-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdiffedit.py
194 lines (167 loc) · 6.62 KB
/
diffedit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# *************************************************************************
# Copyright (2023) ML Group @ RUC
#
# Copyright (2023) SDE-Drag Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# *************************************************************************
import argparse
import os
import torch
from PIL import Image
from diffusers import (DDIMInverseScheduler, DDIMScheduler, StableDiffusionDiffEditPipeline)
from torchvision.utils import save_image
from tqdm.auto import tqdm
from cycle_sde import Sampler, get_img_latent, get_text_embed, set_seed
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--seed",
type=int,
default=1234,
help='random seed'
)
parser.add_argument(
"--img_path",
type=str,
default='assets/origin.png',
help='image path'
)
parser.add_argument(
"--source_prompt",
type=str,
default='a bowl of fruits',
help='prompt of source image'
)
parser.add_argument(
"--target_prompt",
type=str,
default='a bowl of bananas',
help='prompt of target image'
)
parser.add_argument(
"--steps",
type=int,
default=50,
help="discretize [0, T] into 50 steps"
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="classifier-free guidance scale"
)
parser.add_argument(
"--encode_ratio",
type=float,
default=0.7,
help="encode ratio"
)
parser.add_argument(
"--sde",
action='store_true',
help="use diffedit-sde",
)
opt = parser.parse_args()
return opt
def forward(sampler, scheduler, t_begin, latents):
forward_sample = []
forward_x_prev = []
forward_x_prev.append(latents)
# forward process to get x_t0 and record and w'_s as Eq (7, 8)
for t in tqdm(scheduler.timesteps[t_begin:].flip(dims=[0]), desc="SDE Forward"):
forward_sample.append(latents)
latents = sampler.forward_sde(t, latents)
forward_x_prev.append(latents)
return latents, forward_sample, forward_x_prev
def backward(opt, sampler, scheduler, t_begin, latents, mask_image, forward_sample, forward_x_prev,
text_embeddings_origin, text_embeddings_edit):
# cycle_sde sampling as Eq (6)
text_embeddings = [text_embeddings_edit, text_embeddings_origin]
for t in tqdm(scheduler.timesteps[t_begin - 1:-1], desc="SDE Backward"):
latents = sampler.sample(t, latents, forward_sample.pop(), forward_x_prev.pop(), opt.scale, text_embeddings,
sde=True, is_diffedit=True)
latents = latents * mask_image + forward_x_prev[-1] * (1 - mask_image)
return latents
def main():
opt = get_args()
set_seed(opt.seed)
pipeline = StableDiffusionDiffEditPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
safety_checker=None,
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)
pipeline.enable_model_cpu_offload()
pipeline.enable_vae_slicing()
raw_image = Image.open(opt.img_path)
source_prompt = opt.source_prompt
target_prompt = opt.target_prompt
# We use the default DiffEdit pipeline to generate mask.
# Whether it's DiffEdit-SDE or DiffEdit-ODE, both use the same mask.
mask_image = pipeline.generate_mask(
image=raw_image,
source_prompt=source_prompt,
target_prompt=target_prompt,
)
path = f'output/diffedit'
os.makedirs(path, exist_ok=True)
if opt.sde:
t_0 = int(opt.encode_ratio * opt.steps)
t_begin = opt.steps - t_0
vae, tokenizer, text_encoder, unet, scheduler = pipeline.vae, pipeline.tokenizer, pipeline.text_encoder, pipeline.unet, pipeline.scheduler
sampler = Sampler(model=unet, scheduler=scheduler, num_steps=opt.steps)
# get text embeding
device = 'cuda' if torch.cuda.is_available() else 'cpu'
text_embeddings_origin = get_text_embed([source_prompt], tokenizer, text_encoder, device)
text_embeddings_edit = get_text_embed([target_prompt], tokenizer, text_encoder, device)
uncond_embeddings = get_text_embed([""], tokenizer, text_encoder, device)
text_embeddings_edit = torch.cat([uncond_embeddings, text_embeddings_edit])
text_embeddings_origin = torch.cat([uncond_embeddings, text_embeddings_origin])
# get VAE latent
latents = get_img_latent(opt.img_path, vae, device, text_embeddings_origin.dtype)
latents, forward_sample, forward_x_prev = forward(sampler, scheduler, t_begin, latents)
mask_image[mask_image < 0.5] = 0
mask_image[mask_image >= 0.5] = 1
mask_image = torch.from_numpy(mask_image).to(vae.device)
latents = backward(opt, sampler, scheduler, t_begin, latents, mask_image, forward_sample, forward_x_prev,
text_embeddings_origin, text_embeddings_edit)
# VAE decode
latents = 1 / 0.18215 * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
save_image(image, os.path.join(path, 'diffedit-sde.png'))
else:
# We followed the guidelines at https://huggingface.co/docs/diffusers/main/en/using-diffusers/diffedit
# for the implementation of DiffEdit-ODE.
inv_latents = pipeline.invert(
prompt=source_prompt,
image=raw_image,
guidance_scale=opt.scale,
inpaint_strength=opt.encode_ratio,
num_inference_steps=opt.steps,
).latents
image = pipeline(
prompt=target_prompt,
mask_image=mask_image,
image_latents=inv_latents,
negative_prompt=source_prompt,
guidance_scale=opt.scale,
inpaint_strength=opt.encode_ratio,
num_inference_steps=opt.steps,
).images[0]
image.save(os.path.join(path, 'diffedit-ode.png'))
if __name__ == "__main__":
main()