0+0rY63kwGj3oaJqw8xY/0xUjNKro+PEHdSFOWut1mzZpnL1q9fH4PBQGRkZK7jdOvWzbyPra0tdevWZe7cuXk2ra5bt477778fNzc37OzsqFevHmPGjOHw4cPmMitWrMgznpylAAoT99188sknBAcHY2trS7t27di/f3/hXkBxT9J5WORLZqkteQmpmew+fwMA9cQmvHtN0zQeNwcbhrQOZO1/fybKpT7f7b/MP5du8vETLajvW3Lrt+Q1MkyWcSg/jEbYuRMiIsDPDzp3Bn0p5dsREf/WDH7//ffMnDmTM2fOmLc5OmYvHbJr1y5SU1MZNGgQX3/9Na+88kquY40bN4633nqL9PR0tm7dyvjx43F1deXZZ581l3nllVf48MMPmTJlCrNnzyYoKIjo6Gg2bdrEjBkz+O2338xlnZ2dLWIBzE3EBY37br7//numTZvGZ599Rrt27Vi4cCEPPvggZ86cwdvb+577i4KRxEaIMqKqKn+ejiLLpFLN1Y7LF0vvl1pIyGEGDh+Ta3vOEPPb6XUK1eJPsGDaSF74PoRzUUk8umQ3//dwQ55sV71E+v7klSRLglw+rF8PU6fC1av/bgsIgEWLYODAkj+fr6+v+f8uLi4oimKxLceyZct44okn6Nq1K1OnTs0zsbG3tzfvO3r0aJYsWcLmzZvNic3evXt57733WLRoEVOmTDHvV716dVq1apWrdie/WAoT990sWLCAcePGMXr0aAA+++wzfvnlF7766itefTX3j0hRNNIUJUQZORWZyOWbKeh1Cg808AZKbzRSpgk6j3o11y0jMyvffTrV9mTT1M50r+dFepaJNzYe59lvDhGXklFqcQptrV8PgwZZJjUA4eHZ29ev1yauxMRE1q5dy5NPPknPnj2Jj4+/62rbqqqyc+dOTp8+jY2NjXn7d999h6OjIxMnTsxzv5LssJ/TlJWfjIwMDh48SI8e/85RpdPp6NGjB3v27CmxOIQkNkKUifQsI7vOZTdBta/hjpu9zT320IaHo4FlI9vwf30bYK1X+O1EJH0W7eTApZtahyZKmNGYXVOT12j/nG3PP59drqytWbOGOnXq0KhRI/R6PY8//jjLli3LVe7TTz/F0dERg8FAly5dMJlMFjUzZ8+epWbNmlhZ/ds4sWDBAhwdHc23+Ph482Px8fEWjzk6OtK7d+8Cxezi4kK9evXyffzGjRsYjUZ8fHwstvv4+OTZh0gUnTRFCVEGDlyMJTXTiJu9NS2qu2kdTi55NV3Vsnblsnd7rsXD0M/38HyPujzXvTZ6WVCzUti5M3dNze1UFa5cyS7XrVuZhQXAV199xZNPPmm+/+STT9K1a1c+/vhjnJyczNuHDx/O66+/TmxsLG+++SYdO3akY8eOdz32mDFjeOSRR9i3bx9PPvmkRXOUk5MThw4dsihvZ2dXoJgHDBjAgAEDClRWlC5JbESFkN+yBBWhA2q63oHTV+IA6FzHq1wmBjlNV3fa/vUH1Oo3kfWHw1mw+Sx/h95g4dAW+LrIvDcVXUQBR/cXtFxJOXnyJHv37mX//v0W/WqMRiNr1qxh3Lhx5m0uLi7Url0byF6lu3bt2rRv397c3FOnTh127dpFZmYm1tbWALi6uuLq6srVPLI6nU5nPl5J8/T0RK/Xc/36dYvt169fL3RfHXF30hQlKoSczqd33vJKdsqbcNcmGFWV6u72BHvYax1OoRw7fIBLPy0mKOYAOlMWey/cpNM7vzJg6jtahyaKyc+vZMuVlGXLltGlSxeOHDlCSEiI+TZt2rQ8m6NyODo6MnXqVF588UVzLcywYcNISkri008/Lavw82VjY0OrVq34888/zdtMJhN//vknHTp00DCyykcSGyFK0d4LMcTZV0MBOtfxLPXZhUtaTk1O/yFP8GSnWrfmvDFw2K4Fb2w8LnPeVGCdO2ePfsrvI6koEBiYXa6sZGZmsmrVKoYNG0bjxo0tbk8//TT79u3jxIkT+e4/YcIEzp49y7p16wDo0KED06dPZ/r06UybNo1du3YRFhbG3r17WbZsGYqioNP9+zWoqiqRkZG5biaT6Z6xb9iwgfr169+1zLRp0/jyyy/5+uuvOXXqFM8++yzJycnmUVKiZEhiI0QpMZpU3v75JACNq7ngWcEXnHSzt2Fw6wBaBLoCsGpvGP2W7OLEtfi77yjKJb0+e0g35E5ucu4vXFh689nk5aeffiImJibPvioNGjSgQYMGd621cXd3Z8SIEcyaNcucjHzwwQd8++23HD58mIcffpg6deowePBgTCYTe/bswdn53/maEhIS8PPzy3WLioq6Z+zx8fG55sC509ChQ/nggw+YOXMmzZs3JyQkhN9++y1Xh2JRPJLYCFFK1h26yolrCehNGbSv6a51OCXCSqejS10vakftxMvJwPmoJPp/spsvd1zAZJLFNCuagQPhxx+hWjXL7QEB2dtLYx6b240aNYq4uDjz/cceeyzPkUM5Tp48yYIFCwDYvn07CxcuzFXms88+4/jx4xY1MUOGDGHbtm3ExcWRkZHBlStXWL16Ne3atbOIRVXVPG939oG5M+7b97+XSZMmERYWRnp6Ovv27bOIQZQM6TwsCi2/yd8qQkfespKcnsX7v2f/evNNOI29TSONIypZzulR/PB8F15Zd5TNJ68z59dTbD8bxYeDm0vH4gpm4EB49NGym3lYiNImiY0otPxG0MhMsv/67K9QohPTCfKwx+1KqNbhlLiQkMM8Pf4ZVKC6QzBXXZux+3wMnd/dxJIRHXiwkYzyqEj0+rIf0i1EaZHERogSdi0ulS92XABgRu8GfBFy746HFc2dyW1scga/nYgkKhEmrDrIlPtr83yPuujK4dB2IUTlJn1shChh7/9+hvQsE21ruPNgo6rRKTBnMU3vxHMALN56nvGrDpKSkf8SDkIIURqkxkZUaOWtv8+RK3FsOByOosAbfRtWuOHdxaHXKQTEHeWVMYOYseEYW05d56ll+/lqZButQxNCVCGS2IgKrTz191HVf4d3D2wRQJMAlzKPoTx4rFUAwZ72jF5+gINhsQz5fA82uoo91F0IUXFIU5QQJWTT8Uj+CYvF1lrHSw/mvxheVdAqyJ0fnumAt5OBM9cTOefVmbRMmcxPCFH6JLERogSkZxmZu+kUABO61JIhz0B9X2fW3kpu0mxc2BgSTkZW5etILYQoX6QpSlQoWSYT6Zkm0rNM2FqXn7z8678vceVmKtbGVLZ//T47V/xbO3Hk2DHKcFb6ciXIw4Fvnm5H7w82cz0Bfj0WwSPN/GW0lBCi1EhiI8q9qMQ0rjvV5ceDV7kWn8rtk3vqer3EpmMRNA1wxd/VVpPOutfiUlm0JXs0ULfGwTTs9ZLF4wemDC3zmMqTuj5O1L6xm1C/Bwi7mcLO8zfoWtdL67CEEJVU+fnJK8QdwuNSeWPjce6bv41w1yaEx2UnNQpgY5X90VXsXDgblcSPh66y5sAVwmNTyzRGVVWZ+d8TJGcYcUiPoYGfU5mev7zJGaV25+38wR30ujX0PeRKHMfDZX2pqkpRlLveZs2aZS5bv359DAYDkZGRuY7TrVs38z62trbUrVuXuXPn5rmswbp167j//vtxc3PDzs6OevXqMWbMGA4fPmwus2LFijzjsbW1LXTc+dmxYwf9+vXD398fRVHYuHFjoV8/cW9SYyPKnbRMI0u3h/LZX6Gk3+qT4ZAeQ+sm9Qn2sMfFzhpFUcjIMrFkzgyaDZ3GqYhEohLT+fHQVZoGuKAoZfPR/v1EJFtOXcdar1D95kEUpX2ZnLe8ym+U2oEpQ6nj7UT7GhnsvXiT7WeiqWPtWvYBirwZjWW2pkJERIT5/99//z0zZ860WDzS0dERgF27dpGamsqgQYP4+uuveeWVV3Ida9y4cbz11lukp6ezdetWxo8fj6urK88++6y5zCuvvMKHH37IlClTmD17NkFBQURHR7Np0yZmzJjBb7/9Zi7r7OycayHLnFrggsZ9N8nJyTRr1owxY8YwsLQX4qrCNE1sgoODCQsLy7V94sSJfPLJJxpEJLSkqiqbT17nrZ9PcvVWzUu7Gu4836Mu7818ieaBlkmDjZUOYi7xQH0fOtT0YE9oDMevJXD0ajwGn+5cvJFMDU+HUos3LiWDmf89AcAzXWux++vEUjtXZdG2hjvRSemERidz0aMdiWmZONlaax1W1bZ+PUydClev/rstICB76e9S+PK9fUFJFxcXFEXJtcgkwLJly3jiiSfo2rUrU6dOzTOxsbe3N+87evRolixZwubNm82Jzd69e3nvvfdYtGgRU6ZMMe9XvXp1WrVqlat2J79YChP33fTu3ZvevXsXah9ReJo2RR04cICIiAjzbfPmzQAMHjxYy7CEBsJikhmz4gDjVx3kamwq/i62fPJES9aMb0+HWh7cq+eMvY0VDzTwYUCLajgarEi3dubRJbvYeS66VOJVVZWXfjxKVGI6Nb0ceK577VI5T2WjKAo9GvjgZGtFurUjr64/VqAVkUUpWb8eBg2yTGoAwsOzt69fr0lYiYmJrF27lieffJKePXsSHx/Pzp078y2vqio7d+7k9OnT2NjYmLd/9913ODo6MnHixDz3K8k+eTlNWUJ7miY2Xl5e+Pr6mm8///wztWrVomvXrlqGJcrIhElT6f/k07R/9n26vfcn285Eo6gmJnarxZbpXenb1K/QF4rq7vY83iYQh/QYEtKyGPnVfpbtuljiX54r94Sx+eR1bPQ6Fj/eAltrWQq5oGyt9fRp7AeqiV+ORrD2n6v33kmUPKMxu6Ymr7+NnG3PP59droytWbOGOnXq0KhRI/R6PY8//jjLli3LVe7TTz/F0dERg8FAly5dMJlMFjUzZ8+epWbNmlhZ/ds4sWDBAhwdHc23+Ph/+3vFx8dbPObo6FjgGhYXFxfq1ava81eVF+Wm83BGRgbffPMNY8aMkay3CohPzeRYlh9nagwi0qUhqqIn0N2OBpGbefmh+tjbFL2V1MFgRZ2oHQxqFYBJhbd/PsnLPx4lPatkLtBHrsQx59fsOWtm9KlP42pVc4bh4vB1scU/PrsZb/b/TnA5JkXjiKqgnTtz19TcTlXhypXscmXsq6++4sknnzTff/LJJ1m7di2JiZbNvcOHDyckJITdu3fTu3dvXn/9dTp27HjXY48ZM4aQkBA+//xzkpOTLX70ODk5ERISYnH7z3/+U6CYBwwYwOnTpwvxLEVpKTedhzdu3EhcXByjRo3Kt0x6ejrp6enm+wkJCWUQmSguVVWJTkonLCaF0KgktpyKYse5aDJcm0CmEWdbK+6r7Ultb0d2HUkqkXPqMPH+oKY08HNmzi8nWXvwKqHRSXz2VCu8nYo+ed6F6CRGrzhARpaJHg18GNUxuETirYp8Es8S0KIr+y/e5IUfQvh+fHus9OXmt1bld1tn2BIpV0JOnjzJ3r172b9/v0W/GqPRyJo1axg3bpx5m4uLC7VrZzcD//DDD9SuXZv27dvTo0cPAOrUqcOuXbvIzMzE2jq7L5erqyuurq5czSOp0+l05uOJiqvcJDbLli2jd+/e+Pv751tm7ty5zJ49uwyjEoUVn5rJ9jNRnLyWQFhMCpdikrl8M4WUjNy1JbYZ8XRpXpe6Pk7ob03Ylt+ilkWZ5E5RFMbeV4M63o5M+vYQhy7H8eiS3Xw6vCUtqrsV+rldT0hjxFf7uZmcQZNqLix8vLnULhaDAiwY0ozeC3dyMCyWz/4KZdL9dbQOq+rw8yvZciVk2bJldOnSJdcAkuXLl7Ns2TKLxOZ2jo6OTJ06lRdffJHDhw+jKArDhg3j448/5tNPP2Xq1KllEb4oB8pFYhMWFsaWLVtYf4+OajNmzGDatGnm+wkJCQQGBpZ2eKIAbiZncN6zE63e3kyWKXebvU4Bf1c7gjzsaVXdjT5N/Zgx/Xka+LW2KHe34cJF1aWuFxuf68TTK//hQnQygz/bwws96/JM11rmhOpejofHM37lP1yLTyPYw57lo9vgaCgXfz4VWoCbPbMfbcS0H46wcMs5utb1rrKLh5a5zp2zRz+Fh+fdz0ZRsh/vXHbzZmdmZrJq1SreeustGjdubPHY008/zYIFCzhx4gSNGjXKc/8JEybw9ttvs27dOgYNGkSHDh2YPn0606dPJywsjIEDBxIYGEhERATLli1DURR0un9rCVVVzXPOHG9vb4tyedmwYQMzZsy4a3NUUlIS58+fN9+/ePEiISEhuLu7U7169bseXxRcubgyL1++HG9vb/r27XvXcgaDAYNBVgkuT1RV5cjVeHadv4HRzhdMKnV9HOlQ04Mang4EeTgQ5GFPgJu9eVK9HGVZ11HTy5GNz3XitfXH+PloBO//foY/Tl7ntd71aVfTI9/9jCaVHw9e4c2fTpCWaaKmpwNfj2mLp6N8Dosrp3ZOBVw92hFnH8Cgj36lc/p+/rPkI63Dq/z0+uwh3YMGZScxtyc3OTWRCxeW2nw2efnpp5+IiYlhwIABuR5r0KABDRo0YNmyZSxYsCDP/d3d3RkxYgSzZs1i4MCB6HQ6PvjgA9q2bcvSpUv56quvSElJwcfHhy5durBnzx6cnZ3N+yckJOCXRw1VRETEPYd2x8fH55oD507//PMP3bt3N9/P+aE+cuRIVqxYcdd9RcFpntiYTCaWL1/OyJEjLXqui4ph57kbHL4SB4BzaiQb/28oNb3uPVGVFpxtrfl4WAu61fPmzf8e58iVOIZ+sZfOdTx5tHk1Hqjvjat9djt8RHwaey/EsHR7KOeisvv9dK3rxeJhLXCxk3lXSsLttXNtMo2s3htGMs4cSQvWNrCqZOBA+PHHvOexWbiwVOaxud2oUaMs+lU+9thjGO8yCuvkyZPm/2/fvj3PMp999lmubUOGDGHIkCGFiqWwZQuyf7du3WR6gzKgeSaxZcsWLl++zJgxuftViPLtXFSiOanpUseTxK3rqOk1Vtugbsmvr46XmxOfL1lEl7qeLNpyjjUHrrDz3A12nrsBZE/6Z2ulIyEty7yPi501z3StxfguNQvcdCUKx85aT8+GPmwMuUa0U23+Ohst60mVlYED4dFHy2zmYSFKm+aJTa9evSSDrYDiUjLYcjIKgFbV3WhR3Y2yHxSav/z66nz8/FCLhKeelQOx9tVJdAwkSe9ERpaJjCwTep1CfV8n0i4ewvHqCTafzWLzl9n7nDl5nHoNG+c6dlVexbskBHk40CzAhSNX43lp7RF+f74Lbg42995RFJ9eD926aR2FECVC88RGVEx/nLxOhtGEv4stHWrl30elvMkv4dm5Yh4rv/qCuJQMktONVHe3x85Gz8Dhy3OVPzBlaIl3cBbZ7qvtyZmLV4hKdOa1Dcf4dHhL88izCZOmEh2be9mKnFo4IYQASWxEUXjUICI+Db1O4aHGvpWmecbRYCUjnTRmpdcRHHOA8/492HQ8klV7wxjRIRiA6NjEfJNSIYTIIVdxUWi6OtkNLo38nAu0gGF+v7Sl6UbkxT4zjld71+edX07x9s8naRrgSvNAV63DEkJUEJLYiEKJTkxH8amLArQMKtgkd/n90pamG5GfsffV4J9Lsfx2IpLnVh/i58n3aR2SEKKCkPnLRaH8E3YTgDo+jjLsWZQaRVF4b3BTgjzsCY9LZcKqg5jkciWEKAC5UogCS0rP4tz17DldWge5axyNqOycba35ckRrnAxW7L90k8vuLWUEpRDinqQpShRYaFQSKqDevIyXk6zpI0pfXR8nPhnektErDnDTIYg9F2LoWMtT67AqhLDLl8nMMuXabm2lIyiP6fsLW16I8kpqbESBnY/Orq1Rr53QOBJRlXSp68Vbj2avDXTgUiz7LsZoHFHFkJllwsnTN9ctr+SlKOXLwooVK3B1dS3UPqNGjaJ///53LRMcHMzChQvN9xVFYePGjQU+x/bt21EUhbi4uELFVlSzZs2iefPmpXqOO1+TikwSG1EgqRlGwuNSAVAjTuZZJme23ztvR44dK8tQRSU0vF0Q1eKOArD3wk32X7wpzVIVWH7Jx50Jw9ChQzl79mypxxMREUHv3r1L9JhlkYzkuHTpEoqimG8eHh706tWLw4cPF/gYBw4cYPz48QUuX9bJXWFIU5QokNAbSagqeDkZiEyJzbNMaazMLUQOn8RzBLXqzt+hMey5EENyehZd68myCyXBaIR9e21JTNPh7QPtO5rKxYoKdnZ22NnZlfp57rXAZUWxZcsWGjVqxNWrV5kyZQq9e/fm9OnTBar18vKqPH9LUmMjCuT8rYUga5fTBS6LS2qbKoY2we7mNaSOhsfzy9EIjIr8PiuO9eshOBieHO7Ls2NteOxhG1o3NvDLT9p/PeTVFPXOO+/g7e2Nk5MTTz/9NK+++mqeNSMffPABfn5+eHh48Nxzz5GZmZnvee5sivr7779p3rw5tra2tG7dmo0bN6IoCiEhIRb7HTx4kNatW2Nvb0/Hjh3Nq3uvWLGC2bNnc+TIEXMtSs7q3XFxcTz99NN4eXnh7OzM/fffz5EjRyyOO2/ePHx8fHBycmLs2LGkpaUV6PXy8PDA19eX1q1b88EHH3D9+nX27dsHwLp162jUqBEGg4Hg4GA+/PBDi33zap77z3/+w4ABA7C3t6dOnTr89NNPQHYNUc4q5W5ubiiKUuAFRMuC9p9cUe6lZxq5cjMFgNrelTOxyaltuvOWkZl1751FmWoe6EqfJtkzXl+4kcxpn/s5E5l7Akhxb+vXw6BBlgt7A0RGwNMjrMtFcnO71atXM2fOHObPn8/BgwepXr06S5cuzVVu27ZthIaGsm3bNr7++mtWrFhhTizuJSEhgX79+tGkSRMOHTrE22+/zSuvvJJn2ddff50PP/yQf/75BysrK/NizkOHDmX69Ok0atSIiIgIIiIiGDo0u+Z68ODBREVFsWnTJg4ePEjLli154IEHuHkzeyqNH374gVmzZvHuu+/yzz//4Ofnx6efflro1yqnpisjI4ODBw8yZMgQHn/8cY4dO8asWbN444037vmazJ49myFDhnD06FH69OnD8OHDuXnzJoGBgaxbtw6AM2fOEBERwaJF5WdZE/mpI+7pUkwKJhXc7W1wl0UJRTlQx9sJJ4M1vxyLIAkn+n+ym1mPNGRI60Dz2lLi7oxGmDoV8uqqpKoKiqLyxqvWbN1WOuf/+eefcXS0/KFkNBrvus/HH3/M2LFjGT16NAAzZ87kjz/+ICkpyaKcm5sbS5YsQa/XU79+ffr27cuff/7JuHHj7hnXt99+i6IofPnll9ja2tKwYUPCw8Pz3HfOnDl07doVgFdffZW+ffuSlpaGnZ0djo6OWFlZWTRz7dq1i/379xMVFYXBYACya5Y2btzIjz/+yPjx41m4cCFjx45l7NixQHYN1ZYtWwpcawPZtUJvv/02jo6OtG3blmnTpvHAAw/wxhtvAFC3bl1OnjzJ+++/f9eallGjRjFs2DAA3n33XRYvXsz+/ft56KGHcHfPnvLD29u70B28S1v5SsdFuXQ1Nru2JsjTXuNIhPiXr4stw9oG4pR2ndRMI6+sO8bE1YeIS8nQOrQKYefO3DU1t1NVhWvhCv8csC2V83fv3p2QkBCL23/+85+77nPmzBnatm1rse3O+wCNGjVCf1snIT8/P6KiogoU15kzZ2jatCm2tv8+77zOAdC0aVOLcwB3Pc+RI0dISkrCw8MDR0dH8+3ixYuEhoYCcOrUKdq1a2exX4cOHQoUe8eOHXF0dMTNzY0jR47w/fff4+Pjw6lTp+jUqZNF2U6dOnHu3Lm7JpO3Pz8HBwecnZ0L/DpqSWpsxD3ljIYKcC39TnxCFIa9jRW1o3fRa9zrfPjHGTYdjyTkShwLhjSvUKvOl6XUlBTOX7jE4RAH4N4dRqOiSqcXsYODA7Vr17bYdvVumVYhWFtbzoquKAomU8kPW7/9PDk1hXc7T1JSEn5+fmzfvj3XYyVR6/H999/TsGFDPDw8SuR4ZfU6ljRJbMRdJadnEZuS3enOXxIbUQ4pwLPdatGptgdT14Rw8UYyT/xnL8HpF3C9HoKCZVuLl5sTny8pP/0BypoKOHn6ElSnYBX23t53bx4qS/Xq1ePAgQOMGDHCvO3AgQMlfo5vvvmG9PR0c3NRUc5hY2OTqzakZcuWREZGYmVlRXBwcJ77NWjQgH379lk8x7179xbonIGBgdSqVSvPY+7evdti2+7du6lbt65FzVZh2Nhkd0u4V/OhFiSxEXd17VZtjaejDbbW5WD8pxB3yBnRBuCs6PFwbUaMYw0u2tTEu2EDHmrsi5v9v33Ddq6Yp1Wo5Ur7jib8/FUiI7Kbne6kKCp+/tC6TcH7dpS2yZMnM27cOFq3bk3Hjh35/vvvOXr0KDVr1iyxczzxxBO8/vrrjB8/nldffZXLly/zwQcfABSq/1ZwcDAXL14kJCSEgIAAnJyc6NGjBx06dKB///6899571K1bl2vXrvHLL78wYMAAWrduzdSpUxk1ahStW7emU6dOrF69mhMnThTrOU6fPp02bdrw9ttvM3ToUPbs2cOSJUuK1Ck5R1BQEIqi8PPPP9OnTx9zv6LyQPrYiLu6eiuxqSa1NaKcun1EW7eRL/Hko73o08QXNSOFqMR0vtt/mRPX4qv0hH5ZRvVW7WsGOHkTm5xBUkYmb76bDmQnMbfLuf/2vMxyMZ9NjuHDhzNjxgxefPFFWrZsycWLFxk1apRFf5jicnZ25n//+x8hISE0b96c119/nZkzZwIU6jyPPfYYDz30EN27d8fLy4vvvvsORVH49ddf6dKlC6NHj6Zu3bo8/vjjhIWF4ePjA2SPqHrjjTd4+eWXadWqFWFhYTz77LPFek4tW7bkhx9+YM2aNTRu3JiZM2fy1ltvFWuIdrVq1Zg9ezavvvoqPj4+TJo0qVgxliSpsRF3FR57K7Fxk8RGVBx1vJ0wbfuEoKEzuRqXypZTUYTFpHB/fW+tQytTJlUlKS2L1Mzbmgv0VmQYTWCEDg8YWfCFkflv2hF57d/aCD//7KSm7yMmEm+UfFz5DTPu1q2bRQI6atSoXF++b7zxhnl0D0DPnj0t+urkdew7lwq4dOmSxf07k96OHTtazC2zevVqrK2tqX5rzaw74wRo3ry5xTaDwcCPP/6YKxYnJycWL17M4sWLcz2W47XXXuO1116z2DZ//vx8ywcHB98zcX/sscd47LHH8n38Xq8JkGuW4Tvfi/JCEhuRryydDTHJ2SNMpMZGVDhp8QxoWY2DYbHsvRDDuagkIuLT8DNUjUU0jTorYpIyMN36grKx0mHQ60iMuY6Lly+ZRpW0TCP3P5RJ156ZHNptJD3VCV/f8jPz8J1SUlL47LPPePDBB9Hr9Xz33Xds2bKFzZs3l+h5Vq5cSc2aNalWrRpHjhzhlVdeYciQIWUyC7IoPklsRL6Sbn0BuNvbYG8jHxVR8egUhTbB7gS62/Pb8UjiUzM559WF938/zfM96mKtr5yt8TFJ6aRbOYKqYqXT4WRrhY1V9nNNzErH1lqPrTU4GvSkZBhJSs+iTRc9el0qbvY26HXlcy6gnKacOXPmkJaWRr169Vi3bh09evQo0fNERkYyc+ZMIiMj8fPzY/DgwcyZM6dEzyFKj3xbCSZMmkp0bO6ZWy9m+YOnNEOJis/X2ZYn2lbnr7PRnIxI4JNtoew6H8Oioc0J9nTQOrwSdT0hjesJ2R1+ba31ONtak1+fV0VRcDBYYaPXcTMpFSN6biZn4GZvjVU5TPrs7OzYsmVLqZ/n5Zdf5uWXXy7184jSIYmNIDo2Mc/FKw/+sAUF8HcpnQm6hChLNlY6ejb0IfXYH8QE3MeRK3H0+3gXi59oQfd6FbfvTfi1a6i3xoFk6Q1k6G/9EElLxNnJK9+k5nbWVjpIisbK1Z8sk4nYlExc7a0rbY2WqNwksRF5MplUcMmeSdPbWRIbUXZuH759uyPHjtG5BI4ftudnGra6yUWPtiTiyeiv9lMt/hiNrCL5ogLOb5NlNOHq409qhpGUtOw5pxwNViTFJaIohVix2WTCzcGauJRMMo0m4lIycbO3vvd+QuRDq5GIktiIPN1MyUCxssFar8jFTZSpnOHbdzowZWiJHf+Bp6ZiNKlsOxPFiWsJhLs2JTXZmfQsIwarcthrNg85s8Ias4xkZJlIuJXU2NtYYW9jRdLdds6HTlFwtf83uYlNycSgSK2NKJqUlOzleO6cwbi0SWIj8hSVkD2/hbeTrSwqKColvU7hgfreeDoa2HE2mpsOwQz7Yi+fP9UaLyeD1uHdk16vx9XVldCLYWRa24PeBhtrKwyKQlamEdVkIjMjPdd+BdnuYKWSkJmF0WQiFRsSEpOxkQk6RQGpqkpKSgpRUVG4uroWeXbjopLERuQpKjG786F3BbjAC1FUiqLQPNAVN3tr/nfoEocux9H/k938Z2RrGvg5ax3ePdm5ePC/00fparTC1kqHvcGKhFuPJcTeIC0r97o+Bd2uAikZWRhNEHNdwdPJBiud1N6IgnN1dbVY3bysSGIj8nQ9p8bGWRIbUfkFeThg2v4phs5jCY+Dvh9tJTjmAHXsksrtulJZRhNT1oSw42wWf169yRNt/LG3+feX8Yo57zPq9QW59ivM9rRMHf/dd5oMK0d8nG35aGhzfKTPnSgAa2vrMq+pySGJjcjFZFKJTspObHyc5CImqoasxBuMf6AZvxyL4GosXPDqSHrcUVRVLZfNsXN+PcWOs9HoTFn0bByIYmVD6m0VMeERkaSacn+xFGq7Xo/D+a2oTQdzKDyZEV8f5ocJHfJNbvKbOqKqLzwqypYkNiKXmOQMjCYVNTMNV+k4LKoQW2s9/ZtXY/uZKI7f6lT86rpjvN2/sXmCu/Lgu/2XWb77EgBBNw/g7dSg1M5lY0rj23HtGfrFHsJiUnj8i70sH9Umz/l/8ps6QhYeFWWp/PylinIjp38NcdfK5S9VIUqTXqdwf31vutTxBFXl+3+uMOKrfcTeWl5Ea3svxPDGxuMATOtZF7fUa6V+Tn9XO759uj3VXO24eCOZ/p/uZt+FmFI/rxBFIYmNyCVnRJQaX/oXTCHKI0VRaFHdDWX/KnSmTPZeuEn7mRvoM3IqA4ePYcKkqZrEdTkmhWe/OUiWSeXhpn5Mvr/2vXcqIYHu9myY2JFmAS7EpWTy5LJ9LN0eitFUdVdNF+WTNEWJXKISbw0FjQvXNhAhNJYVeZYRHWrxvyPXSMCR84EP0beJH2E/5b8yc0nIq6+Ki5s7l2s8TGxKJk0DXPhgcLMyr1H1drbl+wkdeHHtEX4+GsH8306z7XQU8wc1pcZdlqbIb9JF6XsjSoPmiU14eDivvPIKmzZtIiUlhdq1a7N8+XJat26tdWhVkklVuZGUU2MToXE0QmjP09HA0DaB/Hw0goj4NDaGhFPNsXapdiq+s69KptHEit/3kxKdjJ+LLV881RpbjeaVsbXW8/GwFnSp48Xs/51g/6Wb9ProL0Z3qoFRyfsrJb9JF6XvjSgNmjZFxcbG0qlTJ6ytrdm0aRMnT57kww8/xM3NTcuwqrT41EyyTCpWOgWSpA1dCMiezXdgi2rU93VCVeGqWzOe/eaQebbf0pRlNPHLsQhSDB642FmzckxbfDVev01RFIa0CWTT1C50retFplHlix0XOO73EIcux5JlzD1PjhBlRdMam/nz5xMYGMjy5cvN22rUqKFhRCKntsbdwYYIpO1ciBxWeh29Gvrg62zLX2eu89uJSI6Fx/PhkGa0r+lRKufMNJr4+WgEl2+moJiy+GpUB+r4OJXKuYqiuoc9X49py7bTUbz9y0kuRMPOczc4fDmO9jXdaeDrjE4nAxBE2dK0xuann36idevWDB48GG9vb1q0aMGXX36Zb/n09HQSEhIsbqJk3UjKHvnh6SgT8wlxJ0VRaBboSt2o7QS62xEel8qwL/fy1v9OkpyeVaLnSs8y8lPINS7fTMFKp1D7xt+0CnIv0XOUlO71vfnj+S5Uv3kwewHO9Cy2nIrim31hnIvKPa+NEKVJ0xqbCxcusHTpUqZNm8Zrr73GgQMHmDJlCjY2NowcOTJX+blz5zJ79mwNIq06Ym7V2Hg62mgciRDll0NGLOumdmHOLyf5bv8Vvtp9kd+OR+AduRflRih31lEUtpNsqpUTa/ZfIS41Exu9jkea+3NhY3TJPokSZqXX4Zl8iX4dhnA0PJ4Dl24Sm5LJr8ci0XV5hmtxqfi72mkdpqgCNE1sTCYTrVu35t133wWgRYsWHD9+nM8++yzPxGbGjBlMmzbNfD8hIYHAwMAyi7cqkBobIQrG0WDF3IFN6dXIl5n/Pc6Vm6lcs2uOX+P2dKrlSTW3f7/EC9pJ1mTKnjfnjM/9mFIzcTRY0a+pH97OtlworSdSwqz0OlpWd6ORvzOHwuI4fCWWTLcA1h68SrMAFzrW8ixXkx2KykfTxMbPz4+GDRtabGvQoAHr1q3Ls7zBYMBgkC/c0pJpNBGfmt0Z0kNqbIQokO71vPnj+a58uv08S7acISI+jR8PXcXPxZamAS7U9na85zFUVWVPaAzzfzvNkavxoLMi0M2Ohxr7Ym+TfZnOb8j0kWPH6Fziz6r4DFZ6OtTyoFmgC59/8yO6oFYcuRrPxRvJPNjIV2pvRKnRNLHp1KkTZ86csdh29uxZgoKCNIqoaou5VVtjb6M3X0yFEPdmZ6Nneq96bFu1CKXtE5y4Fk9EfBoR8WlsOx2NvUc7Vu8Lo66PE4Fu9uh0kJFl4tz1JI5cjeOnkGtcuJEMgJPBCpfIg/Tv/phFx9v8hkwfmDK0zJ5nUdjbWKGGbGBA/0f489R1EtKy+PHgVdrUcEfN1WhXNLJGlbidpt9eL7zwAh07duTdd99lyJAh7N+/ny+++IIvvvhCy7CqrBvm/jVSKyZEUdiY0uhc35t2Ndw5fi2e4+EJJKVnkWEfwOsbjt91XwcbPf1bVGNqjzo888z35X40UV7JxN1qj6q72/NEu+r8dSaaU5GJ7L94E3vvroTFJBPkkf/kfgUha1SJ22ma2LRp04YNGzYwY8YM3nrrLWrUqMHChQsZPny4lmFVWTk1NtIMJUTxOBisaFfDg7bB7lxPTOf7b77GuXpD0qydyLByAFVFQcVeTaFny7p0qOXBw039cTBUnJrSvJKJe9UeGaz09GrkS7CnA3+ejiIFD/os2smsRxoxqFWArE0nSoTmf0UPP/wwDz/8sNZhCKTGRoiSpigKvs62GE9vZfTECQAWMxbvXDGPhe+V76ak0lDXxwlfF1vW/nmAJLx46cejbDsTxbsDmuBqLz+sRPFI13QBZF9sbyTfSmwc5MIiRGmRWolszrbW1InewcsP1cNKp/DrsUgeWriTv8/f0Do0UcFpXmMjyoeUDCNpmSYUsmcdFkLkr6KNUCqvFGBit9rcV9uTqWtCuHgjmeHL9jGqYzDP96iLi5211iGKCkgSGwH82wzlam+NlV4q8oS4m4o6Qqm8ahrgyi9T7uPtn7MnPFy++xIbDocz+f46PNG2OnY22iz4KSom+QYTANxMzu44LLU1Qggt2NtkT3i4YnQb6ng7EpeSyds/n6TDvD/54PczRCWkaR2iqCCkxkYA/yY2Hg7ScVgI8a+ybnbrVs+b+2p78sM/V/nsr1Au30xhybbzfLHjAo809+fpzjWo7+tcCmcWlYUkNgKAGKmxEULkQYtmNyu9jifaVWdom0A2n4zkPzsv8k9YLD8evMqPB6/SuY4nz3arRcdanqUWg6i4JLERqEhTlBCi/NHrFB5q7MdDjf04fDmWZxat57qVDzvP3WDnuRs4p0YQEHeMM9JpW9xG+tgIMnW2pGeZUBRwc5BRCEKI8qdFdTeqRe5mVKcaNA1wQadAgp0fp/17kRnUHlVVtQ5RlBOS2AjSrLPbq13trLHSyUdCCFF+udhZ072eN0+2D6KGpwMmFXSNHuKnI9dIyzRqHZ4oB6QpSpgTG2mGEkKUB/ktanl7h2U3exv6NfXj+LUE/jwRzqWYFNYdusqAFtVkEd8qTt59QeqtxEZGRAkhyoP8FrW8s8Oyoig0qebC5qUzcXpwKjeSMlh3KJyBLapVqHW3RMmSd16QZu0ESI2NEKJsldhQ8oRIBrUKYP2hcG4mZ7AhJJwhrQJLLE5RsUhiU8WpqipNUUIITZTkUHI3exsea1mNtQevEpOUwR8nI5HZbqomSWyquKjEdIw6GxTAzV5GRAlRlmTNqZLlam/Dw039WHcwnNDoZEh1z/X6erk58fmSRRpFKMqCJDZV3LnrSQC4yBpRQpQ5WXOq5Pm52HF/A282n7wOdbtTvbk/QR4O5sd3rpinYXSiLMg3WRV39nr2yAMPaYYSQlQSDf2caVLNBYDNp67LMPAqRhKbKu5cVE5iIyOihBCVR+c6nqhJ0SSnG9l6Okom8KtCJLGp4s7eaoqSjsNCiMrEWq/DdPBHdAqci0riXFSS1iGJMiKJTRWmqipnI2/V2DhKYiOEqGTiwmkd7A7AX2ejSc+SJqmqQBKbKiwyIY3E9CxQTbjKiCghRCXUJsgNVztrUjKM/B0ao3U4ogxIYlOF5TRD2WYlyRpRQohKyUqv4/763gAcvRpPso2bxhGJ0ibfZlXYuVsjomwzEzSORAghSk+guz31fbNnWL/s1oIso0njiERpksSmCjsTKYmNEKJquK+2JwYrHak2bqzcE6Z1OKIUSWJThZ29NUrAThIbIUQl52CwolNtTwA+/OMMEfGpGkckSoskNlWUqqqcl6YoIUQV0tjfGYf0GJIzjMz+6aTW4YhSIolNFRUel0pyhhFrvYJtlszvIISo/BRFoXrsIax0Cr+diMxedkFUOpLYVFE5SynU9HREQWbkFEJUDXaZCYzrUhOAmf89TlJ6lsYRiZImiU0VlTPUu46Po8aRCCFE2Zr6QB2qu9sTEZ/GB7+f0TocUcIksamicmps6vo4aRyJEEKULVtrPXMGNAbg6z2XCLkSp21AokRJYlNFnbtVYyOJjRCiKupcx4sBLaqhqjBj/TEyZW6bSkMSmyrIZFLNq3rXlaYoIUQV9X99G+Bqb82piASW7bqodTiihEhiUwVdiU0hLdOEjZWOIA8HrcMRQghNeDga+L++DQFYuOUsYTHJGkckSoIkNlVQTsfhWl6O6HWKxtEIIYR2HmtZjY61PEjLNPHC9yGy3EIloGliM2vWLBRFsbjVr19fy5CqhJyOw/WkGUoIUcUpisJ7g5riZLDi0OU4PtkWqnVIopg0r7Fp1KgRERER5tuuXbu0DqnSy0ls6kjHYSGEIMDNnndujZJavPUcB8NiNY5IFIeV5gFYWeHr66t1GFXKWRkRJYSookJCDjNw+Jhc273cnOh/3yg2hlxj8reH+N/k+/BwNGgQoSguzRObc+fO4e/vj62tLR06dGDu3LlUr149z7Lp6emkp6eb7yckyBpHhWU0qYRG5yQ20hQlhKhaMk3QedSrubbvXDGPr/s35ujVeC7cSGbyd4dZOaYtVnrNGzZEIWn6jrVr144VK1bw22+/sXTpUi5evEjnzp1JTEzMs/zcuXNxcXEx3wIDA8s44oovLCaZjCwTttY6At3stQ5HCCHKDSdbaz5/qhX2Nnr+Do1h/m+ntQ5JFIGmiU3v3r0ZPHgwTZs25cEHH+TXX38lLi6OH374Ic/yM2bMID4+3ny7cuVKGUdc8Zn713g7oZMRUUIIYaGOjxPvD2oGwJc7L7JqzyVtAxKFpnlT1O1cXV2pW7cu58+fz/Nxg8GAwSBtnsUha0QJIcTd9W3qR2h0XRZsPsvMn07g5WTgocZ+WoclCqhcNR4mJSURGhqKn598gEqLrBElhBD3Nvn+2jzRrjqqClPWhLD/4k2tQxIFpGmNzYsvvki/fv0ICgri2rVrvPnmm+j1eoYNG6ZlWJVazhpR9SSxEUKIfCmKwtuPNmbL7n+IwpthS/+i7vXt2GVl/zj0cnPi8yWLNI5S5EXTxObq1asMGzaMmJgYvLy8uO+++9i7dy9eXl5ahlVpZWSZuHBDmqKEEKIg9DoF/8jd6BsNIyIergT3YUjrAJxsrdm5Yp7W4Yl8aJrYrFmzRsvTVzlnryeSaVRxsbOmmqud1uEIIUS5p1NNPNLMnx/+uUJsSiYbDoczuJWMyC3PylXnYVG6TkZkz/vT0M8ZRZERUUIIURC21nr6t6jG2n+uEpuSyX+PhBN17ES+E/1JE5W2JLGpQk5eu5XY+DtrHIkQQlQszrbWDGhRjbUHr3A9IR219RN0HPpQroWEpYlKe5LYVCE5iU0jSWyEEMJCfkstHDl2jM63/u/uYMOjzaux/tBVMr1rs+1MFA/U95Ya8HJGEpsqwmRS/22KksRGCCEs5LfUwoEpQy3u+zrb8lBjX34KCefEtQRc7KxpE+xeVmGKAihX89iI0nP5ZgpJ6VnYWOmo5SUjooQQoqhqejqiHvsFgL9DY7h0I1njiMTtipTYXLhwoaTjEKUsp7amvq8T1rKomxBCFIt6cR9NqrkA8PuJSBLSMjWOSOQo0jdc7dq16d69O9988w1paWklHZMoBSeuxQPZI6KEEEIUX5e6nng7GUjLMvHrsQiMJlXrkARFTGwOHTpE06ZNmTZtGr6+vkyYMIH9+/eXdGyiBJ2QjsNCCFGirHQ6+jbxw2Cl43pCOgcuybIL5UGREpvmzZuzaNEirl27xldffUVERAT33XcfjRs3ZsGCBURHR5d0nKKY/h3q7aJxJEIIUXk421lzf31vAA5cukmqtfx41FqxOltYWVkxcOBA1q5dy/z58zl//jwvvvgigYGBjBgxgoiIiJKKUxRDdGI6UYnpKEp2HxshhBAlp463IzU9HTCpEObWSpqkNFasxOaff/5h4sSJ+Pn5sWDBAl588UVCQ0PZvHkz165d49FHHy2pOEUxHA/P7l9Tw9MBB4OM8BdCiJKkKArd63tjY6UjxeDOyj2XtA6pSitSYrNgwQKaNGlCx44duXbtGitXriQsLIx33nmHGjVq0LlzZ1asWMGhQ4dKOl5RBIevxAHQPNBV0ziEEKKycjRYcV8tTwAW/3lORklpqEg/35cuXcqYMWMYNWoUfn5+eZbx9vZm2bJlxQpOlIzDl2MBaFHdTeNIhBCi8mrk78zWf44Tizc9py2mWvwJ82OyhlTZKVJis3nzZqpXr45OZ1nho6oqV65coXr16tjY2DBy5MgSCVIUncmkEnKrxqaF1NgIIUSp0ekUjCf/QN/uSWJcG/Bw79442mZ/zcoaUmWnSE1RtWrV4saNG7m237x5kxo1ahQ7KFFyLtxIJjEtC1trHfWk47AQQpSuyNP4u9iSZVLZdzFG62iqpCIlNqqad4/vpKQkbG1tixWQKFk5zVBNq7nKjMNCCFEGOtXO7mtzMiKB5PQsjaOpegrVFDVt2jQguwf4zJkzsbe3Nz9mNBrZt28fzZs3L9EARfHkNEM1r+6qaRxCCFFV+Lva4ediS0R8GkeuxtHxVqdiUTYKldgcPnwYyK6xOXbsGDY2NubHbGxsaNasGS+++GLJRiiK5fDlOED61wghRFlqWd2NX45FcOxqvKz+XcYKldhs27YNgNGjR7No0SKcnWWGxfIsJSOL05HZMw5LjY0QQpSdml4OuNhZE5+ayamIBEJCDjNw+Jhc5WS0VMkr0qio5cuXl3QcohQcuxqPSQVfZ1v8XOy0DkcIIaoMnaLQPNCVv85Gc/hyHJkmhc6jXs1VTkZLlbwCJzYDBw5kxYoVODs7M3DgwLuWXb9+fbEDE8V3KKcZSmprhBCizDX0c2ZPaAxxqZngEax1OFVGgRMbFxcXFEUx/1+Uf3svZA81bBUkE/MJIURZs7HSUdfHkePXElCqt9A6nCqjwInN7c1P0hRV/mVkmThw6Sbw79BDIYQQZauBn3N2YuPfiIwsEzZWltNu5NX3RvrdFE+R+tikpqaiqqp5uHdYWBgbNmygYcOG9OrVq0QDFEVz9GocKRlG3B1sqOcjE/MJIYQW/Fxsb3UihtDoJBr4WQ66yTSRq++N9LspniLN2Pboo4+ycuVKAOLi4mjbti0ffvghjz76KEuXLi3RAEXR7AnNboZqX9MdnU7ROBohhKiaFEWhgV/2j8uTEQkaR1M1FCmxOXToEJ07dwbgxx9/xNfXl7CwMFauXMnixYtLNEBRNH/fSmw6yMRQQgihqQa+2bU0V2NTZdXvMlCkxCYlJQUnp+wM9I8//mDgwIHodDrat29PWFhYiQYoCi8t08jBW0spdKzloXE0QghRtTnbWaPeuAjA+agkjaOp/IqU2NSuXZuNGzdy5coVfv/9d3O/mqioKJm0rxw4FBZLRpYJbycDNT0dtA5HCCGqPPXaCSC7n40oXUVKbGbOnMmLL75IcHAw7dq1o0OHDkB27U2LFjKkTWt7bg3z7ljLwzxEXwghhHbUyFMARMSlkZIhC2OWpiKNiho0aBD33XcfERERNGvWzLz9gQceYMCAASUWnCianeduANDhjmaoCZOmEh2bmKv8kWPH6FwmkQkhRBWVGo+3k4GoxHQu3kimkb/MB1daipTYAPj6+uLr62uxrW3btsUOSBRPVEKaeUXvbvW8LR6Ljk3Mc0rvA1OGlkVoQghRpdX0ciAqMZ3QaElsSlOREpvk5GTmzZvHn3/+SVRUFCaTyeLxCxculEhwovC2nIoCoFmgKz7OthpHI4QQIkctL0f2XrjJ5ZspeU7WJ0pGkRKbp59+mr/++ounnnoKPz8/6cdRjmw+GQlAr4Y+GkcihBDidh4ONuYVvy/fTKG2t6PWIVVKRUpsNm3axC+//EKnTp1KLJB58+YxY8YMpk6dysKFC0vsuFVJUnoWu2/NX9NTEhshhChXFEWhppcDhy/HceFGkiQ2paRI9WBubm64u7uXWBAHDhzg888/p2nTpiV2zKpox9loMrJMBHvYU0f+YIQQotwJ9sieguPyzRRUVdU4msqpSInN22+/zcyZM0lJSSl2AElJSQwfPpwvv/wSNzdZhbo4Np+8DmTX1kjzoBBClD/+LrbodQrJ6UZuJmdoHU6lVKSmqA8//JDQ0FB8fHwIDg7G2tra4vFDhw4V+FjPPfccffv2pUePHrzzzjt3LZuenk56err5fkKCrLuRIyPLxNbT2R2Hezb0vUdpIYQQWrDS66jmasflmylcvln8ygGRW5ESm/79+5fIydesWcOhQ4c4cOBAgcrPnTuX2bNnl8i5K5ttZ6KIT83E28lAqyCp+RJCiPKquru9JDalqEiJzZtvvlnsE1+5coWpU6eyefNmbG0LNix5xowZTJs2zXw/ISGBwMDAYsdSGaz95yoAA1pWQy+reQshRLlV3d0egPC4VFD0GkdT+RR5gr64uDh+/PFHQkNDeemll3B3d+fQoUP4+PhQrVq1e+5/8OBBoqKiaNmypXmb0Whkx44dLFmyhPT0dPR6yzfcYDBgMBiKGnKlFZ2YzrYz2c1Qg1oGaByNEEKIu/F0tMHOWk9qphHc5cd5SStSYnP06FF69OiBi4sLly5dYty4cbi7u7N+/XouX77MypUr73mMBx54gGPHjllsGz16NPXr1+eVV17JldSI/P03JByjSaVZoCt1fJy0DkcIIcRdKIpCdXd7zlxPRPGqrXU4lU6RRkVNmzaNUaNGce7cOYtmpD59+rBjx44CHcPJyYnGjRtb3BwcHPDw8KBx48ZFCatKUlWVHw9mN0MNaiW1NUIIURHkNEcp3rU0jqTyKVJic+DAASZMmJBre7Vq1YiMjCx2UKLgjocncDoyERu9jkea+msdjhBCiAIIdLfL/o+LPxlZprsXFoVSpKYog8GQ51Drs2fP4uXlVeRgtm/fXuR9q6plu7LX5erdxBcXe+t7lBZCCFEeONla42RrRWIaRMSnEnRr4j5RfEWqsXnkkUd46623yMzMBLLbCy9fvswrr7zCY489VqIBivxFxKfy89EIAJ6+r6bG0QghhCiMaq7ZtTbX4tI0jqRyKfIEfYMGDcLLy4vU1FS6du1KZGQkHTp0YM6cOSUdo8jHit2XyDKpOKZF8+YrL1g85uXmxOdLFmkUmRBCiHup5mrH6cjE7GHfosQUKbFxcXFh8+bN7N69myNHjpCUlETLli3p0aNHSccn8pGUnsW3+y8D0L1tU2p6dbR4fOeKeVqEJYQQooByamwiE9LIMpmw0hWpEUXcodCJjclkYsWKFaxfv55Lly6hKAo1atTA19cXVVVljaIysmb/ZRLTsjBkJlLDM/dwwZCQwwwcPsZi25Fjx+hcVgEKIYS4K1d7a9S0JIy2jlxPSDcnOqJ4CpXYqKrKI488wq+//kqzZs1o0qQJqqpy6tQpRo0axfr169m4cWMphSpyJKdnsXR7KAA+iWdRlJa5ymSaoPOoVy22HZgytEziE0IIcW+KosDNS+DfmGtxqZLYlJBCJTYrVqxgx44d/Pnnn3Tv3t3isa1bt9K/f39WrlzJiBEjSjRIYWnF35eISc4gyMMe9ythWocjhBCiiNSYSyj+jQmPS6WN1sFUEoVKbL777jtee+21XEkNwP3338+rr77K6tWrJbEpgAmTphIdm5hr+706/canZvL5X9m1NS/0qMvKELXUYhRCCFG61JjsH6cRcWmYVBWddOcotkIlNkePHuW9997L9/HevXuzePHiYgdVFUTHJuZqKoJ7d/r9z84LJKRlUcfbkX7N/Ln34hVCCCHKrfhIbPQ6MowmYpIy8HKS9RCLq1BdsG/evImPj0++j/v4+BAbG1vsoETeIuPT+M/OiwBM71VXVvEWQogKT8XHJTuZiYyX+WxKQqESG6PRiJVV/pU8er2erKysYgcl8vbBH2dIzTTSKsiNBxv5ah2OEEKIEuDnnN1pOCJB5rMpCYUeFTVq1CgMhryrytLT00skKJHb8fB41h3KXuzy//o2kGH1QghRSUiNTckqVGIzcuTIe5aRjsMlT1VV5vxyClWFR5v706K6m9YhCSGEKCG+zrYAxKZkkp5p1Diaiq9Qic3y5ctLKw5xF1tORbHnQgwGKx0vP1Rf63CEEEKUIHsbK1zsrIlPzSQyQWptikvmby7nMrJMvPvrKQDG3ldDJnASQohKyNclu9ZGmqOKTxKbcm71vjAu3kjG09GGZ7vV0jocIYQQpSCnOUpqbIqvSItgirIRn5LJwi3nAPC+cZiRY7/LVUbWfxJCiIrv9hob6UVZPJLYlGNL/wolPjWTej5OGP45k+eEfrL+kxBCVHxejgb0OoW0LBPpVo5ah1OhSVNUORWVkMaKv7Mn43v5oXooyNIJQghRWel1Ct63Zh1OtnHXOJqKTWpsypmQkMMMHD6GK67NSHOqjUN6DEvemcFRaXISQohKzdfZloj4NFIksSkWqbEpZzJN0GzodGKcawPwYPumdBn1KhmZMqOzEEJUZjn9bJINktgUhyQ25dCBSzcxqRDobkegu73W4QghhCgDOYlNirULaTJRX5FJYlPeGBw5FZEIQPsaHhoHI4QQoqw4Gaywt9GDouN4eLzW4VRYktiUM0rN9hhVFT8XW/xlMj4hhKgyFEXB71atzeHLcdoGU4FJYlOOZGSZUILbAtBS1oMSQogqJ2eivsNXYjWOpOKSxKYcOXEtHsXGHlc7a2p6OWgdjhBCiDKW088mRGpsikwSm3JCVVVCrsQB2bU1OkXRNiAhhBBlztvJFlSVa/Fpsm5UEUliU05ciU0lIS0LNTOVBn5OWocjhBBCAzZWOuwyszsOh0hzVJFIYlNOnLjVA169egQrvbwtQghRVTlk3ASkA3FRyTdoOZCaaSQ0OhkANeygxtEIIYTQkjmxudU9QRSOJDblwOmIBIyqipeTAeIjtA5HCCGEhuzTsxObY1fjyTKaNI6m4pHERmOqqnLiWgIAjfycNY5GCCGE1myzEnEyWJGaaeTM9UStw6lwJLHRWHRSOjHJGeh1CvV8pdOwEEJUdQrQLNAVwDxaVhScJDYaOx+VBECwhz221nqNoxFCCFEeNM9JbKQDcaFpmtgsXbqUpk2b4uzsjLOzMx06dGDTpk1ahlSmVFXl3PXsxKaOt9TWCCGEyNZcamyKTNPEJiAggHnz5nHw4EH++ecf7r//fh599FFOnDihZVhlJiY5g7jUTPQ6hWBPWcVbCCFEtubVXQE4H51EQlqmtsFUMJomNv369aNPnz7UqVOHunXrMmfOHBwdHdm7d6+WYZWZc7eaoYLc7TFYSTOUEEKIbJ6OBgLc7FBVOHpFVvoujHLTx8ZoNLJmzRqSk5Pp0KFDnmXS09NJSEiwuFVkOf1rans7ahyJEEKI8qbFrcWQZQbiwtE8sTl27BiOjo4YDAaeeeYZNmzYQMOGDfMsO3fuXFxcXMy3wMDAMo625KRaOXEzOQOdAjU9ZcFLIYQQlqSfTdFontjUq1ePkJAQ9u3bx7PPPsvIkSM5efJknmVnzJhBfHy8+XblypUyjrbkxNv5ARDobo9BRkMJIYS4Q05ic/hyHKqqahtMBWKldQA2NjbUrl0bgFatWnHgwAEWLVrE559/nquswWDAYDCUdYilIsHWF4AaUlsjhBAiD438nbHWK8QkZ3A1NpVAdxlkUhCa19jcyWQykZ6ernUYpSoxLZMkgwcAwR6S2AghhMjN1lpPg1sz0su6UQWnaWIzY8YMduzYwaVLlzh27BgzZsxg+/btDB8+XMuwSt3foTGg6HCxs8bFzlrrcIQQQpRTLWSivkLTtCkqKiqKESNGEBERgYuLC02bNuX333+nZ8+eWoZV6v46Gw1kzzYshBBC5Kd5dVe+3hMmI6MKQdPEZtmyZVqeXhOqqvLXmezEJkiaoYQQQtxF88DsId/HryWQkWXCxqrc9SApd+QVKmMXbiQTHpeKohoJcLPTOhwhhBDlWLCHPa721mRkmTgVUbHnbisrmo+KquwmTJpKdOy/y85HOdYGt2aoMZew1tfXMDIhhBDlnaIoNAtw5a+z0YRciTOv+i3yJ4lNKYuOTaTzqFfN9/8bEg4xKZgizwIPaReYEEKICqF54L+JzUitg6kApCmqDJlUlWtxaQCoNy5oHI0QQoiKoMWtBTEPX5YOxAUhiU0Zik5MJ8N4q/NXfKTW4QghhKgAcmYgvhSTQmxyhrbBVACS2JSh8LhUAPxdbAGZHlsIIcS9udrbmNcUPCzDvu9JEpsyFB6bndgEuMn8NUIIIQqudXD2sO8DlySxuRdJbMqIqqrmGptqrjLMWwghRMG1DnYH4J9LNzWOpPyTxKaM3EjKID3LhLVewdupcizkKYQQomy0DsqusTlyNZ70LKPG0ZRvktiUkZzaGj8XO3Q6ReNohBBCVCQ1PB3wcLAhI8vE8fB4rcMp1ySxKSM5/WuqyWzDQgghCklRFOlnU0CS2JSB2/vXBEj/GiGEEEXQRvrZFIgkNmUgPjWT1EwjekXB21n61wghhCg8cwfisFhMJpkyJD+S2JSBiPjs2Ya9nQ1Y6eQlF0IIUXiN/J2xtdYRl5JJaHSS1uGUW/ItWwYibyU2vi62GkcihBCiorLW62gRKP1s7kUSmzIQkZCd2Pg5S2IjhBCi6NrUyG6O2nshRuNIyi9JbEqZUdFzIykdkBobIYQQxdOhpgcAey7EoKrSzyYvVloHUNml2LihquBosMLJ1lrrcIQQQpRzISGHGTh8TK7tXm5OLPpoATZWOqIT0wmNTqa2t6MGEZZvktiUsmSb7OzaT2prhBBCFECmCTqPejXX9p0r5mFrrad1kBt/h8awJ/SGJDZ5kKaoUpZsyG4PlWYoIYQQJeH25iiRmyQ2pUhVVZJtshMbqbERQghREjrUyk5s9l64KfPZ5EESm1J0+WYKWXpb9IqClyx8KYQQogQ0DXDFzlrPzeQMzkYlah1OuSOJTSk6cjV7oTJPJxuZmE8IIUSJsLHSmdeN2hMqzVF3km/bUnTsahwAPk7SDCWEEKLk5DRH/S2JTS6S2JSio7dqbGR9KCGEECWpc20vILvGJiPLpHE05YskNqXEZFI5Hp6d2PjIjMNCCCFKUCN/ZzwcbEhKz+LQZVle4XaS2JSSCzeSSc4wopiycLe30TocIYQQlYhOp9C5jicAf52N1jia8kUm6CslObU19plx6HSKxtEIIYSo6O6ckTjGPhA82vLNn4d55aH6GkZWvkhiU0py+tfYZ8RpG4gQQohK4c4ZiVMysvhy50US9c5EJabhLQNVAGmKKjXHwuMAsM+Qtk8hhBAlz97GCu9bc6TtPHtD42jKD0lsSoHRpHI8PAGQxEYIIUTpCfKwB6Sfze0ksSkFodFJpGYasbfRY5sls0IKIYQoHUEeDgDsOBeNUZZXACSxKRU5/Wsa+7sg3YaFEEKUFj9nW/TGDOJSMjkYJi0EoHFiM3fuXNq0aYOTkxPe3t7079+fM2fOaBlSiciZcbhJgIu2gQghhKjUdDoFl7QIADafjNQ4mvJB08Tmr7/+4rnnnmPv3r1s3ryZzMxMevXqRXJyspZhFdvRW0O9m0piI4QQopS5pOYkNtdRVWmO0nS492+//WZxf8WKFXh7e3Pw4EG6dOmiUVTFk2U0cfJadsfhJtUksRFCCFG6nNOuY6PXcSkmhdDoJGp7O2kdkqbKVR+b+Pjsmg53d/c8H09PTychIcHiVt6ci0oiPcuEk8GK4FuduoQQQojSolezzIti/nHyusbRaK/cJDYmk4nnn3+eTp060bhx4zzLzJ07FxcXF/MtMDCwjKO8t2M5HYeruciMw0IIIcpEz4Y+AGyRxKb8JDbPPfccx48fZ82aNfmWmTFjBvHx8ebblStXyjDCgjl6a2I+6V8jhBCirPRokJ3YHL4SR1RimsbRaKtcLKkwadIkfv75Z3bs2EFAQEC+5QwGAwaDoQwjK7gJk6YSHZvIae/uYHDnj/XfcmB1OEeOHaOz1sEJIYSo1HxdbGkW4MKRq/H8ceI6T7YP0jokzWhaY6OqKpMmTWLDhg1s3bqVGjVqaBlOsUTHJtJxxCuk22a3c3bpN5TOo14lIzNL48iEEEJUBX2a+AHwy9EIjSPRlqaJzXPPPcc333zDt99+i5OTE5GRkURGRpKamqplWEUWk5SOUVUxWOlwsbPWOhwhhBBVSE5is+9iDNGJ6RpHox1NE5ulS5cSHx9Pt27d8PPzM9++//57LcMqsuu3PkjezgYURToOCyGEKDuB7vY0C3DBpMJvJ6ruZH2a9rGpbBMJRSVkd9jykaXjhRBCaKBvUz+OXI3nl6PXeKqK9rMpN6OiKoOonBobp/LZwVkIIUTl9m9z1M0qOzqqXIyKqgxM6LiRlJ3Y+DhLjY0QQoiyF+BmT7NAV45ciWPkG0uwiz6Zq4yXmxOfL1mkQXRlQxKbEpJq7YxJBVtrHU628rIKIYTQxsNN/DhyJY4reDJ21Ku5Ht+5Yp4GUZUdaYoqISk2bgB4O9lKx2EhhBCa6d3EF4AkgyfJ6VVvyhFJbEpITmLj4yz9a4QQQmgnwM2e5oGuoCicj0rSOpwyJ4lNCbm9xkYIIYTQ0sNNszsRn5PERhRFWqaRVGtnIHsOGyGEEEJLvW+NjgqPSyWpijVHSWJTAk5HJoKiw85aj5NBOg4LIYTQVjVXOxzSYwCqXHOUJDYl4NjVOEBmHBZCCFF+uKZcBeDc9USNIylbUr1QAo6FxwMy47AQQoiyFxJymIHDx+TaHnEuDO5vxrX4NJLSsnCsIlORVI1nWcqOXs1ObKR/jRBCiLKWaYLOecxXc2DKUAJcbImIT+N8dFL2SKkqQJqiiikt02judS5LKQghhChP6ng7AlWrOUoSm2I6GZGA0aRiZUzDUToOCyGEKEdq30pscpqjqgJJbIrp+K3+NfYZsdJxWAghRLniZGuNn0t2/89zUVWj1kYSm2LK6V9jnxGnbSBCCCFEHszNUVVk2LckNsV0e42NEEIIUd7U8XYCICI+jcS0TI2jKX2S2BRDaoaRs7c6ZNlnSmIjhBCi/HG0tcL/VnNUVZisTxKbYjgZkYBJBS8nA9bGNK3DEUIIIfJUxye71qYqNEdJYlMMOTMON6nmgnQbFkIIUV7V9sruZxMRn0aG3k7jaEqXJDbFcCw8AchObIQQQojyytHWCn/X7OaoWLtqGkdTumTilWI4Fh4HZCc2O7UNRQghhLirut5OXItLI1x1y3MJBi83Jz5fskiDyEqWJDZFlJKRZe6E1SRAamyEEEKUb7W9Hdl+Nhrcq9OsXxecba0tHt+5Yp5GkZUsaYoqopPXsjsOezsZ8HGWxS+FEEKUbw6Gf5ujQitxJ2JJbIoo5EocAE0DXDWNQwghhCionE7EodHJGkdSeiSxKaLDtxKbFtVdNY1DCCGEKKhatxKba3GppGRUzrWjJLEpopDLcYAkNkIIISoOZztr1LhwVODCjcpZayOJTRFEJaQRHpeKokhTlBBCiIpFjTgFVN5+NpLYFEFOM1Q9HyccDTKwTAghRMWhRpwA4MrNVNKzjBpHU/LkW7kI5i1bCzY1iT5/lIHDVwBw5NgxOmsblhBCCHFvidG42lsTl5JJWEwKdW8tt1BZSGJTBNGm7M5Xzdu0o7F/LwAOTBmqZUhCCCFEgdXycuRgWCyhUUmVLrGRpqhCMppUUmzcAfCV+WuEEEJUQDnDvi/GJJNlNGkcTcmSxKaQzl5PxKSzwkavw93BRutwhBBCiELzcTbgaLAi06hyJTZV63BKlCQ2hZQzMZ+3swGdImt6CyGEqHgURaGmlwMAodGVa3SUponNjh076NevH/7+/iiKwsaNG7UMp0AOhsUC4OcizVBCCCEqrpzJ+i5EJ2NSVY2jKTmaJjbJyck0a9aMTz75RMswCuXApZsA+LvYaRyJEEIIUXTVXO0wWOlIzTQSEZemdTglRtNRUb1796Z3795ahlAoUQlphMWkgKri5yo1NkIIISouvS67OepURCLno5MqTd+UCvU80tPTSUhIsLiVpf23amvsMuMxWOnL9NxCCCFESatlXhQzicrSGFWhEpu5c+fi4uJivgUGBpbp+Q9czE5sHNNvlOl5hRBCiNIQ5G6PlU4hMS2LVGtXrcMpERUqsZkxYwbx8fHm25UrV8r0/PsvZXcclsRGCCFEZWCl1xHkYQ9AnJ2/xtGUjAo187DBYMBgMGhy7vjUTE5HZjd9SWIjhBCisqjt7UhodDJx9pUjsalQNTZaOhQWi6pCsIc91qZ0rcMRQgghSkQNDwd0CqRZu3ChEsxpo2lik5SUREhICCEhIQBcvHiRkJAQLl++rGVYecrpONwm2F3jSIQQQoiSY7DWE+CW3Rz1+4nrGkdTfJo2Rf3zzz90797dfH/atGkAjBw5khUrVmgUVd5yOg63qeFOqMaxlJWkuBg+mTIw1/bkhBQNohFCCFFaank5cPlmCr+fiOTZbrW0DqdYNE1sunXrhloBZjtMSs8yL6XQoaYHa7QNp8x4uDpz/tPhubbXnrhag2iEEEKUllpejmw7HUXIlTgi49PwrcCz61eozsNa2RsaQ5ZJJcjDnkB3e63D0VxSbLTU5AghRCXiYLDCISOGZIMnf5yMZESHYK1DKjJJbApg1/nsUVD31fbUOJLyoZa7Fbs/kZocIYSoTFxTr5Fs8OT3E5LYVHo7z0UD0LmOJDZ342pjxDfxGK6pV3DIjMEmKwmDMYnAdlE0P/UiimpCuW1uywadIgk6O5MMvT2ZOjsy9faMrxdHk8j1pFs5kWLlRqq1K6nWbqTG35BaIiGEKEWuKdcId23K3gs3iUvJwNXeRuuQikQSm3uIiE8lNDoZnQIdalXOxCa/TsIpcdH575QaB/FXIPEaJEZCaiz/DEiDo2NyFW0RDNz8K9f2mgFA9CaLbR2aA6Fzc5UdNw501plgYw/WDmCTfZv/6zkaRP1CsrUHyTaepNh4kGrlctfnK4QQIjeDMZn6vk6cjkzkz1NRPNYqQOuQikQSm3vYeS67GappgCsudtYaR1M68usk3Om5Jf/eUVVIuApRp/i+dzLs/yzPYyXaeBNnG0iSwZs0Kycy9I5s/XkdMwa3B8VydoH3v9vKS4M7gjEDjJlgzOS3Pcd4qFUNyEqFzFTISIGsVHQK2duyUoEY8zFeaQacm2VxXKOi5/F+oAsZQbKNR/bN2pNkGw+6uUXy9+y+RKfpiU7TkW7MjklqfoQQAh5s5MvpyER+OxEpiU1ltetWYlM1m6FUSIyAqFMQfQrSEwEIcCI7SXHyA+dq2f/ae1Dj2dXonQxA1K1btpS4dGZMbZHr6BtDd/JSYDuLbW8vOsdDIx+7IwwTfacv4Ze3h2UnOpnJkJEEGcls2HmMls2bYJ8Rg0PGDeyz4tCrRvzsgeRTkGx5qAd6AdyWxOgNYG3HyYhkXI4+nd0sprcnU29Hht4Bq/pXsf7yfoyqglGFLBWerpFFq/BVqCi3DqKgojC2bjwtrn1rvs+tx0fWjqdZxA8W5UFhkN81Yhb1ImdgYIZJISlTobVjBj6JJ8jU25OudyBD70CmXjqtCyFK34ONfFn05zl2nI0mJSMLe5uKlyZUvIjLkMmksrsqdhxWTRB9mmU9UuHQ1/9u1xvAsy4v/3iO9159Fqwsl7fwd7bOs1OxRc1PUSg64tJ14OAFDpYPPfv6ERz3Xbt1zwkrxRFPWyM2xhSmvPYmDhk3cMi8lfRkxJB49m9aBthBehKoRjCmgzGdhm5A4pFcp27RDCAjd0yXFufa1K0FcPGjXNu7twIuvJ9r+wNdANLyfs5HR1ncNSpWDH3YSNzPHYlJ0xOTrsu+pen/v707j4+qOh8//pk9k33PJIGQQIDIDgECUhQBCQhIWQqlKOCGKIiWVpG6axV+pV+wFbRUWbTYYq2A1CKyK2JYJSyyyI5AFrbsyUxm5vz+mGRgmIRFQkKS5/163Vcy55575zxzJzNP7j3nXO6LdBCbu4MCYxQFpkgc2tp5XVwIUfPuiA4gLtSXkxeK+PrgWfq1jq7pJt0wSWyuYtepHM4X2vA36WkfF1LTzbn17FbI3A2ntoE1j6RQQKuHsKYQeQeENgatnk0Zs72SmppytRFax0K7e5XPeW+I67KbUq6kxloA9hLGvv0VQx//PUZnEQZHEQZHMUZHEbtWf8q43kmA05XwKcWnmw7RMuXuyzpCK1CKH3dsZFCnePCYm0mx9vvD9GrfxKMM4Ov0I9zdtvGlYqcdHDb2HztDgI8Wf73C3+BErwWdshPjBzF+pUCp9wuxd7z71/MlWu7pqcF//+8pMEaSb4oi32Qh32Qh2mxHo+wojfzpCyG8aTQa+rW2MPfroyzfdUYSm7qmfGrpHs0jMOrr7m21osx2OLoBzux0fdkDGHz5+/d2xj3+BBjMNdq+n6OyuXbcHaI1GtD7uBbg2ywf2ob39Ko/Z/dqxo3v5VE29e3zTHjwNe+6c4YwaPT9XuUvz5lNrwcGe5X/4d3ZbBo11Kv80Q9ms2nORNcDpVwJT2kxD/9xAfN/OwBKi1yLrRBKC9m++wAd4wNdlwqddsJ8nIT5UGGH7RH3g/O7X1BgiiDfZCHP6Ep6zjbJI+HCt+SVJUA2vb/XtkKI+mFQ21jmfn2UtQeyySspJdCndvUvlcSmEkopVv2QCbiuOdZFYYWHST6ziAn9M+CnDFehORQapkBUSz78+G+Mq4VJDVR+JuemL4txHUlTVdJoQGcAnYGDF3UQ5j3V+dPvnGDT8MddSZC9BKx5PPjHRSRE+BPtayfa11G2uH43aB0EWjMJtGYSW7aPzh2B/b9179Oq8yPfZKFll5Oc/bAHGUV6zhTpOFPo+mnNlxvBClFX3REdQLMof37MKmDl3kyGd2xY0026IZLYVOJwdgFHzxVi1Gnp0TyipptTdZQiLncryacXEZ+z2VWmA4IaQoPOEJbo+jKtZ24kWbmVSdNN0WhcZ9cMZo7mm/jH9Me9qsT8ZhbxljBi/OzElCU7Mb4Owo1WOrZsTKA1E7M9F5OjEFPREfo0ArB77cfhhKJt/V1nfcrO8hQawxnYsIDY3B0UlQ2/t+n86uX7SYjaTKPRMKhdLDO+Osjn6aclsakrvio7W9MtMYyAWnYariJap53BjfIZtWsUkYWHAHCi5VBYT6Yu3s2SP3p/Udcnt22yUsUSQgxsmjnaq9wy8m38txQBgZh1/kT7OlwJj+Yif36wM1jzXEtJHljz0WkdBNiyCbBlE5O/272fHnfi0d+nVGuiyBBGt7uzuPjJXZwr0XK2WMfZEh0p5jy+ebU/54p1nLPqKHW6EiAZei9Ezbu/bQwzvjrId0fOk51XQmRg7bl3lCQ2lSjvX9Onll+G8rOdo1XWMlpnLiWgy1koPItNa2Zv1CB2xvyaPJ9Ydl/wPlMh6perJnYJd3kWKkXrR96maUwQMWUJULSfnQgfByGGUu5IiMGv9DwmRyEGp5Ug6xk6WwCKK3jmS9MCoDeD0Y9NRwsI/fHlskkXyyZeNITRNNCGyZ6HVRcgZ4GEuMUahvqS3CiEHScusnzXGR7t3vjaG90mJLGpwOmcYvaczkWjgd53RNV0c26cUnSJKOa+A1NJvLAenXIAkFWs41DSeHZbhmDVB9ZwI0WtpdEQaDaw5I/es0wnPvkxE4Z9BoDeUYJv6Xn8bOf55r3neHdssmv+odJCsBWy78ejtIjxc3WCVk73BIzdLHjNSA0wrB+wpRc2B2UTLOrILtbxamsnST/No9AYQYExvOxnBKC89iGEqFx6+k6GjLr0d33WvzGEtOed5WmS2NR25Z2GOzYKISLg1gxrruw2BjdzGj6s6AjNz66i+blV/LZnBpx3dQg+HdiOXZahPPXmfCb2Hvuz9y/EjbDrfMjTxZLnE8uq074Q28Fj/WPvzWbTnAllnZ6LXQmOrZDf/30V9494AL/Sc/jZzruTI33ucYKMCqMOYv0cxPo5Lu3spPdM2A8Pg3OrupBdrCOrWEd2WSI0MMpOXM4WCg1hFBgjXEm+nAESglIndB/7vPtxkc3O4ewCzq/7L1B7uitIYlOBfq1c4/Ytt/CaYmW3MbiRO2RrlIM2IVY6/zSPZufWEFF02L2usFTDkQaD2RU9lHN+zQCwORfcfMOFuIqfNWJMowGDr2vxi2BRehHLTiytYB8mziyaWJYAFbhnn565eC0NQ3yINDuI8HEQZXYQ5uPEVFECVO6Hie5f7RojhcZwuvU8T/CBqRQaXQlPoTGCbpHFhBUepkQfRIkhEIf29pi/SYjq4GvU06ZBMBudFUxSehuTxKYCliAfHuqWUNPNqFBgyRnicrbQKGcrDXO38UyfXPd/qw6NnuMhd3IgPJXfvvU+T8yaWsOtFfVNVXTCvuo+tHrwCXItZT478t2leX/KOR0MmTKHJS8NdU3CaCtw/1y//QdiAnREmh2EmJzolc3VDygCOL/GYzd97wHSR7ofl2pNlOiD6NP7HAVLf0GOTUuuTUueTUuRXcNDjey0yfgMm8637PYcrrvWNwu0EVhyGofGiENrwKnR49AaPO52L4SoGpLY3OZM9nwa5m7jzeRzDNwxhJCSnzzW59k0ZFvu4mhodw6H3ePuO1PsmFcTzRXi9qDVkVWkdd3L7AovvnPsUiLktLsTnolzvmToA2Pxt53Fz3YOf9tZio/vIMIMQUYnOi0YnFYMtmxahgFUMpfP0eleRSP7ATt+6VU+aQQ4N3XBodXj0LgSHqdGz/ABF/HfPginRodTo0NpdNzb5xThu0bj1OhRGh1OXOva3ZVBo32/xanRY9ca3fcYK2lymqLZ91Jo11BQqiXHpuV8iRa/UpvMPi3qNHln32Z0GkVM3i4aXfyORjlbiSrYhxYnJAIleTjRkRHQipPBKZwI7szzL73J03/583Xtu7J+PbdkYjkhagOtHszBYA5m5SlfmsT82mP1nL9fcQuO0hKwl/DMrMW8PT7VNSFiabHrdiROG0u/O0irDp0xOosxOIowlt2eozQnAz8D6LUKwxWTmGtxoHU6MFyWKPn7AdYzHvXCQ4CC/V4hNIoGLn7rVd6xI1SWfDk3dSXnsvuNZZXo+F1zJ20y/k2BMdJ9K44iQz24lYyocySxuR3YCuHCUbhwlM33nyJkz6Meq4/k6Vl11El6fihbsk0U2C8AXwJfcjYz87o7IVfWr6euzdUixM9RUf+gym7BsS1L77p/2hWeeHk//luOXFGqc/UP+uczrodKuW7A6nRwx6PvEhwahkGrMGgVRp1Cp4HSgot89cdfl92fzLX89p1lzJow4LIyBcrJGx+u4qUHe5bdfqMUHDaw21j29Q5+2bVZ2WOrKwmzFeKwFqHTQqiPk1AfJ02DyiZgbITXzVodGj1D+4Nuz2PkGyMpMEWV/YykXWgJfrZzFBlCUBrdTb76QlQdSWxqSKDBCRm7IHs/5JygfGhqiA+uD8+QBAiJh5AEmvgEsmjCbDbNedRrP90mzK70JpBCiOtXUd+eG036r6uPkUYDGj1o9YT6VTxhYrcJsyEwxqNsa5beNTP4FVaeWM9L0W29ymfM/IFfPux977IeE99h48xHyobdF7l+WvP5+7JviAsxYvF1YDE7iDQ70GEnzh/IS/faz8B7gW39KHXC+RId2SVakrpA7OG3KDSGu5ayGagtZjs6p1U6X4tqIYnNLXb55R+dRtEzppihCYVsHlQCP56+VNE/CkKb8PiCncx97SnQ3NxNN6/636cQot5yKg0YfV2L36XyDw9s8+yE7XSArZBfvfkfxk54Bn9rNgHWLPxt2fjbstFm7cPi68SgVa5kyNdBm1Agy3tE22/uB9J+gU1rptgQTIk+iGJDMAldsmh09M9lj4Nco8/0AbQLLSG4+AQl+iCsen93f6BbMU2GqHsksbnFwoIDOTzrftfZmYxdYMu/tNIvAiLugMgWruv8wN7zu286qYGq+e9TCFGPaXXgE8jGw3nsfP09r9VFOQbOfDypbMSZawj+nz78gueGdrxsSL7rZ2lRPgYdGJ3FGK3FBFldc2zFNwIyPvHa95B7ge+HuR9bdX5Y9QGkDi+iRULQpcuCeh8wmHnp0900O7uKEn0gVn2AO0HSamTUWX0kic0tFJX/A3/teg42v4t7FlSDGSxteOD93Sya9kiNtk8IIa7lqpfXNFowBboW4POjBp6L7+5Vt8eEd9j0l8dcHa3dSxFvLd5Er4GDMZfmYLbnYLLn42PPw5p9lMhAEyZHIYDrpqyOQlqEADknvfb/Rkfgxxe8ysf/CmybXaNFy5OepndmEXf4rbIE6FIi1C2ymMiCA5ToA7DqA7Hq/K76T6acPbp9SWJTRS69yRXdLSWMS8qna5QV4soqBDaAmPYQ0Ry0eo7l/VCTzRVCiGp0Wedr86WRVvN/3I250ZNetV8f3Zuw4EB0mhACDU4CjU6CjU5MpRf55+/6uUenuW7DUcKKtB8I8zO46wUanPgZFFoN+DgK8HEUEFQ2yiyuIRVeLhtwD7DrQfdjJ1qs+gAG31eIz67RZWeBAikwRlBgjOSBVnremdADTAFg8ncnQdK/seZJYlNFIkMCOPhKe/hpMxSccxVqtKw4quW+YaPBP7JmGyiEELeZymaqNmOtfARnZAuv8jf/eqzCSRr7/34O//vjqMsSoRL+8P6XRAb7EmR0JUxBZYufxkaor44goxOzXqHFidmeS3wAFQ6z79ENSP9H2SMNGP3BHMLLrc9wek5vjucb+DHXwE+FOkAjZ3KqkSQ2V/H4xKc5ezHfq3zXnj2Un2zVOUpomf0Fq+/LgP3LXYVaA0S3hQadePOTf3DfWElqhBDiSlUxU3WltDpyrFrwDfMo/jpjPZte9D5L5BphetnEjWXJ0PD/t5zfTHweH3sePqW5+NuyCbBlk7//azo28HH1JVJOV/9JWz6jWwDkXtqxzgT+kSzYZiUm679k+zfngjkBp9YAVHxJS5KgmyOJzVWcvZjvcUOwctsmjcBUmkvbzP/QPuMTfEsvgj+gN0NssmsxmKu/wUIIIW6eVu+6vGTy55tDeXz/6iyvKkU5Ws7880nX/EGlRVCSA8UXWfDZVzzUIxGKz0PhedfEjrk/8VAz4PDrANg1BrL9kzgT0IaRLfW8++wvwXhpiJpczro5ktjcoABrJq+0P8fo7QMxOosByDXF8HZaEa9Mehh0xhpuoRBCiKpyzbNKGo0rKTH6QWAsH/ywgYeeHORa53RA0XkoyGLupytpG6WnRYiNQGMpMfl7iMnfQ8dfAGnvgE8wBDWAwFiaBtlcZ4GqYIRsfSSJzXWKLDhAhzP/pPnZVWibOcAJ2X5N2R47hh/De/GPj4bziiQ1Qgghyml1rv6V/pF8dOBrNj010XWGpyQH8k5D7mkO799FYrDTVVaSA1l7+bIvlGzpTUZAKzICWpMR2IZM/5Y1HEztIYnNVfhoSmmVuZQ2mUuJKrzUeWzDKR0LD4fybVYxMBeYK5PfCSGEuDaNxjUyzBwCUa0Y85dDbPrLo5B3BnJPQd5pCs+exI98EnLSSMhJA0ChoWeqgdLD08gIbM2ZgNbk+MS59ic8SGJTkax9sHUu8xqvwHzE1SHYrjFwOOwevo8ZxcufvOjVY18mvxNCCPGz6H0gtLFrATpMWMTLb75FdP4eovN2E5O/hyDrGe4ItkHWEtpkLQGgSB9Mtn8SpjbniT/7FWf9mnHRHFfv792lUUrV2qkZ8/LyCAoKIjc3l8DAwCrbr2PzfDb+7TMy8qPwC1PoOiQw7om7OUovDDiq7HmEEOJ6OdCyke5kEE00GXRnIzqcNd0sUQMUoLnsd2fZ41I0gBYdDnSX1alsHwAXCWIp93OBcO7hawLIwY8SijCTRxBr6M0a7uV43D3s3K0jKKhqYrhV398AqNvA7NmzVaNGjZTJZFKdO3dWW7Zsua7tcnNzFaByc3OrrC2ffaZUg1iHKrt1rgKl7JfdS1cWWWSRpbqXzxisGnDSo7gBJ9VnDK7xtslSP5azhKnBfKaaNKma79pb8f1drsa7XH/yySdMnjyZV155he+//562bduSmppKdnZ2tbdlyRIYNgxOnb70stjRUOMvkhCi3lrCYIbxH04R61F+mliG8R+WMLiGWibqkzDO8xlDaXNkCYneN5m/rdT4paiUlBQ6derE7NmuPipOp5OGDRvy1FNP8fzz3nPIXK4qT2U5HBAfD6dOXSqL4SCnSAKufkpPCCFuBQda4jleltR4/4ulwUkDTnGMBLksJW45BfxEAxI4zoWcm7ssdSsvRdVo52GbzcaOHTuYOnWqu0yr1dK7d2/S0tK86lutVqxWq/txbq5rdse8vLybbsvGjTpOnfLzKDtKS0lohBA1ZiPdOUXDStcrtPxEHBvpTg++rsaWifpIA8Rxiu5sJDW1G6tWFf/sfZV/b9+Kcys1mticO3cOh8NBVFSUR3lUVBQHDhzwqj9t2jRee+01r/KGDSv/w79+vwb+5VEiHYWFEDUpg+gqrSdEVYgmg8VbzhAUFH/T+8rPzyeoqnokl6lVw72nTp3K5MmT3Y+dTicXLlwgLCwMTZWM5b905icvLw9dQ/jpp5+qvsd2LZCXl0fDhg3rZfz1OXaQ+G+n+PsDuVzPGem55DH3pp/vdoq9JtTn+G8k9rlli8c9sW6QUor8/HxiYmJ+9j4qU6OJTXh4ODqdjqysLI/yrKwsLBaLV32TyYTJZPIoCw4OvpVNJDAwsN69wS9Xn+Ovz7GDxF+f46/PsUP9jr86Y6/qMzXlanTAj9FoJDk5mbVr17rLnE4na9eupWvXrjXYMiGEEELURjV+KWry5MmMGTOGjh070rlzZ95++20KCwt56KGHarppQgghhKhlajyxGTFiBGfPnuXll18mMzOTdu3asXLlSq8OxdXNZDLxyiuveF36qi/qc/z1OXaQ+Otz/PU5dqjf8del2Gt8HhshhBBCiKoik+oKIYQQos6QxEYIIYQQdYYkNkIIIYSoMySxEUIIIUSdUacTm/j4eDQajdcyYcIEAHr06OG1bvz48R77OHnyJP3798fX15fIyEieffZZ7Ha7R50NGzbQoUMHTCYTiYmJLFy4sLpCdPvmm28YOHAgMTExaDQali1b5rFeKcXLL79MdHQ0ZrOZ3r17c+jQIY86Fy5cYNSoUQQGBhIcHMwjjzxCQUGBR53du3fTvXt3fHx8aNiwIX/605+82vLpp5+SlJSEj48PrVu3ZsWKFVUe75WuFn9paSlTpkyhdevW+Pn5ERMTw+jRozlz5ozHPip6v0yfPt2jTm2MH2Ds2LFesfXt29ejTm09/teKvaLPAI1Gw4wZM9x1auuxnzZtGp06dSIgIIDIyEh++ctfcvDgQY86JSUlTJgwgbCwMPz9/Rk6dKjXpKhV9Tk3Z84c4uPj8fHxISUlha1bt1Z5zJe7VvwXLlzgqaeeonnz5pjNZuLi4pg0aZL7PoPlKnp/LF682KNObYwfqvd7rrrjr5Sqw7Kzs1VGRoZ7Wb16tQLU+vXrlVJK3X333eqxxx7zqJObm+ve3m63q1atWqnevXurnTt3qhUrVqjw8HA1depUd52jR48qX19fNXnyZLVv3z71zjvvKJ1Op1auXFmtsa5YsUK98MILasmSJQpQS5cu9Vg/ffp0FRQUpJYtW6Z27dql7r//fpWQkKCKi4vddfr27avatm2rNm/erDZu3KgSExPVyJEj3etzc3NVVFSUGjVqlNq7d6/617/+pcxms5o7d667zqZNm5ROp1N/+tOf1L59+9SLL76oDAaD2rNnT43Fn5OTo3r37q0++eQTdeDAAZWWlqY6d+6skpOTPfbRqFEj9frrr3u8HwoKCmp9/EopNWbMGNW3b1+P2C5cuOBRp7Ye/2vFfnnMGRkZav78+Uqj0agjR46469TWY5+amqoWLFig9u7dq9LT09V9992n4uLiPNo+fvx41bBhQ7V27Vq1fft21aVLF3XnnXe611fV59zixYuV0WhU8+fPVz/88IN67LHHVHBwsMrKyqqx+Pfs2aOGDBmili9frg4fPqzWrl2rmjZtqoYOHeqxH0AtWLDA4/hf/tlYW+NXqvq+52oi/srU6cTmSk8//bRq0qSJcjqdSinXAX/66acrrb9ixQql1WpVZmamu+y9995TgYGBymq1KqWUeu6551TLli09thsxYoRKTU2t+gCu05Uf7k6nU1ksFjVjxgx3WU5OjjKZTOpf//qXUkqpffv2KUBt27bNXefLL79UGo1GnT59Wiml1LvvvqtCQkLcsSul1JQpU1Tz5s3dj4cPH6769+/v0Z6UlBT1+OOPV2mMV1PRl9uVtm7dqgB14sQJd1mjRo3UrFmzKt2mNsc/ZswYNWjQoEq3qSvH/3qO/aBBg1TPnj09yurKsc/OzlaA+vrrr5VSrr9zg8GgPv30U3ed/fv3K0ClpaUpparuc65z585qwoQJ7scOh0PFxMSoadOmVX2glbgy/or8+9//VkajUZWWlrrLrvW+qc3xV9f33O0Qf7k6fSnqcjabjUWLFvHwww973DDz448/Jjw8nFatWjF16lSKiorc69LS0mjdurXHZIGpqank5eXxww8/uOv07t3b47lSU1NJS0u7xRFdv2PHjpGZmenRzqCgIFJSUtztTEtLIzg4mI4dO7rr9O7dG61Wy5YtW9x17rrrLoxGo7tOamoqBw8e5OLFi+46t/vrAZCbm4tGo/G619j06dMJCwujffv2zJgxw+N0bG2Pf8OGDURGRtK8eXOeeOIJzp8/715XX45/VlYW//vf/3jkkUe81tWFY19+iSU0NBSAHTt2UFpa6tGupKQk4uLiPP72b/ZzzmazsWPHDo86Wq2W3r1712j8ldUJDAxEr/ecn3bChAmEh4fTuXNn5s+fj7psirfaHv+t/p67XeIvV+MzD1eXZcuWkZOTw9ixY91lv/nNb2jUqBExMTHs3r2bKVOmcPDgQZYsWQJAZmam1wzI5Y8zMzOvWicvL4/i4mLMZvMtjOr6lLe1onZeHkdkZKTHer1eT2hoqEedhIQEr32UrwsJCan09Sjfx+2gpKSEKVOmMHLkSI+bvU2aNIkOHToQGhrKd999x9SpU8nIyGDmzJlA7Y6/b9++DBkyhISEBI4cOcIf/vAH+vXrR1paGjqdrt4c/w8//JCAgACGDBniUV4Xjr3T6eSZZ56hW7dutGrVyt02o9HolcBf+bd/s59zFy9exOFwVFjnwIEDVRbj1VQU/5XOnTvHG2+8wbhx4zzKX3/9dXr27Imvry+rVq3iySefpKCggEmTJgG1O/7q+J67HeK/XL1JbObNm0e/fv08bpF++Zu7devWREdH06tXL44cOUKTJk1qopniFistLWX48OEopXjvvfc81k2ePNn9e5s2bTAajTz++ONMmzat1k8z/utf/9r9e+vWrWnTpg1NmjRhw4YN9OrVqwZbVr3mz5/PqFGj8PHx8SivC8d+woQJ7N27l2+//bamm1IjrhV/Xl4e/fv3p0WLFrz66qse61566SX37+3bt6ewsJAZM2a4E5vaoLL46+P3XL24FHXixAnWrFnDo48+etV6KSkpABw+fBgAi8XiNXqg/LHFYrlqncDAwNvibA1camtF7bw8juzsbI/1drudCxcuXDPWy5+jsjrl62tSeVJz4sQJVq9e7XG2piIpKSnY7XaOHz8O1P74L9e4cWPCw8M93ut1/fhv3LiRgwcPXvNzAGrfsZ84cSJffPEF69evp0GDBu5yi8WCzWYjJyen0nZVxedceHg4Op3utou/XH5+Pn379iUgIIClS5diMBiuur+UlBROnTqF1WoFan/8l7sV33M1Hf+V6kVis2DBAiIjI+nfv/9V66WnpwMQHR0NQNeuXdmzZ4/HB375F2KLFi3cddauXeuxn9WrV9O1a9cqjODmJCQkYLFYPNqZl5fHli1b3O3s2rUrOTk57Nixw11n3bp1OJ1O9x9C165d+eabbygtLXXXWb16Nc2bNyckJMRd53Z8PcqTmkOHDrFmzRrCwsKuuU16ejpardZ9iaY2x3+lU6dOcf78eY/3el0+/uA6a5ucnEzbtm2vWbe2HHulFBMnTmTp0qWsW7fO63JZcnIyBoPBo10HDx7k5MmTHn/7N/s5ZzQaSU5O9qjjdDpZu3ZtjcYPrs+6Pn36YDQaWb58udfZuoqkp6cTEhLiPltXm+O/0q34nqup+CtV7d2Vq5nD4VBxcXFqypQpHuWHDx9Wr7/+utq+fbs6duyY+vzzz1Xjxo3VXXfd5a5TPgyuT58+Kj09Xa1cuVJFRERUOAzu2WefVfv371dz5sypkeHe+fn5aufOnWrnzp0KUDNnzlQ7d+50j/qZPn26Cg4OVp9//rnavXu3GjRoUIXDvdu3b6+2bNmivv32W9W0aVOP4b45OTkqKipKPfjgg2rv3r1q8eLFytfX12vIq16vV3/+85/V/v371SuvvFItw52vFr/NZlP333+/atCggUpPT/cY9lje6/+7775Ts2bNUunp6erIkSNq0aJFKiIiQo0ePbrWx5+fn69+//vfq7S0NHXs2DG1Zs0a1aFDB9W0aVNVUlLi3kdtPf7Xeu8r5Rqu7evrq9577z2v7WvzsX/iiSdUUFCQ2rBhg8f7uqioyF1n/PjxKi4uTq1bt05t375dde3aVXXt2tW9vqo+5xYvXqxMJpNauHCh2rdvnxo3bpwKDg72GG1T3fHn5uaqlJQU1bp1a3X48GGPOna7XSml1PLly9X777+v9uzZow4dOqTeffdd5evrq15++eVaH391fs/VRPyVqfOJzVdffaUAdfDgQY/ykydPqrvuukuFhoYqk8mkEhMT1bPPPusxvl8ppY4fP6769eunzGazCg8PV7/73e88hgkqpdT69etVu3btlNFoVI0bN1YLFiy41WF5Wb9+vQK8ljFjxiilXEO+X3rpJRUVFaVMJpPq1auX12ty/vx5NXLkSOXv768CAwPVQw89pPLz8z3q7Nq1S/3iF79QJpNJxcbGqunTp3u15d///rdq1qyZMhqNqmXLlup///vfLYu73NXiP3bsWIXruGxOox07dqiUlBQVFBSkfHx81B133KHeeustjy/+2hp/UVGR6tOnj4qIiFAGg0E1atRIPfbYY14fOLX1+F/rva+UUnPnzlVms1nl5OR4bV+bj31l7+vLP4OKi4vVk08+qUJCQpSvr68aPHiwysjI8NhPVX3OvfPOOyouLk4ZjUbVuXNntXnz5lsRttu14q/svQGoY8eOKaVc0xq0a9dO+fv7Kz8/P9W2bVv1t7/9TTkcjloff3V/z1V3/JXRKHXZmDYhhBBCiFqsXvSxEUIIIUT9IImNEEIIIeoMSWyEEEIIUWdIYiOEEEKIOkMSGyGEEELUGZLYCCGEEKLOkMRGCCGEEHWGJDZCCCGEqDMksRGinho7diwajQaNRoPBYCAqKop7772X+fPn43Q6veqnpqai0+nYtm0bAFarlZYtW3rcPbjcc889R0JCAvn5+TgcDqZPn05SUhJms5nQ0FBSUlL44IMPbridGo2GsLAw+vbty+7duz3qaTQali1b5vG4fAkMDKRTp058/vnnAPTo0cNj/ZVLjx49AIiPj+ftt9/2atOrr75Ku3btrqv9QojqJYmNEPVY3759ycjI4Pjx43z55Zfcc889PP300wwYMAC73e6ud/LkSb777jsmTpzI/PnzATCZTHz00UcsXLiQr776yl138+bNzJo1i4ULFxIQEMBrr73GrFmzeOONN9i3bx/r169n3LhxXnecvp52ZmRksHbtWvR6PQMGDLjmdgsWLCAjI4Pt27fTrVs3hg0bxp49e1iyZIl7f1u3bgVgzZo17rIlS5Zcd9uEELcXfU03QAhRc0wmExaLBYDY2Fg6dOhAly5d6NWrFwsXLuTRRx8FXAnCgAEDeOKJJ+jSpQszZ87EbDaTnJzMCy+8wCOPPMLevXvx8fHhoYce4qmnnuLuu+8GYPny5Tz55JP86le/cj/v9dxhu7J2WiwWnn/+ebp3787Zs2eJiIiodLvg4GAsFgsWi4U33niDv/zlL6xfv55Jkya565SUlAAQFhbmfg4hRO0lZ2yEEB569uxJ27Zt3WctlFIsWLCABx54gKSkJBITE/nPf/7jrv/CCy9gsViYNGkSL774IhqNhrfeesu93mKxsG7dOs6ePVsl7SsoKGDRokUkJiYSFhZ2XdvY7XbmzZsHgNForJJ2CCFuT3LGRgjhJSkpyd2HZc2aNRQVFZGamgrAAw88wLx583jwwQcB0Ov1fPTRRyQnJ+N0Otm0aRM+Pj7ufc2cOZNhw4ZhsVho2bIld955J4MGDaJfv37X3Z4vvvgCf39/AAoLC4mOjuaLL75Aq736/2YjR45Ep9NRXFyM0+kkPj6e4cOH39BrMWXKFF588UWPMpvNRosWLW5oP0KI6iFnbIQQXpRSaDQaAObPn8+IESPQ613/B40cOZJNmzZx5MgRd/0WLVowdOhQ7r33Xjp27OixrxYtWrB37142b97Mww8/THZ2NgMHDnRf5roe99xzD+np6aSnp7N161ZSU1Pp168fJ06cuOp2s2bNIj09nS+//JIWLVrwwQcfEBoaet3PC/Dss8+6n7t8GT9+/A3tQwhRfSSxEUJ42b9/PwkJCVy4cIGlS5fy7rvvotfr0ev1xMbGYrfb3Z2Iy5Wvr4hWq6VTp04888wzLFmyhIULFzJv3jyOHTt2Xe3x8/MjMTGRxMREOnXqxAcffEBhYSHvv//+VbezWCwkJibSp08fFixYwIgRI8jOzr6+F6FMeHi4+7nLlxtNjoQQ1UcSGyGEh3Xr1rFnzx6GDh3Kxx9/TIMGDdi1a5fHGYv/+7//Y+HChTgcjp/1HOWXcQoLC3/W9hqNBq1WS3Fx8XVv07lzZ5KTk3nzzTd/1nMKIWoH6WMjRD1mtVrJzMzE4XCQlZXFypUrmTZtGgMGDGD06NEkJyczbNgwWrVq5bFdw4YNmTp1KitXrqR///5XfY5hw4bRrVs37rzzTiwWC8eOHWPq1Kk0a9aMpKSkG2onwMWLF5k9ezYFBQUMHDjwhuJ95plnGDx4MM899xyxsbE3tK0QonaQMzZC1GMrV64kOjqa+Ph4+vbty/r16/nrX//K559/Tnp6Ort27WLo0KFe2wUFBdGrVy/3SKOrSU1N5b///S8DBw6kWbNmjBkzhqSkJFatWlXppavK2hkdHU1KSgrbtm3j008/dU+kd7369u1LQkKCnLURog7TKKVUTTdCCCGEEKIqyBkbIYQQQtQZktgIIWrMyZMn8ff3r3Q5efJkTTdRCFHLyKUoIUSNsdvtHD9+vNL18fHx190PRwghQBIbIYQQQtQhcilKCCGEEHWGJDZCCCGEqDMksRFCCCFEnSGJjRBCCCHqDElshBBCCFFnSGIjhBBCiDpDEhshhBBC1BmS2AghhBCizvj/2+Ww40+56vYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Merge X_train and Y_train into a single DataFrame\n", + "data = pd.concat([X_train, Y_train], axis=1)\n", + "\n", + "# Highlighted data point\n", + "highlighted_index = 2 # Index of the data point to highlight\n", + "highlighted_value = data.loc[highlighted_index, 'DAYS_BIRTH']\n", + "\n", + "# Plotting\n", + "fig, ax = plt.subplots()\n", + "sns.histplot(data=data, x='DAYS_BIRTH', hue='TARGET', kde=True, stat='density', multiple='stack', ax=ax)\n", + "\n", + "# Scatter plot for each category\n", + "for target_value, color in zip([0, 1], ['blue', 'red']):\n", + " target_data = data[data['TARGET'] == target_value]\n", + " ax.scatter(target_data['DAYS_BIRTH'], np.zeros_like(target_data['DAYS_BIRTH']), color=color, label=f'TARGET: {target_value}', zorder=5)\n", + "\n", + "# Highlight the specific data point\n", + "highlighted_target = Y_train.loc[highlighted_index, 'TARGET']\n", + "highlighted_color = 'red' if highlighted_target == 1 else 'blue'\n", + "ax.scatter(highlighted_value, 0, color=highlighted_color, label='Highlighted Point', zorder=5)\n", + "\n", + "# Customize plot\n", + "ax.set_xlabel('DAYS_BIRTH')\n", + "ax.set_ylabel('Density')\n", + "ax.set_title('Stacked Distribution Plot of DAYS_BIRTH with Highlighted Point')\n", + "\n", + "# Display legend\n", + "ax.legend(title='Categories')\n", + "\n", + "# Display plot\n", + "plt.show(fig)" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "7a22d8da", + "id": "442df539", "metadata": {}, "outputs": [], "source": [] diff --git a/Model.py b/Model.py deleted file mode 100644 index 2b33fb0..0000000 --- a/Model.py +++ /dev/null @@ -1,24 +0,0 @@ -!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Fri Jan 26 13:08:50 2024 - -@author: markobriesemann -""" - -# 1. Library imports -import pandas as pd -import joblib -import mlflow - -sklearn_pyfunc = mlflow.lightgbm.load_model(model_uri="mlflow_model_LightGBM") - - -def predict_species(): - model_fname_ = 'model.pkl' - model = joblib.load(self.model_fname_) - data_in = - prediction = model.predict(data_in) - probability = model.predict_proba(data_in).max() - return prediction[0], probability - diff --git a/main.py b/main.py index f7a805b..6580967 100644 --- a/main.py +++ b/main.py @@ -52,7 +52,6 @@ def predict_credit_score(data: DataPoint): sklearn_pyfunc = mlflow.lightgbm.load_model(model_uri="LightGBM") - prediction = sklearn_pyfunc.predict_proba([data.data_point]).max() return {