-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_mtl.py
443 lines (365 loc) · 19.4 KB
/
trainer_mtl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import torch.optim as optim
from helpers.utils import *
from helpers.model import EncDecTransformer
from helpers import baseline
from config import TrainConfig
from helpers.data import make_dataset_df, make_dataloaders
from helpers.metrics import plot_classification_metrics, plot_regression_pearson
import torch.optim as optim
from pathlib import Path
import sklearn
import sklearn.model_selection
from datetime import datetime
import random
import os
from tqdm import tqdm
from sklearn.metrics import roc_auc_score
from scipy.stats import pearsonr
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import glob
torch.manual_seed(1337)
np.random.seed(1337)
random.seed(1337)
config = TrainConfig()
# run baseline, skips rest of the code below
if config.baseline:
print(f"Running baseline {config.task_type} Transformer model, without balancing")
baseline.baseline()
exit()
# define model, optimiser and scheduler
device = config.device
if config.weight == 'autol':
autol_lr = 1e-4
autol_init=0.1
# create logging folder to store training weights and losses
if not os.path.exists('logging'):
os.makedirs('logging')
print('Applying Multi-task Methods: Weighting-based: {} + Gradient-based: {}'
.format(config.weight.title(), config.grad_method.upper()))
all_tasks = [config.target_label_class, config.target_label_regr]
pri_tasks = [config.target_label_class]
target_labels=[config.target_label_class, config.target_label_regr]
dataset_df = make_dataset_df(
clini_table=Path(config.clini_table),
slide_table=Path(config.slide_table),
feature_dir=Path(config.feature_dir),
target_labels=target_labels
)
#only want 100% overlap between targets to enable batch_size=1
dataset_df = dataset_df.dropna()
#classification data adaptations
dataset_df[config.target_label_class] = torch.tensor(dataset_df[config.target_label_class].map(config.label_mapping).tolist()).numpy()
# regression data adaptations
dataset_df[config.target_label_regr] = dataset_df[config.target_label_regr].astype(float)
# 5 fold cross-validation
skf = sklearn.model_selection.StratifiedKFold(n_splits=config.k_folds, shuffle=True, random_state=1337)
# Get current date and time
current_datetime = datetime.now()
formatted_datetime = current_datetime.strftime("%d%m%Y_%H%M%S")
base_path=f"./{config.model_name}_{formatted_datetime}"
os.makedirs(base_path)
config.save_to_json(f"{base_path}/config.json")
# ITERATE OVER FOLDS
for fold, (train_index, test_index) in enumerate(skf.split(dataset_df, dataset_df[config.target_label_class])):
model_name = f"{base_path}/fold-{fold}/fold-{fold}_{config.model_name}_{formatted_datetime}"
model = EncDecTransformer(
d_features=768,
target_label_class=config.target_label_class,
target_label_regr=config.target_label_regr,
d_model=config.d_model,
num_encoder_heads=config.num_encoder_heads,
num_decoder_heads=config.num_decoder_heads,
num_encoder_layers=config.num_encoder_layers,
num_decoder_layers=config.num_decoder_layers,
dim_feedforward=config.dim_feedforward,
positional_encoding=config.positional_encoding,
)
model = model.to(device)
total_epoch = config.num_epochs
optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, total_epoch)
# choose task weighting here
if config.weight == 'uncert':
logsigma = torch.tensor([-0.7] * len(all_tasks), requires_grad=True, device=device)
params = list(model.parameters()) + [logsigma]
logsigma_ls = np.zeros([total_epoch, len(all_tasks)], dtype=np.float32)
if config.weight in ['dwa', 'equal']:
T = 2.0 # temperature used in dwa
lambda_weight = np.ones([total_epoch, len(all_tasks)])
params = model.parameters()
if config.weight == 'autol':
params = model.parameters()
autol = AutoLambda(model, device, all_tasks, pri_tasks, autol_init)
meta_weight_ls = np.zeros([total_epoch, len(all_tasks)], dtype=np.float32)
meta_optimizer = torch.optim.AdamW([autol.meta_weights], lr=autol_lr)
# apply gradient methods
if config.grad_method != 'none':
rng = np.random.default_rng()
grad_dims = []
for mm in model.shared_modules():
for param in mm.parameters():
grad_dims.append(param.data.numel())
grads = torch.Tensor(sum(grad_dims), len(all_tasks)).to(device)
train_metric = TaskMetric(all_tasks, pri_tasks, config.batch_size, total_epoch)
val_metric = TaskMetric(all_tasks, pri_tasks, config.batch_size, total_epoch)
test_metric = TaskMetric(all_tasks, pri_tasks, config.batch_size, total_epoch)
print(f"Fold {fold + 1}/{config.k_folds}")
os.makedirs(f'{base_path}/fold-{fold}', exist_ok=True)
# Split the data into training, validation, and test sets for this fold
train_df, test_df = dataset_df.iloc[train_index], dataset_df.iloc[test_index]
train_df, valid_df = sklearn.model_selection.train_test_split(train_df, test_size=0.2, stratify=train_df[config.target_label_class], random_state=1337)
#scale continuous regression values 0-1
min_max_scaler = sklearn.preprocessing.MinMaxScaler()
train_df.loc[:, config.target_label_regr] = min_max_scaler.fit_transform(train_df[config.target_label_regr].values.reshape(-1, 1))
valid_df.loc[:, config.target_label_regr] = min_max_scaler.transform(valid_df[config.target_label_regr].values.reshape(-1, 1))
test_df.loc[:, config.target_label_regr] = min_max_scaler.transform(test_df[config.target_label_regr].values.reshape(-1, 1))
# Create dataloaders for the current fold
train_loader, val_loader = make_dataloaders(
train_bags=train_df.path.values,
train_targets={k: v for k, v in train_df.loc[:, target_labels].items()},
valid_bags=valid_df.path.values,
valid_targets={k: v for k, v in valid_df.loc[:, target_labels].items()},
instances_per_bag=config.instances_per_bag,
batch_size=config.batch_size,
num_workers=config.num_workers,
)
# Create dataloaders for the current fold
train_loader, test_loader = make_dataloaders(
train_bags=train_df.path.values,
train_targets={k: v for k, v in train_df.loc[:, target_labels].items()},
valid_bags=test_df.path.values,
valid_targets={k: v for k, v in test_df.loc[:, target_labels].items()},
instances_per_bag=config.instances_per_bag,
batch_size=config.batch_size,
num_workers=config.num_workers,
)
virtual_val_loader, _ = make_dataloaders(
train_bags=train_df.path.values,
train_targets={k: v for k, v in train_df.loc[:, target_labels].items()},
valid_bags=test_df.path.values,
valid_targets={k: v for k, v in test_df.loc[:, target_labels].items()},
instances_per_bag=config.instances_per_bag,
batch_size=config.batch_size,
num_workers=config.num_workers,
)
# Train and evaluate multi-task network
train_batch = len(train_loader)
test_batch = len(test_loader)
val_batch = len(val_loader)
virutal_val_batch = len(virtual_val_loader)
best_avg_loss_class = float("inf")
best_avg_loss_regr = float("inf")
## START THE EPOCHS HERE
for index in range(total_epoch):
# apply Dynamic Weight Average
if config.weight == 'dwa':
if index == 0 or index == 1:
lambda_weight[index, :] = 1.0
else:
w = []
for i, t in enumerate(all_tasks):
w += [train_metric.metric[t][index - 1, 0] / train_metric.metric[t][index - 2, 0]]
w = torch.softmax(torch.tensor(w) / T, dim=0)
lambda_weight[index] = len(all_tasks) * w.numpy()
# iteration for all batches
model.train()
train_dataset = iter(train_loader)
if config.weight == 'autol':
virtual_val_dataset = iter(virtual_val_loader)
for k in tqdm(range(train_batch), total=(train_batch), leave=False):
train_data, train_coords, train_target = next(train_dataset)
class_labels_key, regr_labels_key = list(train_target.keys())
class_train_target, regr_train_target = list(train_target.values())
train_data, class_train_target, regr_train_target = train_data.to(device), class_train_target.type(torch.LongTensor).to(device), regr_train_target.type(torch.float32).to(device)
train_target=[class_train_target, regr_train_target]
# update meta-weights with Auto-Lambda
if config.weight == 'autol':
virt_val_data, virt_val_coords, virt_val_target = next(virtual_val_dataset)
class_virt_val_target, regr_virt_val_target = list(virt_val_target.values())
virt_val_data, class_virt_val_target, regr_virt_val_target = virt_val_data.to(device), class_virt_val_target.type(torch.LongTensor).to(device), regr_virt_val_target.type(torch.float32).to(device)
virt_val_target=[class_virt_val_target, regr_virt_val_target]
meta_optimizer.zero_grad()
autol.unrolled_backward(train_data, train_target, virt_val_data, virt_val_target,
scheduler.get_last_lr()[0], optimizer)
meta_optimizer.step()
# update multi-task network parameters with task weights
optimizer.zero_grad()
train_pred = model(train_data)
#returns [loss_class, loss_regr]
train_loss = get_loss(train_pred, train_target)
train_loss_tmp = [0] * len(all_tasks)
if config.weight in ['equal', 'dwa']:
train_loss_tmp = [w * train_loss[i] for i, w in enumerate(lambda_weight[index])]
if config.weight == 'uncert':
train_loss_tmp = [1 / (2 * torch.exp(w)) * train_loss[i] + w / 2 for i, w in enumerate(logsigma)]
if config.weight == 'autol':
train_loss_tmp = [w * train_loss[i] for i, w in enumerate(autol.meta_weights)]
loss = sum(train_loss_tmp)
if config.grad_method == 'none':
loss.backward()
optimizer.step()
# gradient-based methods applied here:
elif config.grad_method == "graddrop":
for i in range(len(all_tasks)):
train_loss_tmp[i].backward(retain_graph=True)
grad2vec(model, grads, grad_dims, i)
model.zero_grad_shared_modules()
g = graddrop(grads)
overwrite_grad(model, g, grad_dims, len(all_tasks))
optimizer.step()
elif config.grad_method == "pcgrad":
for i in range(len(all_tasks)):
train_loss_tmp[i].backward(retain_graph=True)
grad2vec(model, grads, grad_dims, i)
model.zero_grad_shared_modules()
g = pcgrad(grads, rng, len(all_tasks))
overwrite_grad(model, g, grad_dims, len(all_tasks))
optimizer.step()
elif config.grad_method == "cagrad":
for i in range(len(all_tasks)):
train_loss_tmp[i].backward(retain_graph=True)
grad2vec(model, grads, grad_dims, i)
model.zero_grad_shared_modules()
g = cagrad(grads, len(all_tasks), 0.4, rescale=1)
overwrite_grad(model, g, grad_dims, len(all_tasks))
optimizer.step()
scheduler.step()
train_metric.update_metric(train_pred, train_target, train_loss, all_tasks)
train_metric.reset()
# Epoch evaluation test data
model.eval()
with torch.no_grad():
valid_loss_class = 0.0
valid_loss_regr = 0.0
y_true_class = []
y_pred_class = []
y_true_regr = []
y_pred_regr = []
val_dataset = iter(val_loader)
for k in tqdm(range(val_batch), total=(val_batch), leave=False):
val_data, val_coords, val_target = next(val_dataset)
class_val_target, regr_val_target = list(val_target.values())
val_data, class_val_target, regr_val_target = val_data.to(device), class_val_target.type(torch.LongTensor).to(device), regr_val_target.type(torch.float32).to(device)
val_target=[class_val_target, regr_val_target]
# val_pred = [logits_classification, logits_regression]
val_pred = model(val_data)
# val_loss = [loss_class, loss_regr]
val_loss = get_loss(val_pred, val_target)
val_metric.update_metric(val_pred, val_target, val_loss, all_tasks)
y_true_class.extend(class_val_target.cpu().numpy())
y_pred_class.extend(val_pred[0][:, 1].cpu().numpy())
y_true_regr.extend(regr_val_target.cpu().numpy())
y_pred_regr.extend(val_pred[1].cpu().numpy())
valid_loss_class += val_loss[0].item()
valid_loss_regr += val_loss[1].item()
val_metric.reset()
avg_valid_loss_class = valid_loss_class / len(val_loader)
avg_valid_loss_regr = valid_loss_regr / len(val_loader)
metric_class = roc_auc_score(y_true_class, y_pred_class)
print(f"AUROC (Classification) on Validation: {metric_class:.4f}")
# auroc_class_list.append(metric)
print(f"Valid Cross-entropy Loss: {avg_valid_loss_class:.4f}")
save_criteria_class = (avg_valid_loss_class < best_avg_loss_class)
# Calculate Pearson's r for regression
metric_regr, _ = pearsonr(y_true_regr, y_pred_regr)
print(f"Pearson's r (Regression) on Validation: {metric_regr:.4f}")
# pearson_r_regr_list.append(metric)
print(f"Valid MSE Loss: {avg_valid_loss_regr:.4f}")
save_criteria_regr = (avg_valid_loss_regr < best_avg_loss_regr)
#NOTE: optimized for lowest CE loss
if (save_criteria_class):
print(f"==== New best model found in {index+1}, loss = {avg_valid_loss_class} < {best_avg_loss_class} ===")
best_avg_loss_class = avg_valid_loss_class
best_avg_loss_regr = avg_valid_loss_regr
best_epoch = index+1
torch.save(model.state_dict(), f'{model_name}.pth')
if abs(index - best_epoch) == config.early_stopping:
print(f"Early stopping triggered, no improvement since epoch {best_epoch}...")
break
### TESTING
if best_epoch != -1:
print(f"Loading model from epoch {best_epoch} for inference...")
model.load_state_dict(torch.load(f'{model_name}.pth'))
model.eval() # Set the model to evaluation mode
with torch.no_grad():
test_loss_class = 0.0
test_loss_regr = 0.0
y_true_class = []
y_pred_class = []
y_true_regr = []
y_pred_regr = []
test_dataset = iter(test_loader)
for k in tqdm(range(test_batch), total=(test_batch), leave=False):
test_data, test_coords, test_target = next(test_dataset)
class_test_target, regr_test_target = list(test_target.values())
test_data, class_test_target, regr_test_target = test_data.to(device), class_test_target.type(torch.LongTensor).to(device), regr_test_target.type(torch.float32).to(device)
test_target=[class_test_target, regr_test_target]
test_pred = model(test_data)
test_loss = get_loss(test_pred, test_target)
test_metric.update_metric(test_pred, test_target, test_loss, all_tasks)
y_true_class.extend(class_test_target.cpu().numpy())
y_pred_class.extend(torch.softmax(test_pred[0], dim=1).cpu().numpy())
y_true_regr.extend(regr_test_target.cpu().numpy())
y_pred_regr.extend(test_pred[1].cpu().numpy())
test_loss_class += test_loss[0].item()
test_loss_regr += test_loss[1].item()
avg_test_loss_class = test_loss_class / len(test_loader)
avg_test_loss_regr = test_loss_regr / len(test_loader)
print(f"Test Loss: Crossentropy={avg_test_loss_class:.4f}, MSE={avg_test_loss_regr:.4f}")
softmax_class_logit=np.array(y_pred_class)
auroc_class = roc_auc_score(y_true_class, softmax_class_logit[:, 1].tolist()) #first index of softmaxed logits
print(f"AUROC (Classification) on Test: {auroc_class:.4f}")
pearson_r_regr, _ = pearsonr(y_true_regr, y_pred_regr)
print(f"Pearson's r (Regression) on Test: {pearson_r_regr:.4f}")
# plot results
data = {'y_true_regr': y_true_regr, 'y_pred_regr': y_pred_regr}
df = pd.DataFrame(data)
plt.figure(figsize=(8, 6))
sns.regplot(x='y_true_regr', y='y_pred_regr', data=df)
plt.title(f'Regression Correlation Plot\nPearson\'s r: {pearson_r_regr:.4f}', fontsize=16)
plt.savefig(f'{model_name}-regr_plot.png')
test_df_class = test_loader.dataset.targets[class_labels_key]
test_df_class = pd.DataFrame(test_df_class).reset_index(col_level=0, col_fill='')
test_df_class["class_logits_neg"] = softmax_class_logit[:, 0].tolist()
test_df_class["class_logits_pos"] = softmax_class_logit[:, 1].tolist()
test_df_class["class_pred"] = np.argmax(y_pred_class, axis=1)
test_df_regr = test_loader.dataset.targets[regr_labels_key]
test_df_regr = pd.DataFrame(test_df_regr).reset_index(col_level=0, col_fill='')
test_df_regr["regr_logits"] = y_pred_regr
preds_df = test_df_class.merge(test_df_regr, on='PATIENT', how='left')
preds_df.to_csv(f'{model_name}-patient_preds.csv')
test_metric.reset()
if config.weight == 'autol':
meta_weight_ls[index] = autol.meta_weights.detach().cpu()
dict = {'train_loss': train_metric.metric, 'test_loss': test_metric.metric,
'weight': meta_weight_ls}
print(get_weight_str(meta_weight_ls[index], all_tasks))
if config.weight in ['dwa', 'equal']:
dict = {'train_loss': train_metric.metric, 'test_loss': test_metric.metric,
'weight': lambda_weight}
print(get_weight_str(lambda_weight[index], all_tasks))
if config.weight == 'uncert':
logsigma_ls[index] = logsigma.detach().cpu()
dict = {'train_loss': train_metric.metric, 'test_loss': test_metric.metric,
'weight': logsigma_ls}
print(get_weight_str(1 / (2 * np.exp(logsigma_ls[index])), all_tasks))
print("Training complete, plotting final metrics...")
preds_files = glob.glob(f"{base_path}/fold-*/*patient_preds.csv")
preds_df = pd.DataFrame(pd.concat(map(pd.read_csv, preds_files)))
if config.task_type == 'classification':
plot_classification_metrics(preds_files, config, base_path)
elif config.task_type == 'regression':
y_true_regr = preds_df[config.target_label_regr].values
y_pred_regr = preds_df["regr_logits"].values
plot_regression_pearson(y_true_regr, y_pred_regr, base_path)
elif config.task_type == 'joint':
y_true_class = preds_df[config.target_label_class].values
y_pred_class = preds_df["class_logits_pos"].values
y_true_regr = preds_df[config.target_label_regr].values
y_pred_regr = preds_df["regr_logits"].values
plot_classification_metrics(preds_files, config, base_path)
plot_regression_pearson(y_true_regr, y_pred_regr, base_path)
plot_classification_metrics(preds_files, config, base_path, is_joint=True)
preds_df.to_csv(f"{base_path}/full_preds_df.csv")