-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
945 lines (927 loc) · 43.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import annotations
#------------------------------------------------------------------------------
# Standard Library Imports - 3.13 std libs **ONLY**
#------------------------------------------------------------------------------
import os
import io
import re
import sys
import ast
import dis
import mmap
import json
import uuid
import site
import time
import cmath
import errno
import shlex
import ctypes
import signal
import random
import pickle
import socket
import struct
import pstats
import shutil
import tomllib
import decimal
import pathlib
import logging
import inspect
import asyncio
import hashlib
import argparse
import cProfile
import platform
import tempfile
import mimetypes
import functools
import linecache
import traceback
import threading
import importlib
import subprocess
import tracemalloc
import http.server
from math import sqrt
from io import StringIO
from array import array
from queue import Queue, Empty
from abc import ABC, abstractmethod
from enum import Enum, auto, StrEnum
from collections import namedtuple
from operator import mul
from typing import (
Any, Dict, List, Optional, Union, Callable, TypeVar,
Tuple, Generic, Set, Coroutine, Type, NamedTuple,
ClassVar, Protocol, runtime_checkable, AsyncIterator
)
from types import (
SimpleNamespace, ModuleType, MethodType,
FunctionType, CodeType, TracebackType, FrameType
)
from dataclasses import dataclass, field
from functools import reduce, lru_cache, partial, wraps
from collections.abc import Iterable, Mapping
from datetime import datetime
from pathlib import Path, PureWindowsPath
from contextlib import contextmanager, asynccontextmanager
from concurrent.futures import ThreadPoolExecutor
from functools import reduce
from importlib.util import spec_from_file_location, module_from_spec
try:
__all__ = []
if not __all__:
__all__ = []
else:
__all__ += __file__
except ImportError:
__all__ = []
__all__ += __file__
IS_WINDOWS = os.name == 'nt'
IS_POSIX = os.name == 'posix'
if IS_WINDOWS:
from ctypes import windll
from ctypes import wintypes
from ctypes.wintypes import HANDLE, DWORD, LPWSTR, LPVOID, BOOL
from pathlib import PureWindowsPath
def set_process_priority(priority: int):
windll.kernel32.SetPriorityClass(wintypes.HANDLE(-1), priority)
WINDOWS_SANDBOX_DEFAULT_DESKTOP = Path(PureWindowsPath(r'C:\Users\WDAGUtilityAccount\Desktop'))
#------------------------------------------------------------------------------
# Type Definitions
#------------------------------------------------------------------------------
"""Type Definitions for Morphological Source Code.
These type definitions establish the foundational elements of the MSC framework,
enabling the representation of various constructs as first-class citizens.
- T: Represents Type structures (static).
- V: Represents Value spaces (dynamic).
- C: Represents Computation spaces (transformative).
The relationships between these types are crucial for maintaining the
nominative invariance across transformations.
1. **Identity Preservation (T)**: The type structure remains consistent across
transformations.
2. **Content Preservation (V)**: The value space is dynamically maintained,
allowing for fluid data manipulation.
3. **Behavioral Preservation (C)**: The computation space is transformative,
enabling the execution of operations that modify the state of the system.
Homoiconism dictates that, upon runtime validation, all objects are code and data. To facilitate this;
we utilize first class functions and a static typing system.
This maps perfectly to the three aspects of nominative invariance:
Identity preservation, T: Type structure (static)
Content preservation, V: Value space (dynamic)
Behavioral preservation, C: Computation space (transformative)
[[T (Type) ←→ V (Value) ←→ C (Callable)]] == 'quantum infodynamics, a triparte element; our Particle()(s)'
Meta-Language (High Level)
↓ [First Collapse - Compilation]
Intermediate Form (Like a quantum superposition)
↓ [Second Collapse - Runtime]
Executed State (Measured Reality)
What's conserved across these transformations:
Nominative relationships
Information content
Causal structure
Computational potential"""
# Particle()(s) are a wrapper that can represent any Python object, including values, methods, functions, and classes
"""The type system forms the "boundary" theory
The runtime forms the "bulk" theory
The homoiconic property ensures they encode the same information
The holoiconic property enables:
States as quantum superpositions
Computations as measurements
Types as boundary conditions
Runtime as bulk geometry"""
T = TypeVar('T', bound=any) # T for TypeVar, V for ValueVar. Homoicons are T+V, 'Particle()(s)' are all-three
V = TypeVar('V', bound=Union[int, float, str, bool, list, dict, tuple, set, object, Callable, type])
C = TypeVar('C', bound=Callable[..., Any]) # callable 'T'/'V' (including all objects) + 'FFI'
# Callable, 'C' TypeVar(s) include Foreign Function Interface, git and (power)shell, principally
DataType = StrEnum('DataType', 'INTEGER FLOAT STRING BOOLEAN NONE LIST TUPLE') # 'T' vars (stdlib)
PyType = StrEnum('ModuleType', 'FUNCTION CLASS MODULE OBJECT')
# PyType: first class functions applies to objects, classes and even modules, 'C' vars which are not FFI(s)
AccessLevel = StrEnum('AccessLevel', 'READ WRITE EXECUTE ADMIN USER')
QuantumState = StrEnum('QuantumState', ['SUPERPOSITION', 'ENTANGLED', 'COLLAPSED', 'DECOHERENT'])
class MemoryState(StrEnum):
ALLOCATED = auto()
INITIALIZED = auto()
PAGED = auto()
SHARED = auto()
DEALLOCATED = auto()
class __QuantumState__(StrEnum):
SUPERPOSITION = "SUPERPOSITION"
COLLAPSED = "COLLAPSED"
ENTANGLED = "ENTANGLED"
DECOHERENT = "DECOHERENT"
DEGENERATE = "DEGENERATE"
COHERENT = "COHERENT"
@dataclass
class StateVector:
amplitude: complex
state: __QuantumState__
coherence_length: float
entropy: float
@dataclass
class MemoryVector:
address_space: complex
coherence: float
entanglement: float
state: MemoryState
size: int
class Symmetry(Protocol, Generic[T, V, C]):
def preserve_identity(self, type_structure: T) -> T: ...
def preserve_content(self, value_space: V) -> V: ...
def preserve_behavior(self, computation: C) -> C: ...
class QuantumNumbers(NamedTuple):
n: int # Principal quantum number
l: int # Azimuthal quantum number
m: int # Magnetic quantum number
s: float # Spin quantum number
class QuantumNumber:
def __init__(self, hilbert_space: HilbertSpace):
self.hilbert_space = hilbert_space
self.amplitudes = [complex(0, 0)] * hilbert_space.dimension
self._quantum_numbers = None
@property
def quantum_numbers(self):
return self._quantum_numbers
@quantum_numbers.setter
def quantum_numbers(self, numbers: QuantumNumbers):
n, l, m, s = numbers
if self.hilbert_space.is_fermionic():
# Fermionic quantum number constraints
if not (n > 0 and 0 <= l < n and -l <= m <= l and s in (-0.5, 0.5)):
raise ValueError("Invalid fermionic quantum numbers")
elif self.hilbert_space.is_bosonic():
# Bosonic quantum number constraints
if not (n >= 0 and l >= 0 and m >= 0 and s == 0):
raise ValueError("Invalid bosonic quantum numbers")
self._quantum_numbers = numbers
class QuantumParticle(Protocol):
"""Base protocol for mathematical operations with quantum properties.
This is a quantum 'protocol' rather than a quantum 'class' like what appear
before and after this, because this is more like an ABC but which applies to
meta-resolving intepreted python object, but not necessarilly the only, or
indeed, the active one.
Enables AP lazy C meta-pythonic runtime (mutlti-instantiation) resolution."""
id: str
quantum_numbers: QuantumNumbers
quantum_state: '_QuantumState'
def __init__(self, *args, **kwargs):
pass
def __add__(self, other: 'MathProtocol') -> 'MathProtocol':
"""Add/Commute two mathematical objects together"""
raise NotImplementedError
def __sub__(self, other: 'MathProtocol') -> 'MathProtocol':
"""Subtract two mathematical objects"""
raise NotImplementedError
_decimal_places = decimal.getcontext()
"""py objects are implemented as C structures.
typedef struct _object {
Py_ssize_t ob_refcnt;
PyTypeObject *ob_type;
} PyObject; """
# Everything in Python is an object, and every object has a type. The type of an object is a class. Even the
# type class itself is an instance of type. Functions defined within a class become method objects when
# accessed through an instance of the class
"""Functions are instances of the function class
Methods are instances of the method class (which wraps functions)
Both function and method are subclasses of object
homoiconism dictates the need for a way to represent all Python constructs as first class citizen(fcc):
(functions, classes, control structures, operations, primitive values)
nominative 'true OOP'(SmallTalk) and my specification demands code as data and value as logic, structure.
The Particle(), our polymorph of object and fcc-apparent at runtime, always represents the literal source code
which makes up their logic and possess the ability to be stateful source code data structure. """
# HOMOICONISTIC morphological source code displays 'modified quine' behavior
# within a validated runtime, if and only if the valid python interpreter
# has r/w/x permissions to the source code file and some method of writing
# state to the source code file is available. Any interruption of the
# '__exit__` method or misuse of '__enter__' will result in a runtime error
# AP (Availability + Partition Tolerance): A system that prioritizes availability and partition
# tolerance may use a distributed architecture with eventual consistency (e.g., Cassandra or Riak).
# This ensures that the system is always available (availability), even in the presence of network
# partitions (partition tolerance). However, the system may sacrifice consistency, as nodes may have
# different views of the data (no consistency). A homoiconic piece of source code is eventually
# consistent, assuming it is able to re-instantiated.
#------------------------------------------------------------------------------
# Particle Class and Decorator
#------------------------------------------------------------------------------
@runtime_checkable
class Particle(Protocol):
"""
Protocol defining the minimal interface for Particles in the Morphological
Source Code framework.
Particles represent the fundamental building blocks of the system, encapsulating
both data and behavior. Each Particle must have a unique identifier.
"""
id: str
class FundamentalParticle(Particle, Protocol):
"""
A base class for fundamental particles, incorporating quantum numbers.
"""
quantum_numbers: QuantumNumbers
@property
@abstractmethod
def statistics(self) -> str:
"""
Should return 'fermi-dirac' for fermions or 'bose-einstein' for bosons.
"""
pass
class QuantumParticle(Protocol):
id: str
quantum_numbers: QuantumNumbers
quantum_state: '_QuantumState'
particle_type: ParticleType
class Fermion(FundamentalParticle, Protocol):
"""
Fermions follow the Pauli exclusion principle.
"""
@property
def statistics(self) -> str:
return 'fermi-dirac'
class Boson(FundamentalParticle, Protocol):
"""
Bosons follow the Bose-Einstein statistics.
"""
@property
def statistics(self) -> str:
return 'bose-einstein'
class Electron(Fermion):
def __init__(self, quantum_numbers: QuantumNumbers):
self.quantum_numbers = quantum_numbers
class Photon(Boson):
def __init__(self, quantum_numbers: QuantumNumbers):
self.quantum_numbers = quantum_numbers
def __particle__(cls: Type[{T, V, C}]) -> Type[{T, V, C}]:
"""
Decorator to create a homoiconic Particle.
This decorator enhances a class to ensure it adheres to the Particle protocol,
providing it with a unique identifier upon initialization. This allows
the class to be treated as a first-class citizen in the MSC framework.
Parameters:
- cls: The class to be transformed into a homoiconic Particle.
Returns:
- The modified class with homoiconic properties.
"""
original_init = cls.__init__
def new_init(self, *args, **kwargs):
original_init(self, *args, **kwargs)
if not hasattr(self, 'id'):
self.id = hashlib.sha256(self.__class__.__name__.encode('utf-8')).hexdigest()
cls.__init__ = new_init
return cls
@dataclass
class DegreeOfFreedom:
operator: QuantumOperator
state_space: HilbertSpace
constraints: List[Symmetry]
def evolve(self, state: StateVector) -> StateVector:
# Apply constraints
for symmetry in self.constraints:
state = symmetry.preserve_behavior(state)
# Apply operator
return self.operator.apply(state)
class _QuantumState:
def __init__(self, hilbert_space: HilbertSpace):
self.hilbert_space = hilbert_space
self.amplitudes = [complex(0, 0)] * hilbert_space.dimension
self.is_normalized = False
def normalize(self):
norm = sqrt(sum(abs(x)**2 for x in self.amplitudes))
if norm != 0:
self.amplitudes = [x / norm for x in self.amplitudes]
self.is_normalized = True
elif norm == 0:
raise ValueError("State vector norm cannot be zero.")
self.state_vector = [x / norm for x in self.state_vector]
def apply_operator(self, operator: List[List[complex]]):
if len(operator) != self.dimension:
raise ValueError("Operator dimensions do not match state dimensions.")
self.state_vector = [
sum(operator[i][j] * self.state_vector[j] for j in range(self.dimension))
for i in range(self.dimension)
]
self.normalize()
def apply_quantum_symmetry(self):
if self.hilbert_space.is_fermionic():
# Apply antisymmetric projection or handling of fermions
self.apply_fermionic_antisymmetrization()
elif self.hilbert_space.is_bosonic():
# Apply symmetric projection or handling of bosons
self.apply_bosonic_symmetrization()
def apply_fermionic_antisymmetrization(self):
# Logic to handle fermionic antisymmetrization
pass
def apply_bosonic_symmetrization(self):
# Logic to handle bosonic symmetrization
pass
class QuantumOperator:
def __init__(self, dimension: int):
self.hilbert_space = HilbertSpace(dimension)
self.matrix: List[List[complex]] = [[complex(0,0)] * dimension] * dimension
def apply(self, state_vector: StateVector) -> StateVector:
# Combine both mathematical and runtime transformations
quantum_state = QuantumState(
[state_vector.amplitude],
self.hilbert_space.dimension
)
# Apply operator
result = self.matrix_multiply(quantum_state)
return StateVector(
amplitude=result.state_vector[0],
state=state_vector.state,
coherence_length=state_vector.coherence_length * 0.9, # Decoherence
entropy=state_vector.entropy + 0.1 # Information gain
)
def apply_to(self, state: '_QuantumState'):
if state.hilbert_space.dimension != self.hilbert_space.dimension:
raise ValueError("Hilbert space dimensions don't match")
# Implement fermionic / bosonic specific operator logic here
result = [sum(self.matrix[i][j] * state.amplitudes[j]
for j in range(self.hilbert_space.dimension))
for i in range(self.hilbert_space.dimension)]
state.amplitudes = result
state.normalize()
"""
In thermodynamics, extensive properties depend on the amount of matter (like energy or entropy), while intensive properties (like temperature or pressure) are independent of the amount. Zero-copy or the C std-lib buffer pointer derefrencing method may be interacting with Landauer's Principle in not-classical ways, potentially maintaining 'intensive character' (despite correlated d/x raise in heat/cost of computation, underlying the computer abstraction itself, and inspite of 'reversibility'; this could be the 'singularity' of entailment, quantum informatics, and the computationally irreducible membrane where intensive character manifests or fascilitates the emergence of extensive behavior and possibility). Applying this analogy to software architecture, you might think of:
Extensive optimizations as focusing on reducing the amount of “work” (like data copying, memory allocation, or modification). This is the kind of efficiency captured by zero-copy techniques and immutability: they reduce “heat” by avoiding unnecessary entropy-increasing operations.
Intensive optimizations would be about maximizing the “intensity” or informational density of operations—essentially squeezing more meaning, functionality, or insight out of each “unit” of computation or data structure.
If we take information as the fundamental “material” of computation, we might ask how we can concentrate and use it more efficiently. In the same way that a materials scientist looks at atomic structures, we might look at data structures not just in terms of speed or memory but as densely packed packets of potential computation.
The future might lie in quantum-inspired computation or probabilistic computation that treats data structures and algorithms as intensively optimized, differentiated structures. What does this mean?
Differentiation in Computation: Imagine that a data structure could be “differentiable,” i.e., it could smoothly respond to changes in the computation “field” around it. This is close to what we see in machine learning (e.g., gradient-based optimization), but it could be applied more generally to all computation.
Dense Information Storage and Use: Instead of treating data as isolated, we might treat it as part of a dense web of informational potential—where each data structure holds not just values, but metadata about the potential operations it could undergo without losing its state.
If data structures were treated like atoms with specific “energy levels” (quantum number of Fermions/Bosons) we could think of them as having intensive properties related to how they transform, share, and conserve information. For instance:
Higher Energy States (Mutable Structures): Mutable structures would represent “higher energy” forms that can be modified but come with the thermodynamic cost of state transitions.
Lower Energy States (Immutable Structures): Immutable structures would be lower energy and more stable, useful for storage and retrieval without transformation.
Such an approach would modulate data structures like we do materials, seeking stable configurations for long-term storage and flexible configurations for computation.
Maybe what we’re looking for is a computational thermodynamics, a new layer of software design that considers the energetic cost of computation at every level of the system:
Data Structures as Quanta: Rather than thinking of memory as passive, this approach would treat each structure as a dynamic, interactive quantum of information that has both extensive (space, memory) and intensive (potential operations, entropy) properties.
Algorithms as Energy Management: Each algorithm would be not just a function but a thermodynamic process that operates within constraints, aiming to minimize entropy production and energy consumption.
Utilize Information to its Fullest Extent: For example, by reusing results across parallel processes in ways we don’t currently prioritize.
Operate in a Field-like Environment: Computation could occur in “fields” where each computation affects and is affected by its informational neighbors, maximizing the density of computation per unit of data and memory.
In essence, we’re looking at the possibility of a thermodynamically optimized computing environment, where each memory pointer and buffer act as elements in a network of information flow, optimized to respect the principles of both Landauer’s and Shannon’s theories.
"""
class HoloiconicTransform(Generic[T, V, C]):
@staticmethod
def flip(value: V) -> C:
return lambda: value
@staticmethod
def flop(computation: C) -> V:
return computation()
@staticmethod
def entangle(a: V, b: V) -> Tuple[C, C]:
shared_state = [a, b]
return (lambda: shared_state[0], lambda: shared_state[1])
class SymmetryBreaker(Generic[T, V, C]):
def __init__(self):
self._state = StateVector(
amplitude=complex(1, 0),
state=__QuantumState__.SUPERPOSITION,
coherence_length=1.0,
entropy=0.0
)
def break_symmetry(self, original: Symmetry[T, V, C], breaking_factor: float) -> tuple[Symmetry[T, V, C], StateVector]:
new_entropy = self._state.entropy + breaking_factor
new_coherence = self._state.coherence_length * (1 - breaking_factor)
new_state = __QuantumState__.SUPERPOSITION if new_coherence > 0.5 else __QuantumState__.COLLAPSED
new_state_vector = StateVector(
amplitude=self._state.amplitude * complex(1 - breaking_factor, breaking_factor),
state=new_state,
coherence_length=new_coherence,
entropy=new_entropy
)
return original, new_state_vector
class HoloiconicQuantumParticle(Generic[T, V, C]):
def __init__(self, quantum_numbers: QuantumNumbers):
self.hilbert_space = HilbertSpace(n_qubits=quantum_numbers.n)
self.quantum_state = _QuantumState(self.hilbert_space)
self.quantum_state.quantum_numbers = quantum_numbers
def superposition(self, other: 'HoloiconicQuantumParticle'):
"""Creates quantum superposition of two particles"""
if self.hilbert_space.dimension != other.hilbert_space.dimension:
raise ValueError("Incompatible Hilbert spaces")
result = HoloiconicQuantumParticle(self.quantum_state.quantum_numbers)
for i in range(self.hilbert_space.dimension):
result.quantum_state.amplitudes[i] = (
self.quantum_state.amplitudes[i] +
other.quantum_state.amplitudes[i]
) / sqrt(2)
return result
def collapse(self) -> V:
"""Collapses quantum state to classical value"""
# Simplified collapse mechanism
max_amplitude_idx = max(range(len(self.quantum_state.amplitudes)),
key=lambda i: abs(self.quantum_state.amplitudes[i]))
return max_amplitude_idx
@dataclass
class HilbertSpace:
dimension: int
states: List[QuantumState] = field(default_factory=list)
def __init__(self, n_qubits: int, particle_type: ParticleType):
if particle_type not in (ParticleType.FERMION, ParticleType.BOSON):
raise ValueError("Unsupported particle type")
self.n_qubits = n_qubits
self.particle_type = particle_type
if self.is_fermionic():
self.dimension = 2 ** n_qubits # Fermi-Dirac: 2^n dimensional
elif self.is_bosonic():
self.dimension = n_qubits + 1 # Bose-Einstein: Allow occupation numbers
def is_fermionic(self) -> bool:
return self.particle_type == ParticleType.FERMION
def is_bosonic(self) -> bool:
return self.particle_type == ParticleType.BOSON
def add_state(self, state: QuantumState):
if state.dimension != self.dimension:
raise ValueError("State dimension does not match Hilbert space dimension.")
self.states.append(state)
def quantum_transform(particle: HoloiconicQuantumParticle[T, V, C]) -> HoloiconicQuantumParticle[T, V, C]:
"""Quantum transformation preserving holoiconic properties"""
if particle.hilbert_space.is_fermionic():
# Apply transformations particular to fermions
pass
elif particle.hilbert_space.is_bosonic():
# Apply transformations particular to bosons
pass
hadamard = QuantumOperator(particle.hilbert_space)
hadamard.apply_to(particle.quantum_state)
return particle
class QuantumField:
"""
Represents a quantum field capable of interacting with other fields.
Attributes:
- field_type: Can be 'fermion' or 'boson'.
- dimension: The dimensionality of the field.
- normal_vector: A unit vector in complex space representing the dipole direction.
"""
def __init__(self, field_type: str, dimension: int):
self.field_type = field_type
self.dimension = dimension
self.normal_vector = self._generate_normal_vector()
def _generate_normal_vector(self) -> complex:
"""
Generate a random unit vector in complex space.
This vector represents the dipole direction in the field.
"""
angle = random.uniform(0, 2 * cmath.pi)
return cmath.rect(1, angle) # Unit complex number (magnitude 1)
def interact(self, other_field: 'QuantumField') -> Optional['QuantumField']:
"""
Define interaction between two fields.
Returns a new QuantumField or None if fields annihilate.
"""
if self.field_type == 'fermion' and other_field.field_type == 'fermion':
# Fermion-Fermion annihilation (quantum collapse)
return self._annihilate(other_field)
elif self.field_type == 'fermion' and other_field.field_type == 'boson':
# Fermion-Boson interaction: message passing (data transfer)
return self._pass_message(other_field)
# Implement any further interactions if needed, such as boson-boson.
return None
def _annihilate(self, other_field: 'QuantumField') -> Optional['QuantumField']:
"""
Fermion-Fermion annihilation: fields cancel each other out.
"""
print(f"Fermion-Fermion annihilation: Field {self.normal_vector} annihilates {other_field.normal_vector}")
return None # Fields annihilate, leaving no field
def _pass_message(self, other_field: 'QuantumField') -> 'QuantumField':
"""
Fermion-Boson interaction: message passing (data transmission).
Returns a new QuantumField in a bosonic state.
"""
print(f"Fermion-Boson message passing: Field {self.normal_vector} communicates with {other_field.normal_vector}")
# In this case, the fermion 'sends' a message to the boson endpoint.
return QuantumField('boson', self.dimension) # Transform into a bosonic state after interaction
class LaplaceDomain(Generic[T]):
def __init__(self, operator: QuantumOperator):
self.operator = operator
def transform(self, time_domain: StateVector) -> StateVector:
# Convert to frequency domain
s_domain = self.to_laplace(time_domain)
# Apply operator in frequency domain
result = self.operator.apply(s_domain)
# Convert back to time domain
return self.inverse_laplace(result)
class QuantumPage:
def __init__(self, size: int):
self.vector = MemoryVector(
address_space=complex(1, 0),
coherence=1.0,
entanglement=0.0,
state=MemoryState.ALLOCATED,
size=size
)
self.references: Dict[int, weakref.ref] = {}
def entangle(self, other: 'QuantumPage') -> float:
entanglement_strength = min(1.0, (self.vector.coherence + other.vector.coherence) / 2)
self.vector.entanglement = entanglement_strength
other.vector.entanglement = entanglement_strength
return entanglement_strength
class QuantumMemoryManager(Generic[T, V, C]):
def __init__(self, total_memory: int):
self.total_memory = total_memory
self.allocated_memory = 0
self.pages: Dict[int, QuantumPage] = {}
self.page_size = 4096
def allocate(self, size: int) -> Optional[QuantumPage]:
if self.allocated_memory + size > self.total_memory:
return None
pages_needed = (size + self.page_size - 1) // self.page_size
total_size = pages_needed * self.page_size
page = QuantumPage(total_size)
page_id = id(page)
self.pages[page_id] = page
self.allocated_memory += total_size
return page
def share_memory(self, source_runtime_id: int, target_runtime_id: int, page: QuantumPage) -> bool:
if page.vector.state == MemoryState.DEALLOCATED:
return False
page.references[source_runtime_id] = weakref.ref(source_runtime_id)
page.references[target_runtime_id] = weakref.ref(target_runtime_id)
page.vector.state = MemoryState.SHARED
page.vector.coherence *= 0.9
return True
def measure_memory_state(self, page: QuantumPage) -> MemoryVector:
page.vector.coherence *= 0.8
if page.vector.coherence < 0.3 and page.vector.state != MemoryState.PAGED:
page.vector.state = MemoryState.PAGED
return page.vector
def deallocate(self, page: QuantumPage):
page_id = id(page)
if page.vector.entanglement > 0:
for ref in page.references.values():
runtime_id = ref()
if runtime_id is not None:
runtime_page = self.pages.get(runtime_id)
if runtime_page:
runtime_page.vector.coherence *= (1 - page.vector.entanglement)
page.vector.state = MemoryState.DEALLOCATED
self.allocated_memory -= page.vector.size
del self.pages[page_id]
class QuineRuntime(Generic[T, V, C]):
def __init__(self):
self.symmetry_breaker = SymmetryBreaker()
self.state_history: List[StateVector] = []
def __enter__(self):
self.state_history.append(StateVector(
amplitude=complex(1, 0),
state=QuantumState.SUPERPOSITION,
coherence_length=1.0,
entropy=0.0
))
return self
def __exit__(self, exc_type, exc_val, exc_tb):
final_state = self.state_history[-1]
if final_state.state != QuantumState.COLLAPSED:
self.measure()
def measure(self) -> StateVector:
current_state = self.state_history[-1]
if current_state.state == QuantumState.COLLAPSED:
return current_state
collapsed_state = StateVector(
amplitude=abs(current_state.amplitude),
state=QuantumState.COLLAPSED,
coherence_length=0.0,
entropy=current_state.entropy + 1.0
)
self.state_history.append(collapsed_state)
return collapsed_state
def replicate(self) -> 'QuineRuntime[T, V, C]':
new_runtime = QuineRuntime()
current_state = self.state_history[-1]
entangled_state = StateVector(
amplitude=current_state.amplitude,
state=QuantumState.ENTANGLED,
coherence_length=current_state.coherence_length,
entropy=current_state.entropy
)
new_runtime.state_history.append(entangled_state)
return new_runtime
class QuantumRuntimeMemory(Generic[T, V, C]):
def __init__(self, memory_size: int):
self.memory_manager = QuantumMemoryManager(memory_size)
self.runtime_id = id(self)
self.allocated_pages: Dict[int, QuantumPage] = {}
def allocate_memory(self, size: int) -> Optional[QuantumPage]:
page = self.memory_manager.allocate(size)
if page:
self.allocated_pages[id(page)] = page
return page
def share_with_runtime(self, other_runtime: 'QuantumRuntimeMemory[T, V, C]', page: QuantumPage) -> bool:
return self.memory_manager.share_memory(self.runtime_id, other_runtime.runtime_id, page)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
for page in list(self.allocated_pages.values()):
self.memory_manager.deallocate(page)
self.allocated_pages.clear()
@dataclass
class ProjectConfig:
"""Project configuration container"""
name: str
version: str
python_version: str
dependencies: List[str]
dev_dependencies: List[str] = field(default_factory=list)
ruff_config: Dict[str, Any] = field(default_factory=dict)
ffi_modules: List[str] = field(default_factory=list)
src_path: Path = Path("src")
tests_path: Path = Path("tests")
class ProjectManager:
def __init__(self, root_dir: Union[str, Path]):
self.root_dir = Path(root_dir)
self.logger = self._setup_logging()
self.config = self._load_or_create_config()
self.project_config = self._load_project_config()
self.ffi_modules = self.project_config["ffi_modules"]
self._ensure_directory_structure()
def _setup_logging(self) -> logging.Logger:
logger = logging.getLogger(__name__)
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
return logger
def _load_project_config(self) -> Dict[str, Any]:
"""Load project-specific configuration from demiurge.json"""
config_path = self.root_dir / "demiurge.json"
default_config = {
"ffi_modules": [],
"src_path": "src",
"dev_dependencies": [],
"profile_enabled": True,
"platform_specific": {
"priority": 32
}
}
if not config_path.exists():
with open(config_path, 'w') as f:
json.dump(default_config, f, indent=4)
return default_config
with open(config_path) as f:
return json.load(f)
def _load_or_create_config(self) -> ProjectConfig:
pyproject_path = self.root_dir / "pyproject.toml"
if not pyproject_path.exists():
self.logger.info("No pyproject.toml found. Creating default configuration.")
config = ProjectConfig(
name=self.root_dir.name,
version="0.1.0",
python_version=">=3.13",
dependencies=["uvx>=0.1.0","uvx>=0.1.0"],
dev_dependencies=[
"ruff>=0.3.0",
"pytest>=8.0.0",
"pytest-asyncio>=0.23.0"
],
ruff_config={
"line-length": 88,
"target-version": "py313",
"select": ["E", "F", "I", "N", "W"],
"ignore": [],
"fixable": ["A", "B", "C", "D", "E", "F", "I"]
},
ffi_modules=[]
)
self._write_pyproject_toml(config)
return config
with open(pyproject_path, "rb") as f:
data = tomllib.load(f)
return ProjectConfig(
name=data["project"]["name"],
version=data["project"]["version"],
python_version=data["project"]["requires-python"],
dependencies=data["project"].get("dependencies", []),
dev_dependencies=data["project"].get("dev-dependencies", []),
ruff_config=data.get("tool", {}).get("ruff", {}),
ffi_modules=data["project"].get("ffi-modules", []),
src_path=Path(data["project"].get("src-path", "src")),
tests_path=Path(data["project"].get("tests-path", "tests"))
)
def _write_pyproject_toml(self, config: ProjectConfig):
data = {
"project": {
"name": config.name,
"version": config.version,
"requires-python": config.python_version,
"dependencies": config.dependencies,
"dev-dependencies": config.dev_dependencies,
"ffi-modules": config.ffi_modules,
"src-path": str(config.src_path),
"tests-path": str(config.tests_path)
},
"tool": {
"ruff": config.ruff_config
}
}
with open(self.root_dir / "pyproject.toml", "w", encoding='utf-8') as f:
toml_str = tomllib.dumps(data)
f.write(toml_str)
def _ensure_directory_structure(self):
"""Create necessary project directories if they don't exist"""
dirs = [
self.config.src_path,
self.config.tests_path,
self.config.src_path / "ffi"
]
for dir_path in dirs:
(self.root_dir / dir_path).mkdir(parents=True, exist_ok=True)
init_file = self.root_dir / dir_path / "__init__.py"
if not init_file.exists():
init_file.touch()
@contextmanager
def _temp_requirements(self, requirements: List[str]):
"""Create a temporary requirements file"""
with tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False) as f:
f.write('\n'.join(requirements))
temp_path = f.name
try:
yield temp_path
finally:
os.unlink(temp_path)
async def run_uv_command(self, cmd: List[str], timeout: Optional[float] = None) -> subprocess.CompletedProcess:
"""Run a UV command asynchronously with timeout support"""
self.logger.debug(f"Running UV command: {' '.join(cmd)}")
try:
process = await asyncio.create_subprocess_exec(
*cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
try:
stdout, stderr = await asyncio.wait_for(
process.communicate(),
timeout=timeout
)
except asyncio.TimeoutError:
try:
process.terminate()
await process.wait()
except ProcessLookupError:
pass
raise TimeoutError(f"Command timed out after {timeout} seconds")
if process.returncode != 0:
error_msg = stderr.decode()
self.logger.error(f"UV command failed: {error_msg}")
raise RuntimeError(f"UV command failed: {error_msg}")
return subprocess.CompletedProcess(
cmd, process.returncode, stdout.decode(), stderr.decode()
)
except FileNotFoundError:
self.logger.error(f"Command not found: {cmd[0]}")
raise RuntimeError(f"Command not found: {cmd[0]}. Is UV installed?")
async def setup_environment(self):
"""Set up the environment based on mode"""
self.logger.info("Setting up environment...")
# Create virtual environment
await self.run_uv_command(["uv", "venv"])
# Create requirements files
requirements_path = self.root_dir / "requirements.txt"
dev_requirements_path = self.root_dir / "requirements-dev.txt"
# Write main requirements
if self.config.dependencies:
with open(requirements_path, 'w') as f:
f.write('\n'.join(self.config.dependencies) + '\n')
# Write dev requirements
if self.config.dev_dependencies:
with open(dev_requirements_path, 'w') as f:
f.write('\n'.join(self.config.dev_dependencies) + '\n')
# Generate lock file for main requirements
if requirements_path.exists():
self.logger.info("Compiling requirements...")
await self.run_uv_command([
"uv", "pip", "compile",
str(requirements_path),
"--output-file",
str(self.root_dir / "requirements.lock")
])
# Generate lock file for dev requirements
if dev_requirements_path.exists():
self.logger.info("Compiling dev requirements...")
await self.run_uv_command([
"uv", "pip", "compile",
str(dev_requirements_path),
"--output-file",
str(self.root_dir / "requirements-dev.lock")
])
# Install from lock files
if (self.root_dir / "requirements.lock").exists():
self.logger.info("Installing dependencies from lock file...")
await self.run_uv_command([
"uv", "pip", "install",
"-r", str(self.root_dir / "requirements.lock")
])
if (self.root_dir / "requirements-dev.lock").exists():
self.logger.info("Installing dev dependencies from lock file...")
await self.run_uv_command([
"uv", "pip", "install",
"-r", str(self.root_dir / "requirements-dev.lock")
])
# Install the project in editable mode if setup.py exists
if (self.root_dir / "setup.py").exists():
self.logger.info("Installing project in editable mode...")
await self.run_uv_command(["uv", "pip", "install", "-e", "."])
async def run_app(self, module_path: str, *args, timeout: Optional[float] = None):
"""Run the application using Python directly"""
module_path = str(Path(module_path))
cmd = ["python", module_path, *map(str, args)]
self.logger.info(f"Running: {' '.join(cmd)}")
return await self.run_uv_command(cmd, timeout=timeout)
async def run_tests(self):
"""Run tests using pytest"""
await self.run_uv_command(["uvx", "run", "-m", "pytest", str(self.config.tests_path)])
async def run_linter(self):
"""Run Ruff linter"""
await self.run_uv_command(["uvx", "run", "-m", "ruff", "check", "."])
async def format_code(self):
"""Format code using Ruff"""
await self.run_uv_command(["uvx", "run", "-m", "ruff", "format", "."])
async def run_dev_mode(self):
"""Setup and run operations specific to Developer Mode"""
self.logger.info("Running Developer Mode tasks...")
# Setup development environment, dependencies, local servers, etc.
await self.setup_environment()
await self.run_tests()
async def run_admin_mode(self):
"""Setup and run operations specific to Admin Mode"""
self.logger.info("Running Admin Mode tasks...")
# Perform administrative tasks like configuration adjustments and monitoring
async def run_user_mode(self):
"""Setup and run operations specific to User Mode"""
self.logger.info("Running User Mode tasks...")
# Deploy and run the main application
async def teardown(self):
"""Teardown any setup done by modes or setup_environment"""
self.logger.info("Tearing down environment...")
# Clean-up tasks like stopping services
async def main():
"""Main entry point for the project manager"""
parser = argparse.ArgumentParser(description="Mode-based Project Manager")
parser.add_argument("--root", default=".", help="Project root directory")
parser.add_argument("mode", choices=["DEV", "ADMIN", "USER", "TEARDOWN"], help="Mode to execute")
parser.add_argument("--timeout", type=float, help="Timeout in seconds for commands")
args = parser.parse_args()
manager = ProjectManager(args.root)
try:
if args.mode == "DEV":
await manager.run_dev_mode()
elif args.mode == "ADMIN":
await manager.run_admin_mode()
elif args.mode == "USER":
await manager.run_user_mode()
elif args.mode == "TEARDOWN":
await manager.teardown()
except Exception as e:
manager.logger.error(f"Error: {e}")
return 1
return 0
if __name__ == "__main__":
fermion1 = QuantumField('fermion', 1)
fermion2 = QuantumField('fermion', 1)
boson = QuantumField('boson', 1)
# Fermion-Fermion interaction (annihilation)
fermion1.interact(fermion2)
# Fermion-Boson interaction (message passing)
fermion1.interact(boson)
sys.exit(asyncio.run(main()))