forked from weihui1308/HOTCOLDBlock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
175 lines (154 loc) · 8.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torch
import argparse
from victim_detector.models.yolo import Model
import argparse
import math
import os
import random
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Path
import torchvision.transforms as TF
import kornia.geometry.transform as KT
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import SGD, Adam, AdamW, lr_scheduler
from tqdm.auto import tqdm
from utils.plots import output_to_target, plot_images, plot_val_study
from threading import Thread
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from victim_detector.models.common import *
from victim_detector.models.experimental import *
from victim_detector.utils.autoanchor import check_anchor_order
from victim_detector.utils.general import (LOGGER, check_dataset, check_file, check_git_status, check_img_size, check_requirements,
check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds,
intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle,
print_args, print_mutation, strip_optimizer)
from victim_detector.utils.plots import feature_visualization
from victim_detector.utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
time_sync)
from victim_detector.utils.loss import ComputeLoss, MyComputeLoss
from victim_detector.utils.datasets import create_dataloader
from victim_detector.utils.autobatch import check_train_batch_size
from victim_detector.utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first
from victim_detector.utils.metrics import fitness
from utils_patch import *
import val_patch
from pso import OptimizeFunction, PSO
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='victim_detector/models/yolov5s.yaml', help='model.yaml')
parser.add_argument('--batch_size', type=int, default=32, help='total batch size for all GPUs')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--profile', action='store_true', help='profile model speed')
parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
parser.add_argument('--data', type=str, default=ROOT / 'victim_detector/data/custom.yaml', help='dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
parser.add_argument('--epochs', type=int, default=3)
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--patch_size', type=float, default=0.14)
opt = parser.parse_args()
opt.cfg = check_yaml(opt.cfg) # check YAML
print_args(vars(opt))
device = select_device(opt.device)
# Create model
hyp = 'victim_detector/data/hyps/hyp.scratch-low.yaml'
if isinstance(hyp, str):
with open(hyp, errors='ignore') as f:
hyp = yaml.safe_load(f)
weights = "xxx/best.pt"
ckpt = torch.load(weights, map_location='cpu')
model = Model(ckpt['model'].yaml, ch=3, nc=80, anchors=hyp.get('anchors')).to(device)
exclude = ['anchor'] if (hyp.get('anchors')) and not resume else []
csd = ckpt['model'].float().state_dict()
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)
model.load_state_dict(csd, strict=False)
# Image size
gs = max(int(model.stride.max()), 32) # grid size (max stride)
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
# Batch size
batch_size = opt.batch_size
# Dataloader
data_dict = check_dataset(opt.data)
print(data_dict)
train_path, val_path = data_dict['train'], data_dict['val']
train_loader, dataset = create_dataloader(train_path,
imgsz,
batch_size // WORLD_SIZE,
gs,
opt.single_cls,
hyp=hyp,
augment=False,
cache=None if opt.cache == 'val' else opt.cache,
rect=opt.rect,
rank=LOCAL_RANK,
workers=opt.workers,
image_weights=opt.image_weights,
quad=opt.quad,
prefix=colorstr('train: '),
shuffle=True)
val_loader = create_dataloader(val_path,
imgsz,
batch_size // WORLD_SIZE * 2,
gs,
opt.single_cls,
hyp=hyp,
cache=None if opt.noval else opt.cache,
rect=True,
rank=-1,
workers=opt.workers * 2,
pad=0.5,
prefix=colorstr('val: '))[0]
model.eval()
nb = len(train_loader)
# PSO
pso = PSO(100, device)
func = OptimizeFunction(model, opt.patch_size, device)
save_dir = Path('results')
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
best_fitness = 100.0
for epoch in range(opt.epochs): # epoch ------------------------------------------------------------------
pbar = enumerate(train_loader)
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
targets = targets.to(device)
imgs = imgs.to(device, non_blocking=True).float() / 255 # (n, c, h, w)
func.set_para(targets, imgs)
pso.optimize(func)
swarm_parameters = pso.run()
# val
results, maps, _ = val_patch.run(data_dict,
patch=swarm_parameters,
opt=opt,
batch_size=batch_size // WORLD_SIZE * 2,
imgsz=imgsz,
model=model,
single_cls=opt.single_cls,
dataloader=val_loader,
plots=False
)
print('gbest_position: ', swarm_parameters.gbest_position[0])
print(swarm_parameters.gbest_position[1])
print('gbest_value: ', swarm_parameters.gbest_value)