-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathAssignment5.py
executable file
·1305 lines (1144 loc) · 48.8 KB
/
Assignment5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Basic application to load a mesh from file and view it in a window
# Python imports
import sys, os
import euclid as eu
import time
import random
import numpy as np
import scipy.sparse
import scipy.sparse.linalg
from scipy.sparse.linalg.dsolve import linsolve
from scipy.sparse.linalg import dsolve
from scipy.sparse import csr_matrix, csc_matrix
import sksparse.cholmod as skchol
## Imports from this project
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'core')) # hack to allow local imports without creaing a module or modifying the path variable
from InputOutput import *
from MeshDisplay import MeshDisplay
#from HalfEdgeMesh import *
from HalfEdgeMesh_ListImplementation import *
from Utilities import *
#from Solvers import solvePoisson
from HodgeDecomposition import HodgeDecomposition
"""
import pydec
import numpy as np
from scipy.linalg import lu
A = np.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
p, l, u = lu(A)
#"""
def main(inputfile, show=False,
StaticGeometry=False, partString='part1',
is_simple=True):
# Get the path for the mesh to load from the program argument
if(len(sys.argv) == 3 and sys.argv[1] == 'simple'):
filename = sys.argv[2]
simpleTest = True
elif(len(sys.argv) == 3 and sys.argv[1] == 'fancy'):
filename = sys.argv[2]
simpleTest = False
elif inputfile is not None:
filename = inputfile
simpleTest = is_simple
else:
print("ERROR: Incorrect call syntax. Proper syntax is 'python Assignment5.py MODE path/to/your/mesh.obj', where MODE is either 'simple' or 'fancy'")
exit()
# Read in the mesh
mesh = HalfEdgeMesh(readMesh(filename))
# Create a viewer object
winName = 'DDG Assignment5 -- ' + os.path.basename(filename)
meshDisplay = MeshDisplay(windowTitle=winName)
meshDisplay.setMesh(mesh)
###################### BEGIN YOUR CODE
# DDGSpring216 Assignment 5
#
# In this programming assignment you will implement Helmholtz-Hodge decomposition of covectors.
#
# The relevant mathematics and algorithm are described in section 8.1 of the course notes.
# You will also need to implement the core operators in discrete exterior calculus, described mainly in
# section 3.6 of the course notes.
#
# This code can be run with python Assignment5.py MODE /path/to/you/mesh.obj. MODE should be
# either 'simple' or 'fancy', corresponding to the complexity of the input field omega that is given.
# It might be easier to debug your algorithm on the simple field first. The assignment code will read in your input
# mesh, generate a field 'omega' as input, run your algorithm, then display the results.
# The results can be viewed as streamlines on the surface that flow with the covector field (toggle with 'p'),
# or, as actual arrows on the faces (toggle with 'l'). The keys '1'-'4' will switch between the input, exact,
# coexact, and harmonic fields (respectively).
#
# A few hints:
# - Try performing some basic checks on your operators if things don't seem right. For instance, applying the
# exterior derivative twice to anything should always yield zero.
# - The streamline visualization is easy to look at, but can be deceiving at times. For instance, streamlines
# are not very meaningful where the actual covectors are near 0. Try looking at the actual arrows in that case
# ('l').
# - Many inputs will not have any harmonic components, especially genus 0 inputs. Don't stress if the harmonic
# component of your output is exactly or nearly zero.
# Implement the body of each of these functions...
# def assignEdgeOrientations(mesh):
# """
# Assign edge orientations to each edge on the mesh.
#
# This method will be called from the assignment code, you do not need to explicitly call it in any of your methods.
#
# After this method, the following values should be defined:
# - edge.orientedHalfEdge (a reference to one of the halfedges touching that edge)
# - halfedge.orientationSign (1.0 if that halfedge agrees with the orientation of its
# edge, or -1.0 if not). You can use this to make much of your subsequent code cleaner.
#
# This is a pretty simple method to implement, any choice of orientation is acceptable.
# """
# for edge in mesh.edges:
# edge.orientedHalfEdge = edge.anyHalfEdge
# edge.anyHalfEdge.orientationSign = -1.0
# edge.anyHalfEdge.twin.orientationSign = 1.0
# return
def diagonalInverse(A):
"""
Returns the inverse of a sparse diagonal matrix. Makes a copy of the matrix.
We will need to invert several diagonal matrices for the algorithm, but scipy does
not offer a fast method for inverting diagonal matrices, which is a very easy special
case. As such, this is a useful helper method for you.
Note that the diagonal inverse is not well-defined if any of the diagonal elements are
0.0. This needs to be acconuted for when you construct the matrices.
"""
ncol,nrow = np.shape(A)
assert(ncol==nrow),'ERROR: Diagonal inverse only make sense for a symmetric matrix'
#B = 1./np.diag(A)
for i in range(ncol):
A[i,i] = 1./A[i,i] #B[i]
return A
# @property
# @cacheGeometry
# def circumcentricArea(self):
# """
# Compute the area of the circumcentric dual cell for this vertex.
# Returns a positive scalar.
#
# This gets called on a vertex, so 'self' will be a reference to the vertex.
#
# The image on page 78 of the course notes may help you visualize this.
# (TLM: not sure what this references any more)
#
#
# TLM note for those like me who miss the obvious:
# You are not computing the circumcenter!
# Go straight to the area!
#
# real source, slide 62:
# http://brickisland.net/DDGFall2017/wp-content/uploads/2017/09/
# CMU_DDG_Fall2017_06_DiscreteExteriorCalculus.pdf
# """
# # vl = list(self.adjacentVerts())
# # fl = list(self.adjacentFaces())
# DualArea = 0.
# for face in self.adjacentFaces():
# #v1 = face.anyHalfEdge.vertex.position
# #v2 = face.anyHalfEdge.next.vertex.position
# #v3 = face.anyHalfEdge.next.next.vertex.position
# l1 = norm(face.anyHalfEdge.vector) #||v1-v3||
# l2 = norm(face.anyHalfEdge.next.vector) #||v2-v1||
# l3 = norm(face.anyHalfEdge.next.next.vector) #||v3-v2||
#
# s = .5*(l1+l2+l3)
# DualArea += np.sqrt(s*(s-l1)*(s-l2)*(s-l3))
#
#
# return DualArea
# Vertex.circumcentricArea = circumcentricArea
# @property
# @cacheGeometry
# def circumcentricDualArea(self):
# """
# Compute the area of the circumcentric dual cell for this vertex.
# Returns a positive scalar.
#
# This gets called on a vertex, so 'self' will be a reference to the vertex.
#
# The image on page 78 of the course notes may help you visualize this.
# (TLM: not sure what this references any more)
#
#
# TLM note for those like me who miss the obvious:
# You are not computing the circumcenter!
# Go straight to the area!
#
# real source, slide 62:
# http://brickisland.net/DDGFall2017/wp-content/uploads/2017/09/
# CMU_DDG_Fall2017_06_DiscreteExteriorCalculus.pdf
# """
# DualArea = 0.
# for hedge in self.adjacentHalfEdges():
# cak = hedge.cotan
# lik = norm(hedge.vector)
# caj = hedge.next.next.cotan
# lij = norm(hedge.next.next.vector)
#
# DualArea += (lij**2 *cak) + (lik**2 * caj)
#
#
# return DualArea/8.
# Vertex.circumcentricDualArea = circumcentricDualArea
# def buildHodgeStar0Form(mesh, vertexIndex):
# """
# Build a sparse matrix encoding the Hodge operator on 0-forms for this mesh.
# Returns a sparse, diagonal matrix corresponding to vertices.
#
# The discrete hodge star is a diagonal matrix where each entry is
# the (area of the dual element) / (area of the primal element). You will probably
# want to make use of the Vertex.circumcentricDualArea property you just defined.
#
# TLM as seen in notes:
# By convention, the area of a vertex is 1.0.
# """
# nrows = ncols = len(mesh.verts)
# vertex_area = 1.0
#
# Hodge0Form = np.zeros((nrows,ncols),float)
# for i,vert in enumerate(mesh.verts):
# vi = vertexIndex[vert]
# Hodge0Form[vi,vi] = vert.circumcentricDualArea #/primal vertex_area
# #Hodge0Form[vi,vi] = vert.barycentricDualArea #/primal vertex_area
# return Hodge0Form
#
#
# def buildHodgeStar1Form(mesh, edgeIndex):
# """
# Build a sparse matrix encoding the Hodge operator on 1-forms for this mesh.
# Returns a sparse, diagonal matrix corresponding to edges.
#
# The discrete hodge star is a diagonal matrix where each entry is
# the (area of the dual element) / (area of the primal element). The solution
# to exercise 26 from the previous homework will be useful here.
#
# TLM: cotan formula again. see ddg notes page 89
# see also source slide 56 (did you mean slide 62?):
# http://brickisland.net/DDGFall2017/wp-content/uploads/2017/09/
# CMU_DDG_Fall2017_06_DiscreteExteriorCalculus.pdf
#
# Note that for some geometries, some entries of hodge1 operator may be exactly 0.
# This can create a problem when we go to invert the matrix. To numerically sidestep
# this issue, you probably want to add a small value (like 10^-8) to these diagonal
# elements to ensure all are nonzero without significantly changing the result.
# """
# nrows = ncols = len(mesh.edges)
# Hodge1Form = np.zeros((nrows,ncols),float)
#
# for i,edge in enumerate(mesh.edges):
# ei = edgeIndex[edge]
# w = (( edge.anyHalfEdge.cotan + edge.anyHalfEdge.twin.cotan ) *.5) + 1.e-8
# #Hodge1Form[ei,ei] = edge.cotanWeight + 1.e-8
# Hodge1Form[ei,ei] = w
# return Hodge1Form
#
#
# def buildHodgeStar2Form(mesh, faceIndex):
# """
# Build a sparse matrix encoding the Hodge operator on 2-forms for this mesh
# Returns a sparse, diagonal matrix corresponding to faces.
#
# The discrete hodge star is a diagonal matrix where each entry is
# the (area of the dual element) / (area of the primal element).
#
#
# TLM hint hint!, vertex is => (dual) vertex:
# By convention, the area of a vertex is 1.0.
#
#
# TLM: see also source slide 57:
# http://brickisland.net/DDGFall2017/wp-content/uploads/2017/09/
# CMU_DDG_Fall2017_06_DiscreteExteriorCalculus.pdf
# """
# nrows = ncols = len(mesh.faces)
# Hodge2Form = np.zeros((nrows,ncols),float)
#
# for i,face in enumerate(mesh.faces):
# fi = faceIndex[face]
# Hodge2Form[fi,fi] = 1./face.area
# #Hodge2Form[fi,fi] = 1./face.AreaToDualVertexCicumcentric #circumcentric
# return Hodge2Form
#
#
# def buildExteriorDerivative0Form(mesh, edgeIndex, vertexIndex):
# """
# Build a sparse matrix encoding the exterior derivative on 0-forms.
# Returns a sparse matrix.
#
# See section 3.6 of the course notes for an explanation of DEC.
#
# 0form -> 1form
#
# In [2]: ed
# Out[2]: <Edge #0>
#
# In [3]: ed.anyHalfEdge
# Out[3]: <HalfEdge #11661>
#
# In [4]: ed.anyHalfEdge.vertex
# Out[4]: <Vertex #0>
#
# In [5]: ed.anyHalfEdge.vertex.position
# Out[5]: array([1.25, 0. , 0. ])
#
# In [6]: ed.anyHalfEdge.twin.vertex.position
# Out[6]: array([ 1.246147, 0. , -0.098074])
#
# In [7]: ed.anyHalfEdge.vertex.position - ed.anyHalfEdge.twin.vertex.position
# Out[7]: array([0.003853, 0. , 0.098074])
#
# In [8]: ed.anyHalfEdge.vector
# Out[8]: array([0.003853, 0. , 0.098074])
#
# ## so ed.anyHalfEdge.vector runs
# from anyHalfEdge.twin.vertex
# to anyHalfEdge.vertex
#
# In [9]: ed.anyHalfEdge.twin.vector
# Out[9]: array([-0.003853, 0. , -0.098074])
# """
# vert_edge_incidence = np.zeros((mesh.nedges,mesh.nverts),float)
# # for vertex in mesh.verts:
# # vj = vertexIndex[vertex]
# # for edge in vertex.adjacentEdges():
# # ei = edgeIndex[edge]
# #
# # value = edge.orientedHalfEdge.orientationSign
# # if vertex is edge.anyHalfEdge.vertex:
# # # then we are at edge.anyHalfEdge.vertex,
# # # i.e., the end of this half edge's vector. (not the start of the vector)
# # value = -value
# #
# # vert_edge_incidence[ei,vj] = value
#
#
# for edge in mesh.edges:
# ei = edgeIndex[edge]
#
# vh1 = edge.orientedHalfEdge.vertex
# vh2 = edge.orientedHalfEdge.twin.vertex
#
# ci = vertexIndex[vh1]
# cj = vertexIndex[vh2]
#
# #value = edge.orientedHalfEdge.orientationSign
#
# vert_edge_incidence[ei,ci] = 1. #-value
# vert_edge_incidence[ei,cj] = -1. #value
# return csr_matrix( vert_edge_incidence )
# #return vert_edge_incidence
#
#
# def buildExteriorDerivative1FormOLD(mesh, faceIndex, edgeIndex):
# """
# Build a sparse matrix encoding the exterior derivative on 1-forms.
# Returns a sparse matrix.
#
# See section 3.6 of the course notes for an explanation of DEC.
# """
# edge_face_incidence = np.zeros((mesh.nfaces,mesh.nedges),float)
# for face in mesh.faces:
# fi = faceIndex[face]
# v = list(face.adjacentVerts()) #0,1,2
# #tv = []
# for edge in face.adjacentEdges():
# ej = edgeIndex[edge]
# value = edge.orientedHalfEdge.orientationSign
#
# #anyHalfEdge vector goes from
# # anyHalfEdge.twin.vertex to anyHalfEdge.vertex
# edge_start = edge.anyHalfEdge.twin.vertex
# edge_end = edge.anyHalfEdge.vertex
# if edge_start is v[0]:
# if edge_end is v[1]:
# value = value
# else:
# value = -value
# elif edge_start is v[1]:
# if edge_end is v[2]:
# value = value
# else:
# value = -value
# else:
# assert(edge_start is v[2])
# if edge_end is v[0]:
# value = value
# else:
# value = -value
#
## tv.append([edge,value])
# edge_face_incidence[fi,ej] = value
# return edge_face_incidence
# def buildExteriorDerivative1Form(mesh, faceIndex, edgeIndex):
# """
# Build a sparse matrix encoding the exterior derivative on 1-forms.
# Returns a sparse matrix.
#
# See section 3.6 of the course notes for an explanation of DEC.
# """
# edge_face_incidence = np.zeros((mesh.nfaces,mesh.nedges),float)
# for face in mesh.faces:
# fi = faceIndex[face]
# #v = list(face.adjacentVerts()) #0,1,2
# #tv = []
# for he in face.adjacentHalfEdges():
# ej = edgeIndex[he.edge]
# #value = he.orientationSign
# #tv.append([edge,value])
# if he is he.edge.orientedHalfEdge:
# edge_face_incidence[fi,ej] = 1. #value
# else:
# edge_face_incidence[fi,ej] = -1. #-value
#
# #return edge_face_incidence
# return csr_matrix( edge_face_incidence )
# def decomposeField(mesh):
# """
# Decompose a covector in to exact, coexact, and harmonic components
#
# The input mesh will have a scalar named 'omega' on its edges (edge.omega)
# representing a discretized 1-form. This method should apply Helmoltz-Hodge
# decomposition algorithm (as described on page 107-108 of the course notes)
# to compute the exact, coexact, and harmonic components of omega.
#
# This method should return its results by storing three new scalars on each edge,
# as the 3 decomposed components: edge.exactComponent, edge.coexactComponent,
# and edge.harmonicComponent.
#
# Here are the primary steps you will need to perform for this method:
#
# - Create indexer objects for the vertices, faces, and edges. Note that the mesh
# has handy helper functions pre-defined
# for each of these: mesh.enumerateEdges() etc.
#
# - Build all of the operators we will need using
# the methods you implemented above:
# hodge0, hodge1, hodge2, d0, and d1.
# You should also compute their inverses and
# transposes, as appropriate.
#
# - Build a vector which represents the input covector (from the edge.omega values)
#
# - Perform a linear solve for the exact component, as described in the algorithm
#
# - Perform a linear solve for the coexact component, as described in the algorithm
#
# - Compute the harmonic component as the part which is neither exact nor coexact
#
# - Store your resulting exact, coexact, and harmonic components on the mesh edges
#
# This method will be called by the assignment code, you do not need to call it yourself.
# """
#
# """1)Create indexer objects for the vertices, faces, and edges. Note that the mesh
# has handy helper functions pre-defined for each of these: mesh.enumerateEdges() etc. """
#
# t0master = time.time()
# edgeIndex = mesh.enumerateEdges
# vertexIndex = mesh.enumerateVertices
# faceIndex = mesh.enumerateFaces
#
# """2)Build all of the operators we will need using the methods you implemented above:
# hodge0, hodge1, hodge2, d0, and d1. You should also compute their inverses and
# transposes, as appropriate."""
# hodge0 = mesh.buildHodgeStar0Form(vertexIndex)
# ihodge0 = diagonalInverse(hodge0)
# hodge1 = mesh.buildHodgeStar1Form( edgeIndex)
# #hodge2 = buildHodgeStar2Form(mesh, faceIndex)
# ihodge1 = diagonalInverse(hodge1)
# #ihodge2 = diagonalInverse(hodge2)
# d0 = mesh.buildExteriorDerivative0Form(
# edgeIndex=edgeIndex,
# vertexIndex=vertexIndex)
# d0T = d0.T
# d1 = mesh.buildExteriorDerivative1Form(
# faceIndex=faceIndex,
# edgeIndex=edgeIndex)
# d1T = d1.T
#
#
# print 'shape d0 = ',np.shape(d0)
# print 'shape d1 = ',np.shape(d1)
# #print 'shape hodge0 = ',np.shape(hodge0)
# print 'shape hodge1 = ',np.shape(hodge1)
# #print 'shape hodge2 = ',np.shape(hodge2)
#
#
#
# omega = np.zeros((mesh.nedges),float)
# for edge in mesh.edges:
# i = edgeIndex[edge]
# omega[i] = edge.omega
#
# #solve system 1 for d alpha
# # page 117-118-119
# # scipy.linalg.cholesky
# print 'system 1, alpha'
# print 'build LHS...'
# #LHS = np.matmul(d0T,
# # np.matmul(hodge1,d0))
# t0 = time.time()
# LHS = np.dot(ihodge0,
# d0T.dot(hodge1))
# ss = np.shape(LHS)[0]
# LHS = csr_matrix(LHS)
# LHS = LHS.dot(d0)
# LHS = LHS + (1.e-8 * csr_matrix(np.identity(ss,float)))
# #llt = scipy.linalg.cholesky(LHS,lower=True)
# tSolve = time.time() - t0
# print("...sparse alpha LHS completed.")
# print("alpha LHS build took {:.5f} seconds.".format(tSolve))
# print 'build RHS...'
# #RHS = np.matmul(d0T,
# # np.matmul(hodge1,omega))
# RHS = np.dot(ihodge0,
# d0T.dot(hodge1.dot(omega))
# )
# print 'type RHS = ',type(RHS)
# print 'solve'
# #alpha = np.linalg.solve(LHS,RHS)
# alpha = dsolve.spsolve(LHS, RHS ,
# use_umfpack=True)
# #alpha = scipy.sparse.linalg.cg(llt,RHS)
# #alpha = dsolve.spsolve(csr_matrix(llt), RHS ,
# # use_umfpack=True)
#
# print 'solve complete, alpha complete'
#
#
#
#
# #solve system 2 for delta Beta
# # page 117-118-119
# # scipy.linalg.lu
# print 'system 2, Beta'
# print 'build LHS...'
# #LHS = np.matmul(d1,
# # np.matmul(ihodge1,d1T))
# t0 = time.time()
# LHS = d1.dot(ihodge1)
#
# #ss = np.shape(LHS)[0]
#
# LHS = csr_matrix(LHS)
# LHS = LHS.dot(d1T)
#
# #LHS = csr_matrix(LHS)
# LHS = LHS #+ 1.e-8 * csr_matrix(np.identity(ss,float))
#
# tSolve = time.time() - t0
# print("...sparse Beta LHS build completed.")
# print("Beta LHS build took {:.5f} seconds.".format(tSolve))
# print 'build RHS...'
# #RHS = np.matmul(d1,omega)
# RHS = d1.dot(omega)
# print 'solve'
# #Beta = np.linalg.solve(LHS,RHS)
# Beta = dsolve.spsolve(LHS, RHS ,
# use_umfpack=True)
# # print 'solve complete, transform'
# # Beta = np.dot(ihodge2,Beta)
# # print 'transform complete, Beta complete'
# #
# # store exact, coexact, harmonic components on the mesh edges.
# print 'decomposition field to mesh'
#
#
# print 'Now push alpha and Beta into 1 forms'
# # now push alpha to a 1 form using d:
# alpha = d0.dot(alpha)
# """ Say we start with a primal 2-form on a primal face.
# Applying the star operator takes us to a dual 0-form on a dual vertex.
# Taking the differential getsus to a dual 1-form on a dual edge.
# And finally, another star operator
# brings us to a primal 1-formon a primal edge."""
# #now pull back to a 1 form using the codifferential *d*
# # *d* Beta => *d0*
# #Beta = np.dot(hodge0,
# # np.dot(d0,
# # np.dot(hodge2,Beta)))
# # the easy way:
# Beta = d1T.dot(Beta)
# print 'solve complete, transform'
# Beta = np.dot(ihodge1,Beta)
# print 'transform complete, Beta complete'
#
# #Beta = np.zeros_like(alpha)
# for edge in mesh.edges:
# i = edgeIndex[edge]
# edge.exactComponent = alpha[i]
# edge.coexactComponent = Beta [i]
# edge.harmonicComponent = omega[i] - (alpha[i] + Beta[i])
# #edge.harmonicComponent = omega[i] - (Beta[i])
# print 'decomposition complete'
#
# tSolve = time.time() - t0master
# print("...Decomposition completed.")
# print("Total Time {:.5f} seconds.".format(tSolve))
def enumerateVertices(mesh):
"""
Assign a unique index from 0 to (N-1) to each vertex in the mesh. Should
return a dictionary containing mappings {vertex ==> index}.
You will want to use this function in your solutions below.
"""
# index_map = {}
# index = 0
# for vv in mesh.verts:
# index_map[vv] = index
# index += 1
return mesh.enumerateVertices
@property
@cacheGeometry
def adjacency(self):
index_map = enumerateVertices(self)
nrows = ncols = len(mesh.verts)
adjacency = np.zeros((nrows,ncols),int)
for vv in mesh.verts:
ith = index_map[vv]
avlist = list(vv.adjacentVerts())
for av in avlist:
jth = index_map[av]
adjacency[ith,jth] = 1
return adjacency
#################################
# Part 1: Dense Poisson Problem #
#################################
# Solve a Poisson problem on the mesh. The primary function here
# is solvePoissonProblem_dense(), it will get called when you run
# python Assignment3.py part1 /path/to/your/mesh.obj
# and specify density values with the mouse (the press space to solve).
#
# Note that this code will be VERY slow on large meshes, because it uses
# dense matrices.
def buildLaplaceMatrix_sparse(mesh, index_map=None):
"""
Build a Laplace operator for the mesh, with a dense representation
'index' is a dictionary mapping {vertex ==> index}
TLM renamed to index_map
Returns the resulting matrix.
"""
if index_map is None:
index_map = mesh.enumerateVertices()
nrows = ncols = len(mesh.verts)
# adjacency = np.zeros((nrows,ncols),int)
# for vv in mesh.verts:
# ith = index_map[vv]
# avlist = list(vv.adjacentVerts())
# for av in avlist:
# jth = index_map[av]
# adjacency[ith,jth] = 1
Laplacian = np.zeros((nrows,ncols),float)
for vi in mesh.verts:
ith = index_map[vi]
ll = list(vi.adjacentEdgeVertexPairs())
for edge, vj in ll:
jth = index_map[vj]
# Laplacian[ith,jth] = np.dot(vj.normal,
# edge.cotanWeight*(vj.position -
# vi.position)
# )
w1 = edge.anyHalfEdge.cotan
w2 = edge.anyHalfEdge.twin.cotan
W = .5*(w1+w2)
#W = edge.cotanWeight
if ith == jth:
pass
else:
Laplacian[ith,jth] = W
Laplacian[ith,ith] = -(sum(Laplacian[ith]) )#+ 1.e-8)
return csr_matrix(Laplacian)
def buildMassMatrix_dense(mesh, index):
"""
Build a mass matrix for the mesh.
Returns the resulting matrix.
"""
nrows = ncols = len(mesh.verts)
#MassMatrix = np.zeros((nrows),float)
MassMatrix = np.zeros((nrows,ncols),float)
for vert in mesh.verts:
i = index[vert]
#MassMatrix[i,i] = 1./vert.dualArea
MassMatrix[i,i] = vert.barycentricDualArea
#MassMatrix[i,i] = vert.circumcentricDualArea
return MassMatrix
def solvePoisson(mesh, densityValues):
"""
Solve a Poisson problem on the mesh. The results should be stored on the
vertices in a variable named 'solutionVal'. You will want to make use
of your buildLaplaceMatrix_dense() function from above.
densityValues is a dictionary mapping {vertex ==> value} that specifies
densities. The density is implicitly zero at every vertex not in this
dictionary.
When you run this program with 'python Assignment3.py part1 path/to/your/mesh.obj',
you will get to click on vertices to specify density conditions. See the
assignment document for more details.
"""
index_map = mesh.enumerateVertices
L = buildLaplaceMatrix_sparse(mesh, index_map)
M = buildMassMatrix_dense(mesh, index_map) #M <= 2D
totalArea = mesh.totalArea
rho = np.zeros((len(mesh.verts),1),float)
for key in densityValues:
#index_val = index_map[key]
print 'key dual area = ', key.barycentricDualArea
rho[index_map[key]] = densityValues[key]#*key.dualArea
nRows,nCols = np.shape(M)
totalRho = sum(M.dot(rho))
#rhoBar = np.ones((nRows,1),float)*(totalRho/totalArea)
rhoBar = totalRho/totalArea
rhs = M.dot(rhoBar-rho)
#rhs = np.matmul(M,(rho-rhoBar) )
#rhs = np.dot(M,rho)
#
# SwissArmyLaplacian,
# page 179 Cu = Mf is better conditioned
# assert(Cu == L) ??
#sol_vec = np.linalg.solve(L, np.dot(M,rho) )
#sparse:
#sol_vec = dsolve.spsolve(L, np.dot(M,rho) , use_umfpack=True)
# standard:
#sol_vec = dsolve.spsolve(L, rhs , use_umfpack=True)
#sparse Cholesky solve:
llt = skchol.cholesky_AAt(L) #factor
sol_vec = llt(rhs)
#eigen:
#sol_vec = np.zeros((nRows),float)
#scipy.sparse.linalg.lobpcg(L,sol_vec,rhs) #@eigensolver
#sol_vec = dsolve.spsolve(L, rho , use_umfpack=True)
vert_sol = {}
for vert in mesh.verts:
key = index_map[vert]
#print 'TLM sol_vec = ',sol_vec[key]
vert.solutionVal = sol_vec[key]
vert_sol[vert] = sol_vec[key]
if rho[key]:
vert.densityVal = rho[key]
else:
vert.densityVal = 0.
return vert_sol
###################### END YOUR CODE
### More prep functions
def generateFieldConstant(mesh):
print("\n=== Using constant field as arbitrary direction field")
for vert in mesh.verts:
vert.vector = vert.projectToTangentSpace(Vector3D(1.4, 0.2, 2.4))
def generateFieldSimple(mesh):
for face in mesh.faces:
face.vector = face.center + Vector3D(-face.center[2], face.center[1], face.center[0])
face.vector = face.projectToTangentSpace(face.vector)
def gradFromPotential(mesh, potAttr, gradAttr):
# Simply compute gradient from potential
for vert in mesh.verts:
sumVal = Vector3D(0.0,0.0,0.0)
sumWeight = 0.0
vertVal = getattr(vert, potAttr)
for he in vert.adjacentHalfEdges():
sumVal += he.edge.cotanWeight * (getattr(he.vertex, potAttr) - vertVal) * he.vector
sumWeight += he.edge.cotanWeight
setattr(vert, gradAttr, normalize(sumVal))
def generateInterestingField(mesh,
divscale=1.,
curlscale=1.):
print("\n=== Generating a hopefully-interesting field which has all three types of components\n")
# Somewhat cheesy hack:
# We want this function to generate the exact same result on repeated runs of the program to make
# debugging easier. This means ensuring that calls to random.sample() return the exact same result
# every time. Normally we could just set a seed for the RNG, and this work work if we were sampling
# from a list. However, mesh.verts is a set, and Python does not guarantee consistency of iteration
# order between runs of the program (since the default hash uses the memory address, which certainly
# changes). Rather than doing something drastic like implementing a custom hash function on the
# mesh class, we'll just build a separate data structure where vertices are sorted by position,
# which allows reproducible sampling (as long as positions are distinct).
sortedVertList = list(mesh.verts)
sortedVertList.sort(key= lambda x : (x.position[0], x.position[1], x.position[2]))
random.seed(100)
# Generate curl-free (ish) component
curlFreePotentialVerts = random.sample(sortedVertList, max((2,len(mesh.verts)/1000)))
potential = divscale
bVals = {}
for vert in curlFreePotentialVerts:
bVals[vert] = potential
potential *= -1.
smoothPotential = solvePoisson(mesh, bVals)
mesh.applyVertexValue(smoothPotential, "curlFreePotential")
gradFromPotential(mesh, "curlFreePotential", "curlFreeVecGen")
# Generate divergence-free (ish) component
divFreePotentialVerts = random.sample(sortedVertList, max((2,len(mesh.verts)/1000)))
potential = curlscale
bVals = {}
for vert in divFreePotentialVerts:
bVals[vert] = potential
potential *= -1.
smoothPotential = solvePoisson(mesh, bVals)
mesh.applyVertexValue(smoothPotential, "divFreePotential")
gradFromPotential(mesh, "divFreePotential", "divFreeVecGen")
for vert in mesh.verts:
normEu = eu.Vector3(*vert.normal)
vecEu = eu.Vector3(*vert.divFreeVecGen)
vert.divFreeVecGen = vecEu.rotate_around(normEu, pi / 2.0) # Rotate the field by 90 degrees
# Combine the components
for face in mesh.faces:
face.vector = Vector3D(0.0, 0.0, 0.0)
for vert in face.adjacentVerts():
face.vector = 1.0 * vert.curlFreeVecGen + 1.0 * vert.divFreeVecGen
face.vector = face.projectToTangentSpace(face.vector)
# clear out leftover attributes to not confuse people
for vert in mesh.verts:
del vert.curlFreeVecGen
del vert.curlFreePotential
del vert.divFreeVecGen
del vert.divFreePotential
# Verify the orientations were defined. Need to do this early, since they are needed for setup
def checkOrientationDefined(mesh):
"""Verify that edges have oriented halfedges and halfedges have orientation signs"""
for edge in mesh.edges:
if not hasattr(edge, 'orientedHalfEdge'):
print("ERROR: Edges do not have orientedHalfEdge defined. Cannot proceed")
exit()
for he in mesh.halfEdges:
if not hasattr(he, 'orientationSign'):
print("ERROR: halfedges do not have orientationSign defined. Cannot proceed")
exit()
# Verify the correct properties are defined after the assignment is run
def checkResultTypes(mesh):
for edge in mesh.edges:
# Check exact
if not hasattr(edge, 'exactComponent'):
print("ERROR: Edges do not have edge.exactComponent defined. Cannot proceed")
exit()
if not isinstance(edge.exactComponent, float):
print("ERROR: edge.exactComponent is defined, but has the wrong type. Type is " + str(type(edge.exactComponent)) + " when if should be 'float'")
exit()
# Check cocoexact
if not hasattr(edge, 'coexactComponent'):
print("ERROR: Edges do not have edge.coexactComponent defined. Cannot proceed")
exit()
if not isinstance(edge.coexactComponent, float):
print("ERROR: edge.coexactComponent is defined, but has the wrong type. Type is " + str(type(edge.coexactComponent)) + " when if should be 'float'")
exit()
# Check harmonic
if not hasattr(edge, 'harmonicComponent'):
print("ERROR: Edges do not have edge.harmonicComponent defined. Cannot proceed")
exit()
if not isinstance(edge.harmonicComponent, float):
print("ERROR: edge.harmonicComponent is defined, but has the wrong type. Type is " + str(type(edge.harmonicComponent)) + " when if should be 'float'")
exit()
# Visualization related
def covectorToFaceVectorWhitney(mesh, covectorName, vectorName):
"""lookout wedge below! (tlm)
this code is okay because it is able to show the initial
vector field correctly.
"""
for face in mesh.faces:
pi = face.anyHalfEdge.vertex.position
pj = face.anyHalfEdge.next.vertex.position
pk = face.anyHalfEdge.next.next.vertex.position
eij = pj - pi
ejk = pk - pj
eki = pi - pk
N = cross(eij, -eki)
A = 0.5 * norm(N)
N /= 2*A
wi = getattr(face.anyHalfEdge.edge, covectorName) * face.anyHalfEdge.orientationSign
wj = getattr(face.anyHalfEdge.next.edge, covectorName) * face.anyHalfEdge.next.orientationSign
wk = getattr(face.anyHalfEdge.next.next.edge, covectorName) * face.anyHalfEdge.next.next.orientationSign
#s = (1.0 / (6.0 * A)) * cross(N, wi*(eki-ejk) + wj*(eij-eki) + wk*(ejk-eij))
s = (1.0 / (6.0 * A)) * cross(N, wi*(ejk-eij) + wj*(eki-ejk) + wk*(eij-eki))
setattr(face, vectorName, s)
return
# Visualization related
def covectorToFaceVectorWhitneyJS(mesh, covectorName, vectorName):
"""lookout wedge below! (tlm)
"""
edgeIndex = mesh.enumerateEdges
for face in mesh.faces:
h = face.anyHalfEdge
pi = h.vertex.position
pj = h.next.vertex.position
pk = h.next.next.vertex.position
eij = pj - pi
ejk = pk - pj
eki = pi - pk
#cij =
#if h.edge.anyHalfEdge is not h:
# cij *= -1.
wij = getattr(face.anyHalfEdge.edge, covectorName) #* face.anyHalfEdge.orientationSign
wjk = getattr(face.anyHalfEdge.next.edge, covectorName) #* face.anyHalfEdge.next.orientationSign
wki = getattr(face.anyHalfEdge.next.next.edge, covectorName) #* face.anyHalfEdge.next.next.orientationSign
if h.edge.anyHalfEdge is not h:
wij *= -1
if h.next.edge.anyHalfEdge is not h:
wjk *= -1
if h.next.next.edge.anyHalfEdge is not h:
wki *= -1
#N = cross(eij, -eki)
#A = 0.5 * norm(N)
#N /= 2*A
A = face.area
N = face.normal
#
a = (eki - ejk)*wij
b = (eij - eki)*wjk
c = (ejk - eij)*wki
#pystyle
#a=wij*(ejk-eij)
#b=wjk*(eki-ejk)
#c=wki*(eij-eki)
#s = (1.0 / (6.0 * A)) * cross(N, wij*(eki-ejk) + wjk*(eij-eki) + wki*(ejk-eij))
#s = (1.0 / (6.0 * A)) * cross(N, wij*(ejk-eij) + wjk*(eki-ejk) + wki*(eij-eki))
s = cross(N, (a+b+c))*(1./(6.*A))
setattr(face, vectorName, s)
def flat(mesh, vectorFieldName, oneFormName):