From 55cbe4e374331d6cffc86b67ab838ca0e86065b1 Mon Sep 17 00:00:00 2001 From: Alexis Montoison Date: Tue, 6 Sep 2022 18:42:53 -0400 Subject: [PATCH] fix \tfrac in preconditioners.jl --- docs/src/preconditioners.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/src/preconditioners.md b/docs/src/preconditioners.md index 1bc9b1a7f..7f3fb931e 100644 --- a/docs/src/preconditioners.md +++ b/docs/src/preconditioners.md @@ -64,10 +64,10 @@ Methods concerned: [`CGLS`](@ref cgls), [`CRLS`](@ref crls), [`LSLQ`](@ref lslq) [`LSLQ`](@ref lslq), [`LSQR`](@ref lsqr) and [`LSMR`](@ref lsmr) also handle regularized least-squares problems. -| Formulation | Without preconditioning | With preconditioning | -|:---------------------:|:--------------------------------------------------------------------------:|:---------------------------------------------------------------------------------:| -| least-squares problem | $\min \tfrac{1}{2} \\|b - Ax\\|^2_2 + \\tfrac{1}{2} \lambda^2 \\|x\\|^2_2$ | $\min \tfrac{1}{2} \\|b - Ax\\|^2_{E^{-1}} + \\tfrac{1}{2} \lambda^2 \\|x\\|^2_F$ | -| Normal equation | $(A^TA + \lambda^2 I)x = A^Tb$ | $(A^TE^{-1}A + \lambda^2 F)x = A^TE^{-1}b$ | +| Formulation | Without preconditioning | With preconditioning | +|:---------------------:|:-------------------------------------------------------------------------:|:--------------------------------------------------------------------------------:| +| least-squares problem | $\min \tfrac{1}{2} \\|b - Ax\\|^2_2 + \tfrac{1}{2} \lambda^2 \\|x\\|^2_2$ | $\min \tfrac{1}{2} \\|b - Ax\\|^2_{E^{-1}} + \tfrac{1}{2} \lambda^2 \\|x\\|^2_F$ | +| Normal equation | $(A^TA + \lambda^2 I)x = A^Tb$ | $(A^TE^{-1}A + \lambda^2 F)x = A^TE^{-1}b$ | | Augmented system | $\begin{bmatrix} I & A \\ A^T & -\lambda^2 I \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$ | $\begin{bmatrix} E & A \\ A^T & -\lambda^2 F \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$ | | Preconditioners | $E^{-1}$ | $E$ | $F^{-1}$ | $F$ |