-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathplantarFasciaNatali2010.m
53 lines (45 loc) · 1.41 KB
/
plantarFasciaNatali2010.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
function [force] = plantarFasciaNatali2010(cross_section_area,slack_length,PF_length)
% --------------------------------------------------------------------------
% plantarFasciaNatali2010
% This function contains the force-length characteristic of the plantar fascia,
% based on A. N. Natali, P. G. Pavan, and C. Stecco, "A constitutive model for
% the mechanical characterization of the plantar fascia,” Connective Tissue
% Research, vol. 51, no. 5, pp. 337–346, 2010, doi: 10.3109/03008200903389127.
%
%
% INPUT:
% - cross_section_area -
% * cross section area of the plantar fascia, in mm^2
%
% - slack_length -
% * plantar fascia length at zero force, in m
%
% - PF_length -
% * plantar fascia length, in m
%
%
% OUTPUT:
% - force -
% * tensile force, in N
%
%
% Original author: Lars D'Hondt
% Original date: 4/April/2023
%
% Last edit by:
% Last edit date:
% --------------------------------------------------------------------------
elongation = PF_length - slack_length;
lambda = PF_length/slack_length;
% Poisson ratio
nu = 0.4;
A = cross_section_area*lambda.^(-nu*2); % actual cross-section
% model parameters
mu = 14.449; % (MPa)
k = 254.02; % (MPa)
alpha = 10.397; % (-)
sigma = mu*(lambda.^2 - 1./lambda) + k/(2*alpha) *(exp(alpha*(lambda.^2-1))-1).*lambda.^2; % Cauchy stress
F_PF = sigma.*A;
% Set compressive forces to zero, smoothed
force = F_PF.*(tanh(elongation*4e3-1.1)+1)/2;
end