From aaf83e5ff87fdbd730af388299112415ceb6b504 Mon Sep 17 00:00:00 2001 From: Alexis Montoison Date: Fri, 10 Mar 2023 16:14:40 -0500 Subject: [PATCH] Update the reference of the GPMR paper --- src/gpmr.jl | 6 +++--- src/krylov_processes.jl | 2 +- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/src/gpmr.jl b/src/gpmr.jl index 3cc234700..fec86250e 100644 --- a/src/gpmr.jl +++ b/src/gpmr.jl @@ -3,8 +3,8 @@ # This method is described in # # A. Montoison and D. Orban -# GPMR: An Iterative Method for Unsymmetric Partitioned Linear Systems -# Cahier du GERAD G-2021-62. +# GPMR: An Iterative Method for Unsymmetric Partitioned Linear Systems. +# SIAM Journal on Matrix Analysis and Applications, 44(1), pp. 293--311, 2023. # # Alexis Montoison, # Montréal, August 2021. @@ -97,7 +97,7 @@ GPMR stops when `itmax` iterations are reached or when `‖rₖ‖ ≤ atol + #### Reference -* A. Montoison and D. Orban, [*GPMR: An Iterative Method for Unsymmetric Partitioned Linear Systems*](https://dx.doi.org/10.13140/RG.2.2.24069.68326), Cahier du GERAD G-2021-62, GERAD, Montréal, 2021. +* A. Montoison and D. Orban, [*GPMR: An Iterative Method for Unsymmetric Partitioned Linear Systems*](https://doi.org/10.1137/21M1459265), SIAM Journal on Matrix Analysis and Applications, 44(1), pp. 293--311, 2023. """ function gpmr end diff --git a/src/krylov_processes.jl b/src/krylov_processes.jl index 2be66b1c5..5c9cad24d 100644 --- a/src/krylov_processes.jl +++ b/src/krylov_processes.jl @@ -397,7 +397,7 @@ end #### Reference -* A. Montoison and D. Orban, [*GPMR: An Iterative Method for Unsymmetric Partitioned Linear Systems*](https://dx.doi.org/10.13140/RG.2.2.24069.68326), Cahier du GERAD G-2021-62, GERAD, Montréal, 2021. +* A. Montoison and D. Orban, [*GPMR: An Iterative Method for Unsymmetric Partitioned Linear Systems*](https://doi.org/10.1137/21M1459265), SIAM Journal on Matrix Analysis and Applications, 44(1), pp. 293--311, 2023. """ function montoison_orban(A, B, b::AbstractVector{FC}, c::AbstractVector{FC}, k::Int) where FC <: FloatOrComplex m, n = size(A)