-
Notifications
You must be signed in to change notification settings - Fork 212
/
Copy pathtrain_gpt.py
619 lines (555 loc) · 28.9 KB
/
train_gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import time
from dataclasses import dataclass
from functools import lru_cache
from pathlib import Path
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
import torch
torch.empty(1, device="cuda", requires_grad=True).backward() # prevents a bug on some systems
from torch import Tensor, nn
import torch.nn.functional as F
import torch.distributed as dist
# use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import BlockMask, flex_attention
torch._inductor.config.coordinate_descent_tuning = True # turn this off for a faster compile time (but slightly slower run)
# -----------------------------------------------------------------------------
# Custom operators : FP8 matmul for lm_head by @YouJiacheng
@torch.library.custom_op("nanogpt::mm", mutates_args=())
def mm_op(x: Tensor, w: Tensor, x_s: float, w_s: float, grad_s: float) -> tuple[Tensor, Tensor, Tensor]:
@torch.compile
def impl(x: Tensor, w: Tensor):
assert x.is_contiguous() and w.is_contiguous()
x_f8 = x.mul(x_s).to(torch.float8_e4m3fn)
w_f8 = w.mul(w_s).to(torch.float8_e4m3fn)
out = torch._scaled_mm(
x_f8,
w_f8.t(),
out_dtype=torch.bfloat16,
scale_a=x.new_tensor(1 / x_s, dtype=torch.float32),
scale_b=x.new_tensor(1 / w_s, dtype=torch.float32),
use_fast_accum=True,
)
return out, x_f8, w_f8
return impl(x, w)
@mm_op.register_fake
def _(x: Tensor, w: Tensor, *_):
assert x.ndim == w.ndim == 2
assert x.shape[1] == w.shape[1]
assert x.device == w.device
assert x.is_contiguous() and w.is_contiguous()
return x @ w.t(), x.to(torch.float8_e4m3fn), w.to(torch.float8_e4m3fn)
@torch.library.custom_op("nanogpt::mm_backward", mutates_args=())
def mm_backward_op(g: Tensor, x_f8: Tensor, w_f8: Tensor, x_s: float, w_s: float, grad_s: float) -> tuple[Tensor, Tensor]:
@torch.compile
def impl(grad: Tensor, x_f8: Tensor, w_f8: Tensor):
assert grad.is_contiguous()
x_inv_s = grad.new_tensor(1 / x_s, dtype=torch.float32)
w_inv_s = grad.new_tensor(1 / w_s, dtype=torch.float32)
grad_inv_s = grad.new_tensor(1 / grad_s, dtype=torch.float32)
grad_f8 = grad.mul(grad_s).to(torch.float8_e5m2)
grad_x = torch._scaled_mm(
grad_f8,
w_f8.t().contiguous().t(),
out_dtype=torch.bfloat16,
scale_a=grad_inv_s,
scale_b=w_inv_s,
use_fast_accum=False,
)
# faster than grad_f8_t @ x_f8, for (d_out, d_in) == (50304, 768)
grad_w = torch._scaled_mm(
x_f8.t().contiguous(),
grad_f8.t().contiguous().t(),
out_dtype=torch.float32,
scale_a=x_inv_s,
scale_b=grad_inv_s,
use_fast_accum=False,
).t()
return grad_x, grad_w
return impl(g, x_f8, w_f8)
@mm_backward_op.register_fake
def _(g: Tensor, x_f8: Tensor, w_f8: Tensor, *_):
return x_f8.to(torch.bfloat16), w_f8.to(torch.float32)
def backward(ctx, grad_out: Tensor, *_):
x_f8, w_f8 = ctx.saved_tensors
x_s, w_s, grad_s = ctx.scales
grad_x, grad_w = torch.ops.nanogpt.mm_backward(
grad_out, x_f8, w_f8, x_s, w_s, grad_s
)
return grad_x, grad_w, None, None, None
def setup_context(ctx: torch.autograd.function.FunctionCtx, inputs, output):
*_, x_s, w_s, grad_s = inputs
_, x_f8, w_f8 = output
ctx.save_for_backward(x_f8, w_f8)
ctx.scales = x_s, w_s, grad_s
ctx.set_materialize_grads(False)
mm_op.register_autograd(backward, setup_context=setup_context)
def lm_head_fp8(x: Tensor, w: Tensor) -> Tensor:
_x = x.flatten(0, -2)
out: Tensor = torch.ops.nanogpt.mm(_x, w, x_s=2.0, w_s=32.0, grad_s=2.0**29)[0]
return out.reshape(*x.shape[:-1], -1)
# -----------------------------------------------------------------------------
# Muon optimizer
@torch.compile
def zeropower_via_newtonschulz5(G: Tensor, steps: int) -> Tensor:
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert G.ndim >= 2 # batched Muon implementation by @scottjmaddox, and put into practice in the record by @YouJiacheng
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
if G.size(-2) > G.size(-1):
X = X.mT
# Ensure spectral norm is at most 1
X = X / (X.norm(dim=(-2, -1), keepdim=True) + 1e-7)
# Perform the NS iterations
for _ in range(steps):
A = X @ X.mT
B = b * A + c * A @ A # quintic computation strategy adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(-2) > G.size(-1):
X = X.mT
return X
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven"t tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
ns_steps: The number of Newton-Schulz iteration steps to use.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True, ns_steps=5, rank=0, world_size=1):
self.rank = rank
self.world_size = world_size
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, ns_steps=ns_steps)
params: list[Tensor] = [*params]
assert all(isinstance(p, Tensor) for p in params)
sizes = {p.numel() for p in params}
def create_update_buffer(size: int):
b = torch.empty(self.world_size, size, dtype=torch.bfloat16, device="cuda")
return dict(update_buffer=b, update_buffer_views=[b[i] for i in range(self.world_size)])
param_groups = [
dict(params=[p for p in params if p.numel() == size], **create_update_buffer(size)) for size in sizes]
super().__init__(param_groups, defaults)
@torch.no_grad()
def step(self):
for group in self.param_groups:
lr = group["lr"]
momentum = group["momentum"]
nesterov = group["nesterov"]
ns_steps = group["ns_steps"]
update_buffer = group["update_buffer"]
update_buffer_views: list[Tensor] = group["update_buffer_views"]
# generate weight updates in distributed fashion
params: list[Tensor] = group["params"]
handle = None
params_world = None
def update_prev(): # optimized Muon implementation contributed by @YouJiacheng
if params_world is None:
return
assert handle is not None
handle.wait()
for p_world, g_world in zip(params_world, update_buffer_views):
p_world.add_(
g_world.view_as(p_world),
alpha=-lr * max(1, p_world.size(-2) / p_world.size(-1)) ** 0.5,
)
for base_i in range(len(params))[::self.world_size]:
if base_i + self.rank < len(params):
p = params[base_i + self.rank]
g = p.grad
assert g is not None
state = self.state[p]
if "momentum_buffer" not in state:
state["momentum_buffer"] = torch.zeros_like(g)
buf: Tensor = state["momentum_buffer"]
buf.lerp_(g, 1 - momentum)
g = g.lerp_(buf, momentum) if nesterov else buf
g = zeropower_via_newtonschulz5(g, steps=ns_steps).flatten()
else:
g = update_buffer_views[self.rank]
update_prev() # async all_gather instead of sync all_reduce by @YouJiacheng
handle = dist.all_gather_into_tensor(update_buffer, g, async_op=True)
params_world = params[base_i : base_i + self.world_size]
update_prev()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features: int, out_features: int):
super().__init__(in_features, out_features, bias=False)
def reset_parameters(self) -> None:
std = 0.5 * (self.in_features ** -0.5) # 0.5 is a bit better than the default 1/sqrt(3)
bound = (3 ** 0.5) * std
with torch.no_grad():
self.weight.uniform_(-bound, bound)
def forward(self, x):
return F.linear(x, self.weight.type_as(x))
class Rotary(nn.Module):
def __init__(self, dim: int, max_seq_len=65536):
super().__init__()
# half-truncate RoPE by @YouJiacheng (w/ base freq tuning)
angular_freq = (1 / 1024) ** torch.linspace(0, 1, steps=dim//4, dtype=torch.float32)
angular_freq = torch.cat([angular_freq, angular_freq.new_zeros(dim//4)])
t = torch.arange(max_seq_len, dtype=torch.float32)
theta = torch.einsum("i,j -> ij", t, angular_freq)
self.cos = nn.Buffer(theta.cos(), persistent=False)
self.sin = nn.Buffer(theta.sin(), persistent=False)
def forward(self, x_BTHD: Tensor):
assert self.cos.size(0) >= x_BTHD.size(-3)
cos, sin = self.cos[None, :x_BTHD.size(-3), None, :], self.sin[None, :x_BTHD.size(-3), None, :]
x1, x2 = x_BTHD.to(dtype=torch.float32).chunk(2, dim=-1)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x_BTHD)
class CausalSelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int, layer_idx: int):
super().__init__()
assert dim % num_heads == 0
self.num_heads = num_heads
std = 0.5 * (dim ** -0.5)
bound = (3 ** 0.5) * std # improved init scale by @YouJiacheng
# merged QKV weights: suggested by many, implemented by @fernbear.bsky.social, and further improved by @YouJiacheng
# https://x.com/hi_tysam/status/1879699187107033311
self.qkv_w = nn.Parameter(torch.empty(3, dim, dim).uniform_(-bound, bound))
self.lambdas = nn.Parameter(torch.tensor([0.5, 0.5]))
self.rotary = Rotary(dim // num_heads) # dim // num_heads = head_dim
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.detach().zero_() # zero init suggested by @Grad62304977
# scale the attention logits by given constant, instead of the default head_dim**-0.5, by @leloykun
# inspired by learnable scalars used by @brendanh0gan https://x.com/hi_tysam/status/1879693583898591283
self.attn_scale = 0.12
def forward(self, x: Tensor, ve: Tensor | None, block_mask: BlockMask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q, k, v = F.linear(x, self.qkv_w.flatten(end_dim=1).type_as(x)).view(B, T, 3*self.num_heads, -1).chunk(3, dim=-2)
if ve is not None:
v = self.lambdas[0] * v + self.lambdas[1] * ve.view_as(v) # @KoszarskyB & @Grad62304977
else: # skip mid-layers token value embeddings by @YouJiacheng
v = self.lambdas[0] * v
q, k = norm(q), norm(k) # QK norm @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask, scale=self.attn_scale)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.detach().zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, model_dim: int, num_heads: int, layer_idx: int):
super().__init__()
# skip attention of blocks.7 (the 8th layer) by @YouJiacheng
self.attn = CausalSelfAttention(model_dim, num_heads, layer_idx) if layer_idx != 7 else None
self.mlp = MLP(model_dim)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, ve, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
if self.attn is not None:
x = x + self.attn(norm(x), ve, block_mask)
x = x + self.mlp(norm(x))
return x
class ValueEmbedding(nn.Module):
def __init__(self, num_embeddings: int, embedding_dim: int):
super().__init__()
self.embed = nn.ModuleList([nn.Embedding(num_embeddings, embedding_dim) for _ in range(3)])
def forward(self, input_seq) -> list[Tensor | None]:
ve = [emb(input_seq) for emb in self.embed]
# 012 ... 012 structure on token value embeddings by @YouJiacheng, improved on @leloykun's U-net structure
ve = [ve[0], ve[1], ve[2], None, None, None, None, None, None, ve[0], ve[1], ve[2]]
return ve
# -----------------------------------------------------------------------------
# The main model
def next_multiple_of_n(v: float | int, *, n: int):
return next(x for x in range(n, int(v) + 1 + n, n) if x >= v)
class GPT(nn.Module):
def __init__(self, vocab_size: int, num_layers: int, num_heads: int, model_dim: int):
super().__init__()
self.embed = nn.Embedding(vocab_size, model_dim)
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual implementation following https://arxiv.org/abs/2410.17897
self.value_embeds = ValueEmbedding(vocab_size, model_dim)
self.blocks = nn.ModuleList([Block(model_dim, num_heads, layer_idx) for layer_idx in range(num_layers)])
# U-net design by @brendanh0gan
self.num_encoder_layers = num_layers // 2 # Half of the layers for encoder
self.num_decoder_layers = num_layers - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency.
# suggested to me by @Grad62304977. this originates from Karpathy's experiments.
self.lm_head = CastedLinear(model_dim, next_multiple_of_n(vocab_size, n=128))
self.lm_head.weight.detach().zero_() # @Grad62304977
def forward(self, input_seq: Tensor, target_seq: Tensor, sliding_window_num_blocks: Tensor):
BLOCK_SIZE = 128
assert input_seq.ndim == 1
assert len(input_seq) % BLOCK_SIZE == 0
NUM_BLOCKS = len(input_seq) // BLOCK_SIZE
docs = (input_seq == 50256).cumsum(0)
docs_low = docs.view(-1, BLOCK_SIZE)[:, 0].contiguous()
docs_high = docs.view(-1, BLOCK_SIZE)[:, -1].contiguous()
def document_causal(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
return causal_mask & document_mask
def dense_to_ordered(dense_mask: Tensor):
num_blocks = dense_mask.sum(dim=-1, dtype=torch.int32)
indices = dense_mask.argsort(dim=-1, descending=False, stable=True).flip(-1).to(torch.int32)
return num_blocks[None, None].contiguous(), indices[None, None].contiguous()
# manual block mask creation by @YouJiacheng
def create_doc_swc_block_masks(sliding_window_num_blocks: Tensor):
kv_idx = block_idx = torch.arange(NUM_BLOCKS, dtype=torch.int32, device="cuda")
q_idx = block_idx[:, None]
causal_bm = q_idx >= kv_idx
causal_full_bm = q_idx > kv_idx
document_bm = (docs_low[:, None] <= docs_high) & (docs_low <= docs_high[:, None])
document_full_bm = (docs_low[:, None] == docs_high) & (docs_low == docs_high[:, None])
nonzero_bm = causal_bm & document_bm
full_bm = causal_full_bm & document_full_bm
kv_num_blocks, kv_indices = dense_to_ordered(nonzero_bm & ~full_bm)
full_kv_num_blocks, full_kv_indices = dense_to_ordered(full_bm)
def build_bm(sw_num_blocks: Tensor) -> BlockMask:
return BlockMask.from_kv_blocks(
torch.clamp_max(kv_num_blocks, torch.clamp_min(sw_num_blocks - full_kv_num_blocks, 1)),
kv_indices,
torch.clamp_max(full_kv_num_blocks, sw_num_blocks - 1),
full_kv_indices,
BLOCK_SIZE=BLOCK_SIZE,
mask_mod=document_causal,
)
return build_bm(sliding_window_num_blocks), build_bm(sliding_window_num_blocks // 2)
# Long-short SWA block masks by @leloykun & @YouJiacheng, adapated from suggestion by @Grad62304977, following Gemma 2 paper
long_bm, short_bm = create_doc_swc_block_masks(sliding_window_num_blocks)
x = x0 = norm(self.embed(input_seq)[None]) # use of norm here by @Grad62304977
ve = self.value_embeds(input_seq)
assert len(ve) == len(self.blocks)
ve_enc, ve_dec = ve[:self.num_encoder_layers], ve[self.num_encoder_layers:]
assert len(ve_enc) == self.num_encoder_layers and len(ve_dec) == self.num_decoder_layers
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
block_masks = [long_bm, short_bm, short_bm, short_bm, long_bm, short_bm]
for i in range(self.num_encoder_layers):
x = self.blocks[i](x, ve_enc[i], x0, block_masks[i])
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
block_masks.reverse()
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.blocks[self.num_encoder_layers + i](x, ve_dec[i], x0, block_masks[i])
x = norm(x)
logits = lm_head_fp8(x, self.lm_head.weight) if self.training else self.lm_head(x)
# @Grad62304977 added tanh softcapping following Gemma 2 paper, @KoszarskyB reduced it from 30 to 15, @YouJiacheng shifted it by +15 (2*sigmoid(2*x)=tanh(x)+1)
logits = 30 * torch.sigmoid(logits.float() / 7.5)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target_seq)
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _load_data_shard(file: Path):
header = torch.from_file(f"{file}", False, 256, dtype=torch.int32) # header is 256 int32
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
num_tokens = int(header[2]) # number of tokens (claimed)
with file.open("rb", buffering=0) as f:
tokens = torch.empty(num_tokens, dtype=torch.uint16, pin_memory=True) # avoid pin_memory copy by @YouJiacheng
f.seek(256 * 4)
nbytes = f.readinto(tokens.numpy()) # avoid bytes->array copy by @YouJiacheng
assert nbytes == 2 * num_tokens, "number of tokens read does not match header"
return tokens
def distributed_data_generator(filename_pattern: str, batch_size: int, rank : int, world_size : int):
files = sorted(Path.cwd().glob(filename_pattern))
assert batch_size % world_size == 0
local_batch_size = batch_size // world_size
file_iter = iter(files) # use itertools.cycle(files) instead if you want to do multi-epoch training
tokens, pos = _load_data_shard(next(file_iter)), 0
while True:
if pos + batch_size + 1 >= len(tokens):
tokens, pos = _load_data_shard(next(file_iter)), 0
buf = tokens[pos + rank * local_batch_size:][:local_batch_size + 1]
inputs = buf[:-1].to(device="cuda", dtype=torch.int32, non_blocking=True) # no sync on host side;
targets = buf[1:].to(device="cuda", dtype=torch.int64, non_blocking=True) # H2D in another stream isn"t helpful.
pos += batch_size
yield inputs, targets
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data
train_files = "data/fineweb10B/fineweb_train_*.bin" # input .bin to train on
val_files = "data/fineweb10B/fineweb_val_*.bin" # input .bin to eval validation loss on
val_tokens = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
# optimization
batch_size = 8*64*1024 # batch size in tokens
num_iterations = 1393 # number of iterations to run
cooldown_frac = 0.4 # fraction of training spent cooling down the learning rate
# evaluation and logging
val_loss_every = 125 # every how many steps to evaluate val loss? 0 for only at the end
# implementation
seq_len = 64*1024 # FlexAttention sequence length
save_checkpoint = False
args = Hyperparameters()
# torchrun sets these env variables
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
assert torch.cuda.is_available()
device = torch.device("cuda", int(os.environ["LOCAL_RANK"]))
torch.cuda.set_device(device)
dist.init_process_group(backend="nccl", device_id=device)
dist.barrier()
master_process = (rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = uuid.uuid4()
os.makedirs("logs", exist_ok=True)
logfile = f"logs/{run_id}.txt"
print(logfile)
def print0(s, console=False):
if master_process:
with open(logfile, "a") as f:
if console:
print(s)
print(s, file=f)
# begin by printing this file (the Python code)
print0(code)
print0("="*100)
# log information about the hardware/software environment this is running on
print0(f"Running Python {sys.version}")
print0(f"Running PyTorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}")
def nvidia_smi():
import subprocess # avoid top level import
return subprocess.run(["nvidia-smi"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True).stdout
print0(nvidia_smi())
print0("="*100)
# load data
train_loader = distributed_data_generator(args.train_files, args.batch_size, rank, world_size)
model = GPT(vocab_size=50257, num_layers=12, num_heads=6, model_dim=768).cuda()
for m in model.modules():
if isinstance(m, nn.Embedding):
m.bfloat16()
for param in model.parameters():
dist.broadcast(param.detach(), 0)
# collect the parameters to optimize
hidden_matrix_params = [p for p in model.blocks.parameters() if p.ndim >= 2]
embed_params = [model.embed.weight, *model.value_embeds.parameters()]
scalar_params = [p for p in model.parameters() if p.ndim < 2]
head_params = [model.lm_head.weight]
# init the optimizer(s)
adam_params = [dict(params=head_params, lr=0.008), dict(params=embed_params, lr=0.6), dict(params=scalar_params, lr=0.04)]
# small adam epsilon by @YouJiacheng. this is an alternate method of fixing the world_size dependence
# discovered by @fernbear.bsky.social https://x.com/hi_tysam/status/1879692937589875094
optimizer1 = torch.optim.Adam(adam_params, betas=(0.8, 0.95), fused=True, eps=1e-10)
optimizer2 = Muon(hidden_matrix_params, lr=0.05, momentum=0.95, rank=rank, world_size=world_size)
optimizers = [optimizer1, optimizer2]
# learning rate schedule: stable then decay
def get_lr(it: int):
t = 1 - it / args.num_iterations # time remaining in training
assert 1 >= t >= 0
w = min(t / args.cooldown_frac, 1.0) # 1 -> 0
return w * 1.0 + (1 - w) * 0.1
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
@lru_cache(1)
def sw_num_blks(window_size: int):
return torch.tensor(window_size // 128, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True)
model: nn.Module = torch.compile(model)
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.perf_counter()
# begin training
train_steps = args.num_iterations
for step in range(train_steps + 1):
last_step = (step == train_steps)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.perf_counter()
timed_steps = float("nan") if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Linearly increase the block-wise sliding window size over training 128 -> 1792:
# increase by @fernbear.bsky.social; block-wise by @YouJiacheng
window_size = next_multiple_of_n(1728 * step / train_steps, n=128)
# --------------- VALIDATION SECTION -----------------
if last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.perf_counter() - t0)
model.eval()
val_bs = world_size * args.seq_len
assert args.val_tokens % val_bs == 0
val_steps = args.val_tokens // val_bs
val_loader = distributed_data_generator(args.val_files, val_bs, rank, world_size)
val_loss = 0
with torch.no_grad():
for _ in range(val_steps):
x, y = next(val_loader)
val_loss += model(x, y, sw_num_blks(window_size))
val_loss /= val_steps
del val_loader
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
print0(f"step:{step}/{train_steps} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms", console=True)
model.train()
# start the clock again
torch.cuda.synchronize()
t0 = time.perf_counter()
if last_step:
if master_process and args.save_checkpoint:
log = dict(step=step, code=code, model=model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
os.makedirs(f"logs/{run_id}", exist_ok=True)
torch.save(log, f"logs/{run_id}/state_step{step:06d}.pt")
# the last step only has the validation loop, so break to avoid training
break
# --------------- TRAINING SECTION BEGIN -----------------
inputs, targets = next(train_loader)
for input_seq, target_seq in zip(inputs.split(args.seq_len), targets.split(args.seq_len)):
model(input_seq, target_seq, sw_num_blks(window_size)).backward()
for param in model.parameters():
dist.all_reduce(param.grad, op=dist.ReduceOp.AVG)
# momentum warmup for Muon
frac = min(step / 300, 1)
for group in optimizer2.param_groups:
group["momentum"] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# logging
approx_time = training_time_ms + 1000 * (time.perf_counter() - t0)
print0(f"step:{step+1}/{train_steps} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms", console=True)
print0(
f"peak memory allocated: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB "
f"reserved: {torch.cuda.max_memory_reserved() // 1024 // 1024} MiB"
)
dist.destroy_process_group()