-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathProcess_FastMNMF1.m
294 lines (294 loc) · 9.5 KB
/
Process_FastMNMF1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
function [Y,W,SetupStruc] = Process_FastMNMF1(s,Transfer,SetupStruc)
K = SetupStruc.FastMNMF1.K;
hop = SetupStruc.FastMNMF1.hop;
win = hanning(K,'periodic');
win = win/sqrt(sum(win(1:hop:K).^2));
SetupStruc.FastMNMF1.win = win; % Preserve 'win' in 'SetupStruc'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N = size(s,2);
for i = 1:N
X(:,:,i) = fft(enframe(s(:,i),win,hop)');
end
frame_N = size(X,2);
K_m = K/2+1;
Num = size(Transfer,3);
Y = zeros((frame_N-1)*hop+K,Num);
Y_f = zeros(Num,frame_N,K);
%%%%%%%%%%%%%%%%%%%%%%%%%% First initialization
epsi = 1e-7;
L = 2; %%%%% the initial number of NMF basis
X_sp = zeros(K_m,frame_N,N);
Y_sp = zeros(K_m,frame_N,N);
T = max(rand(K_m,L,Num),epsi);
V = max(rand(L,frame_N,Num),epsi);
G = max(eye(Num,N),0.01);
if(N>Num)
i = Num+1;
j = 1;
while(i<=N)
G(j,i) = 1;
i = i+1;
j = j+1;
if(j>Num)
j = 1;
end
end
end
G = G./repmat(sum(G,2),[1,N]);
G = G/max(sum(G));
G = repmat(G,1,1,K_m);
Q = eye(N);
Q = repmat(Q,1,1,K_m);
theta = 10^-6;
X_Norm = X;
for i = 1:K_m
X_f = permute(X(i,:,:),[3 2 1]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Initialization
X_f = X_f./repmat(max(max(abs(X_f),[],2),epsi),[1,frame_N]);
X_Norm(i,:,:) = X_f.';
X_temp = abs(Q(:,:,i)*X_f).^2;
X_sp(i,:,:) = X_temp';
end
for i = 1:N
Y_temp = zeros(K_m,frame_N);
for i_Num = 1:Num
G_temp = permute(G(i_Num,i,:),[3 1 2]);
TG = T(:,:,i_Num).*repmat(G_temp,1,L);
Y_temp = Y_temp+TG*V(:,:,i_Num);
end
Y_sp(:,:,i) = Y_temp;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% Graudal iterations
% max_iteration = 1000;
% pObj = inf;
% A = zeros(1001,2)-1; %%%% Show the decrease of the value of cost funtion, ILRMA max iterations 1000
for iteration = 1:50
%%%%% MU of NMF
for i = 1:Num
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Update T
Gm = permute(G(i,:,:),[3 2 1]);
Gm = repmat(Gm,1,1,frame_N);
Gm = permute(Gm,[1 3 2]);
T(:,:,i) = max(T(:,:,i).*sqrt((sum(Gm.*X_sp.*Y_sp.^(-2),3)*V(:,:,i)')./max(sum(Gm./Y_sp,3)*V(:,:,i)',epsi)),epsi);
for i_N = 1:N
Y_temp = zeros(K_m,frame_N);
for i_Num = 1:Num
G_temp = permute(G(i_Num,i_N,:),[3 1 2]);
TG = T(:,:,i_Num).*repmat(G_temp,1,L);
Y_temp = Y_temp+TG*V(:,:,i_Num);
end
Y_sp(:,:,i_N) = Y_temp;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Update V
V(:,:,i) = max(V(:,:,i).*sqrt((T(:,:,i)'*sum(Gm.*X_sp.*Y_sp.^(-2),3))./max(T(:,:,i)'*sum(Gm./Y_sp,3),epsi)),epsi);
for i_N = 1:N
Y_temp = zeros(K_m,frame_N);
for i_Num = 1:Num
G_temp = permute(G(i_Num,i_N,:),[3 1 2]);
TG = T(:,:,i_Num).*repmat(G_temp,1,L);
Y_temp = Y_temp+TG*V(:,:,i_Num);
end
Y_sp(:,:,i_N) = Y_temp;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Update G
Gn = permute(G(i,:,:),[2 3 1]);
G(i,:,:) = max(Gn.*sqrt(permute(sum(repmat(T(:,:,i)*V(:,:,i),1,1,N).*X_sp.*Y_sp.^(-2),2),[3 1 2])./permute(sum(repmat(T(:,:,i)*V(:,:,i),1,1,N)./Y_sp,2),[3 1 2])),epsi);
for i_N = 1:N
Y_temp = zeros(K_m,frame_N);
for i_Num = 1:Num
G_temp = permute(G(i_Num,i_N,:),[3 1 2]);
TG = T(:,:,i_Num).*repmat(G_temp,1,L);
Y_temp = Y_temp+TG*V(:,:,i_Num);
end
Y_sp(:,:,i_N) = Y_temp;
end
end
%%%%% IP of AuxIVA
% dlw = 0;
for i = 1:K_m
X_f = permute(X_Norm(i,:,:),[3 2 1]);
% dlw = dlw +log(abs(det(Q(:,:,i)))+epsi);
for i_n = 1:N
G_ = permute(Y_sp(i,:,i_n),[3 2 1]);
G_ = repmat(G_,N,1);
Vk = (X_f./(G_+epsi))*X_f'/frame_N;
if rcond(Vk)<theta
Vk = Vk+eye(N)*max(eig(Vk))*theta;
end
wk = inv(Q(:,:,i)*Vk);
wk = wk(:,i_n);
wk = wk/(sqrt(wk'*Vk*wk)+epsi);
Q(i_n,:,i) = wk';
end
X_temp = abs(Q(:,:,i)*X_f).^2;
X_sp(i,:,:) = X_temp';
end
% Obj = ((sum(sum(sum(log(Y_sp+epsi))))+sum(sum(sum(X_sp./Y_sp))))/frame_N-2*dlw)/(Num*K_m);
% dObj = pObj-Obj;
% pObj = Obj;
% A(iteration,:) = [Obj,abs(dObj)/abs(Obj)];
% if(abs(dObj)/abs(Obj)<theta)
% break;
% end
%%%%%%%% Adjust the scales
for i = 1:K_m
for i_N = 1:N
miu = Q(i_N,:,i)*Q(i_N,:,i)';
Q(i_N,:,i) = Q(i_N,:,i)/sqrt(miu);
G(:,i_N,i) = G(:,i_N,i)/miu;
end
for i_N = 1:Num
phi = sum(G(i_N,:,i));
G(i_N,:,i) = G(i_N,:,i)/phi;
T(i,:,i_N) = T(i,:,i_N)*phi;
end
end
vv = sum(T,1);
T = T./repmat(vv,K_m,1,1);
V = V.*repmat(permute(vv,[2 1 3]),1,frame_N,1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% Iteration with larger L
L = 16; %%%%% the initial number of NMF basis
Y_sp = zeros(K_m,frame_N,N);
T = max(rand(K_m,L,Num),epsi);
V = max(rand(L,frame_N,Num),epsi);
for i = 1:N
Y_temp = zeros(K_m,frame_N);
for i_Num = 1:Num
G_temp = permute(G(i_Num,i,:),[3 1 2]);
TG = T(:,:,i_Num).*repmat(G_temp,1,L);
Y_temp = Y_temp+TG*V(:,:,i_Num);
end
Y_sp(:,:,i) = Y_temp;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% Graudal iterations
max_iteration = 150;
pObj = inf;
A = zeros(1001,2)-1; %%%% Show the decrease of the value of cost funtion, ILRMA max iterations 1000
for iteration = 1:max_iteration
%%%%% MU of NMF
for i = 1:Num
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Update T
Gm = permute(G(i,:,:),[3 2 1]);
Gm = repmat(Gm,1,1,frame_N);
Gm = permute(Gm,[1 3 2]);
T(:,:,i) = max(T(:,:,i).*sqrt((sum(Gm.*X_sp.*Y_sp.^(-2),3)*V(:,:,i)')./max(sum(Gm./Y_sp,3)*V(:,:,i)',epsi)),epsi);
for i_N = 1:N
Y_temp = zeros(K_m,frame_N);
for i_Num = 1:Num
G_temp = permute(G(i_Num,i_N,:),[3 1 2]);
TG = T(:,:,i_Num).*repmat(G_temp,1,L);
Y_temp = Y_temp+TG*V(:,:,i_Num);
end
Y_sp(:,:,i_N) = Y_temp;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Update V
V(:,:,i) = max(V(:,:,i).*sqrt((T(:,:,i)'*sum(Gm.*X_sp.*Y_sp.^(-2),3))./max(T(:,:,i)'*sum(Gm./Y_sp,3),epsi)),epsi);
for i_N = 1:N
Y_temp = zeros(K_m,frame_N);
for i_Num = 1:Num
G_temp = permute(G(i_Num,i_N,:),[3 1 2]);
TG = T(:,:,i_Num).*repmat(G_temp,1,L);
Y_temp = Y_temp+TG*V(:,:,i_Num);
end
Y_sp(:,:,i_N) = Y_temp;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Update G
Gn = permute(G(i,:,:),[2 3 1]);
G(i,:,:) = max(Gn.*sqrt(permute(sum(repmat(T(:,:,i)*V(:,:,i),1,1,N).*X_sp.*Y_sp.^(-2),2),[3 1 2])./permute(sum(repmat(T(:,:,i)*V(:,:,i),1,1,N)./Y_sp,2),[3 1 2])),epsi);
for i_N = 1:N
Y_temp = zeros(K_m,frame_N);
for i_Num = 1:Num
G_temp = permute(G(i_Num,i_N,:),[3 1 2]);
TG = T(:,:,i_Num).*repmat(G_temp,1,L);
Y_temp = Y_temp+TG*V(:,:,i_Num);
end
Y_sp(:,:,i_N) = Y_temp;
end
end
%%%%% IP of AuxIVA
dlw = 0;
for i = 1:K_m
X_f = permute(X_Norm(i,:,:),[3 2 1]);
dlw = dlw +log(abs(det(Q(:,:,i)))+epsi);
for i_n = 1:N
G_ = permute(Y_sp(i,:,i_n),[3 2 1]);
G_ = repmat(G_,N,1);
Vk = (X_f./(G_+epsi))*X_f'/frame_N;
if rcond(Vk)<theta
Vk = Vk+eye(N)*max(eig(Vk))*theta;
end
wk = inv(Q(:,:,i)*Vk);
wk = wk(:,i_n);
wk = wk/(sqrt(wk'*Vk*wk)+epsi);
Q(i_n,:,i) = wk';
end
X_temp = abs(Q(:,:,i)*X_f).^2;
X_sp(i,:,:) = X_temp';
end
Obj = ((sum(sum(sum(log(Y_sp+epsi))))+sum(sum(sum(X_sp./Y_sp))))/frame_N-2*dlw)/(Num*K_m);
dObj = pObj-Obj;
pObj = Obj;
A(iteration,:) = [Obj,abs(dObj)/abs(Obj)];
% if(abs(dObj)/abs(Obj)<theta)
% break;
% end
%%%%%%%% Adjust the scales
for i = 1:K_m
for i_N = 1:N
miu = Q(i_N,:,i)*Q(i_N,:,i)';
Q(i_N,:,i) = Q(i_N,:,i)/sqrt(miu);
G(:,i_N,i) = G(:,i_N,i)/miu;
end
for i_N = 1:Num
phi = sum(G(i_N,:,i));
G(i_N,:,i) = G(i_N,:,i)/phi;
T(i,:,i_N) = T(i,:,i_N)*phi;
end
end
vv = sum(T,1);
T = T./repmat(vv,K_m,1,1);
V = V.*repmat(permute(vv,[2 1 3]),1,frame_N,1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% Post processing
% W = conj(permute(Transfer,[3 2 1]))/N;
W = 0;
lamda = zeros(K_m,frame_N,Num);
for i = 1:Num
lamda(:,:,i) = T(:,:,i)*V(:,:,i);
end
lamdag = zeros(Num,N);
for i = 1:K_m
X_f = permute(X(i,:,:),[3 2 1]);
Q_i = Q(:,:,i);
if rcond(Q_i)<theta
Q_i = Q_i+eye(N)*max(eig(Q_i))*theta;
end
Q_ii = inv(Q_i);
for i_T = 1:frame_N
for i_N = 1:Num
lamdag(i_N,:) = lamda(i,i_T,i_N)*G(i_N,:,i);
end
for i_N = 1:Num
Y_f(i_N,i_T,i) = Q_ii(1,:)*diag(lamdag(i_N,:)./sum(lamdag))*Q(:,:,i)*X_f(:,i_T);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if(i~=K_m && i~=1)
Y_f(:,:,K+2-i) = conj(Y_f(:,:,i));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Recover signals
if(K/hop==2)
win = ones(K,1);
end
for i = 1:Num
y_temp = permute(Y_f(i,:,:),[3 2 1]);
Y(:,i) = overlapadd(real(ifft(y_temp))',win,hop);
end
return;