-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_partseg.py
executable file
·393 lines (343 loc) · 17.6 KB
/
train_partseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import os
import sys
import argparse
import logging
import importlib
import datetime
import shutil
from pathlib import Path
from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import open3d as o3d
from datasets import RealData, SceneLabelledData
from models import pointnet2_sem_seg
import provider
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'models'))
classes = ['non-plane', 'plane']
class2label = {cls: i for i, cls in enumerate(classes)}
seg_classes = class2label
seg_label_to_cat = {}
for i, cat in enumerate(seg_classes.keys()):
seg_label_to_cat[i] = cat
def inplace_relu(m):
classname = m.__class__.__name__
if classname.find('ReLU') != -1:
m.inplace=True
def to_categorical(y, num_classes):
""" 1-hot encodes a tensor """
new_y = torch.eye(num_classes)[y.cpu().data.numpy(),]
if (y.is_cuda):
return new_y.cuda()
return new_y
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
torch.nn.init.xavier_normal_(m.weight.data)
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find('Linear') != -1:
torch.nn.init.xavier_normal_(m.weight.data)
torch.nn.init.constant_(m.bias.data, 0.0)
def bn_momentum_adjust(m, momentum):
if isinstance(m, torch.nn.BatchNorm2d) or isinstance(m, torch.nn.BatchNorm1d):
m.momentum = momentum
def add_vote(vote_label_pool, point_idx, pred_label, weight):
B = pred_label.shape[0]
N = pred_label.shape[1]
for b in range(B):
for n in range(N):
if weight[b, n] != 0 and not np.isinf(weight[b, n]):
vote_label_pool[int(point_idx[b, n]), int(pred_label[b, n])] += 1
return vote_label_pool
def parse_args():
parser = argparse.ArgumentParser('Model')
parser.add_argument('--model', type=str, default='pointnet2_sem_seg', help='Model name [default: pointnet2_sem_seg]')
parser.add_argument('--train_path', type=str, default=None, help='Rootpath of data, "./data_scene" [default: None]')
parser.add_argument('--test_path', type=str, default=None, help='Rootpath of data, "./data_scene" [default: None]')
parser.add_argument('--fw', type=float, default=2.0, help='Power of labelsweight [default: 2.0]')
parser.add_argument('--rgb', action="store_true", help='Train with RGB channels [default: False]')
parser.add_argument('--batch_size', type=int, default=256, help='Batch Size during training [default: 16]')
parser.add_argument('--epoch', default=32, type=int, help='Epoch to run [default: 32]')
parser.add_argument('--learning_rate', default=0.001, type=float, help='Initial learning rate [default: 0.001]')
parser.add_argument('--gpu', type=str, default='0', help='GPU to use [default: GPU 0]')
parser.add_argument('--transfer', action="store_true", help='Do transfer learning or not [default: False]')
parser.add_argument('--optimizer', type=str, default='Adam', help='Adam or SGD [default: Adam]')
parser.add_argument('--log_dir', type=str, default=None, help='Log path [default: None]')
parser.add_argument('--decay_rate', type=float, default=1e-4, help='weight decay [default: 1e-4]')
parser.add_argument('--npoint', type=int, default=512, help='Point Number [default: 4096]')
parser.add_argument('--block_size', type=float, default=0.2, help='Point Number [default: 4096]')
parser.add_argument('--step_size', type=int, default=10, help='Decay step for lr decay [default: every 10 epochs]')
parser.add_argument('--lr_decay', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
return parser.parse_args()
def main(args):
def log_string(args_str):
logger.info(args_str)
print(args_str)
'''CREATE DIR'''
timestr = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M'))
experiment_dir = Path('./log/')
experiment_dir.mkdir(exist_ok=True)
experiment_dir = experiment_dir.joinpath('plane_seg')
experiment_dir.mkdir(exist_ok=True)
if args.log_dir is None:
experiment_dir = experiment_dir.joinpath(timestr)
else:
experiment_dir = experiment_dir.joinpath(args.log_dir)
experiment_dir.mkdir(exist_ok=True)
checkpoints_dir = experiment_dir.joinpath('checkpoints/')
checkpoints_dir.mkdir(exist_ok=True)
models_cp_dir = checkpoints_dir.joinpath('models/')
models_cp_dir.mkdir(exist_ok=True)
bestmodels_cp_dir = checkpoints_dir.joinpath('best_models/')
bestmodels_cp_dir.mkdir(exist_ok=True)
log_dir = experiment_dir.joinpath('logs/')
log_dir.mkdir(exist_ok=True)
'''LOG'''
args = parse_args()
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('%s/%s.txt' % (log_dir, args.model))
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
log_string('PARAMETER ...')
log_string(args)
'''HYPER PARAMETER'''
num_classes = 2
num_points = args.npoint
block_size = args.block_size
batch_size = args.batch_size
lr_net = args.learning_rate
epochs = args.epoch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
log_string("using {} device.".format(device))
'''DATASET LOADING'''
log_string('\n\n>>>>>>>> DATASET LOADING <<<<<<<<')
log_string("start loading training data ...")
train_set = RealData(args.train_path, num_classes, num_points, block_size, fw=args.fw, rgb=args.rgb)
train_loader = DataLoader(train_set,
batch_size=batch_size,
shuffle=True,
pin_memory=True,
drop_last=True,
num_workers=0)
log_string("using {} samples for training.".format(train_set.__len__()))
weights = torch.Tensor(train_set.labelweights).to(device)
log_string("\nstart loading testing data ...")
test_set = RealData(args.test_path, num_classes, num_points, block_size, fw=args.fw, rgb=args.rgb)
test_loader = DataLoader(test_set,
batch_size=batch_size,
shuffle=False,
pin_memory=True,
drop_last=True,
num_workers=0)
log_string("using {} samples for testing.".format(test_set.__len__()))
'''MODEL LOADING'''
log_string('\n\n>>>>>>>> MODEL LOADING <<<<<<<<')
MODEL = importlib.import_module(args.model)
shutil.copy('models/%s.py' % args.model, str(experiment_dir))
shutil.copy('models/pointnet2_utils.py', str(experiment_dir))
if args.rgb:
in_channels = 6
else:
in_channels = 3
classifier = MODEL.get_model(in_channels, num_classes).to(device)
criterion = MODEL.get_loss().to(device)
classifier.apply(inplace_relu)
try:
checkpoint = torch.load(str(experiment_dir) + '/checkpoints/best_model.pth')
start_epoch = checkpoint['epoch']
classifier.load_state_dict(checkpoint['model_state_dict'])
log_string('Use pretrain model')
except:
start_epoch = 0
classifier = classifier.apply(weights_init)
if args.transfer == True:
log_string('No existing model, using transfer learning...')
transfer_model = torch.load('./weights/partseg_msg_model.pth')
classifier_state_dict = classifier.state_dict()
for key in transfer_model['model_state_dict'].keys():
if key in classifier_state_dict.keys():
if transfer_model['model_state_dict'][key].shape == classifier_state_dict[key].shape:
classifier_state_dict[key] = transfer_model['model_state_dict'][key]
else:
log_string('No existing model, starting training from scratch...')
if args.transfer == True:
require_grad_layer = ["conv0", "sa1", "conv1", "conv2"]
for param in classifier.named_parameters():
if param[0][:3] in require_grad_layer or param[0][:5] in require_grad_layer:
param[1].requires_grad = True
else:
param[1].requires_grad = False
grad_params = [p for p in classifier.parameters() if p.requires_grad]
else:
grad_params = [p for p in classifier.parameters()]
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam(grad_params,
lr=args.learning_rate, betas=(0.9, 0.999), eps=1e-08, weight_decay=args.decay_rate)
else:
optimizer = torch.optim.SGD(grad_params, lr=args.learning_rate, momentum=0.9)
LEARNING_RATE_CLIP = 1e-5
MOMENTUM_ORIGINAL = 0.1
MOMENTUM_DECCAY = 0.5
MOMENTUM_DECCAY_STEP = args.step_size
global_epoch = 0
best_acc = 0
train_loss_list, train_acc_list, test_loss_list, test_acc_list = [], [], [], []
'''Train on chopped scenes'''
log_string('\n\n>>>>>>>> TRAINING & TESTING <<<<<<<<')
for epoch in range(start_epoch, args.epoch):
log_string('**** Epoch %d (%d/%s) ****' % (global_epoch + 1, epoch + 1, args.epoch))
lr = max(args.learning_rate * (args.lr_decay ** (epoch // args.step_size)), LEARNING_RATE_CLIP)
log_string('Learning rate:%f' % lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
momentum = MOMENTUM_ORIGINAL * (MOMENTUM_DECCAY ** (epoch // MOMENTUM_DECCAY_STEP))
if momentum < 0.01:
momentum = 0.01
print('BN momentum updated to: %f' % momentum)
classifier = classifier.apply(lambda x: bn_momentum_adjust(x, momentum))
num_batches = len(train_loader)
total_correct = 0
total_seen = 0
total_plane = 0
total_nonplane = 0
loss_sum = 0
classifier = classifier.train()
for i, (points, target) in tqdm(enumerate(train_loader), total=len(train_loader), smoothing=0.9):
optimizer.zero_grad()
points = points.data.numpy()
points[:, :, :3] = provider.random_scale_point_cloud(points[:, :, :3])
points[:, :, :3] = provider.shift_point_cloud(points[:, :, :3])
points = torch.Tensor(points)
points, target = points.float().to(device), target.long().to(device)
points = points.transpose(2, 1)
seg_pred, trans_feat = classifier(points, to_categorical(target, num_classes))
seg_pred = seg_pred.contiguous().view(-1, num_classes)
batch_label = target.view(-1, 1)[:, 0].cpu().data.numpy()
target = target.view(-1, 1)[:, 0]
loss = criterion(seg_pred, target, trans_feat, weights)
loss.backward()
optimizer.step()
pred_choice = seg_pred.cpu().data.max(1)[1].numpy()
plane_num = np.sum(pred_choice == 1)
nonplane_num = np.sum(pred_choice == 0)
total_plane += plane_num
total_nonplane += nonplane_num
correct = np.sum(pred_choice == batch_label)
total_correct += correct
total_seen += (batch_size * num_points)
loss_sum += loss
log_string('Plane: %d, %f; Non-plane: %d, %f;' % (total_plane, total_plane/(total_plane+total_nonplane), total_nonplane, total_nonplane/(total_plane+total_nonplane)))
log_string('Training mean loss: %f' % (loss_sum / num_batches))
log_string('Training accuracy: %f' % (total_correct / float(total_seen)))
train_loss_list.append((loss_sum / num_batches).cpu().detach().numpy())
train_acc_list.append(total_correct / float(total_seen) * 100)
if epoch % 3 == 0:
log_string('Saving model....')
savepath = str(models_cp_dir) + f'/model_{epoch}.pth'
log_string('Model Saved at %s' % savepath)
state = {
'epoch': epoch,
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, savepath)
log_string('Model saved successfully!')
'''Evaluate on chopped scenes'''
with torch.no_grad():
num_batches = len(test_loader)
total_correct = 0
total_seen = 0
total_plane = 0
total_nonplane = 0
loss_sum = 0
labelweights = np.zeros(num_classes)
total_seen_class = [0 for _ in range(num_classes)]
total_correct_class = [0 for _ in range(num_classes)]
total_iou_deno_class = [0 for _ in range(num_classes)]
classifier = classifier.eval()
log_string('---- EPOCH %03d EVALUATION ----' % (global_epoch + 1))
for i, (points, target) in tqdm(enumerate(test_loader), total=len(test_loader), smoothing=0.9):
points = points.data.numpy()
points = torch.Tensor(points)
points, target = points.float().to(device), target.long().to(device)
points = points.transpose(2, 1)
seg_pred, trans_feat = classifier(points)
pred_val = seg_pred.contiguous().cpu().data.numpy()
seg_pred = seg_pred.contiguous().view(-1, num_classes)
batch_label = target.cpu().data.numpy()
target = target.view(-1, 1)[:, 0]
loss = criterion(seg_pred, target, trans_feat, weights)
loss_sum += loss
pred_val = np.argmax(pred_val, 2)
plane_num = np.sum(pred_val == 1)
nonplane_num = np.sum(pred_val == 0)
total_plane += plane_num
total_nonplane += nonplane_num
correct = np.sum((pred_val == batch_label))
total_correct += correct
total_seen += (batch_size * num_points)
tmp, _ = np.histogram(batch_label, range(num_classes + 1))
labelweights += tmp
for l in range(num_classes):
total_seen_class[l] += np.sum((batch_label == l))
total_correct_class[l] += np.sum((pred_val == l) & (batch_label == l))
total_iou_deno_class[l] += np.sum(((pred_val == l) | (batch_label == l)))
labelweights = labelweights.astype(np.float32) / np.sum(labelweights.astype(np.float32))
class_IoU = np.array(total_correct_class) / (np.array(total_iou_deno_class, dtype=np.float64) + 1e-6)
mIoU = np.sum(labelweights * class_IoU)
class_acc = np.array(total_correct_class) / (np.array(total_seen_class, dtype=np.float64) + 1e-6)
macc = np.sum(labelweights * class_acc)
avgacc = total_correct / float(total_seen)
log_string('Plane: %d, %f; Non-plane: %d, %f;' % (total_plane, total_plane/(total_plane+total_nonplane), total_nonplane, total_nonplane/(total_plane+total_nonplane)))
log_string('eval mean loss: %f' % (loss_sum / float(num_batches)))
log_string('eval point avg class IoU: %f' % (mIoU))
log_string('eval point accuracy: %f' % (avgacc))
log_string('eval point avg class acc: %f' % (macc))
iou_per_class_str = '------- IoU --------\n'
for l in range(num_classes):
iou_per_class_str += 'class %s weight: %.3f, IoU: %.3f \n' % (
seg_label_to_cat[l] + ' ' * (14 - len(seg_label_to_cat[l])), labelweights[l],
total_correct_class[l] / float(total_iou_deno_class[l]))
log_string(iou_per_class_str)
log_string('Eval mean loss: %f' % (loss_sum / num_batches))
log_string('Eval accuracy: %f' % (total_correct / float(total_seen)))
test_loss_list.append((loss_sum / num_batches).cpu().detach().numpy())
test_acc_list.append(total_correct / float(total_seen) * 100)
if avgacc >= best_acc:
best_acc = avgacc
log_string('Saving model....')
savepath = str(bestmodels_cp_dir) + f'/best_model_{epoch}.pth'
log_string('Model Saved at %s' % savepath)
state = {
'epoch': epoch,
'class_avg_acc': avgacc,
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, savepath)
log_string('Best model saved successfully!')
elif epoch == (args.epoch - 1):
log_string('Saving model....')
savepath = str(bestmodels_cp_dir) + f'/best_model_{epoch}.pth'
log_string('Model Saved at %s' % savepath)
state = {
'epoch': epoch,
'class_avg_acc': avgacc,
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, savepath)
log_string('Best model saved successfully!')
log_string('Best accuracy: %f' % best_acc)
global_epoch += 1
if __name__ == '__main__':
args = parse_args()
main(args)