diff --git a/README.md b/README.md
index a4664e187..ced20f308 100644
--- a/README.md
+++ b/README.md
@@ -71,7 +71,7 @@ Overdetermined sytems are less common but also occur.
4. Adjoint systems
- Ax = b and Aᵀy = c
+ Ax = b and Aᴴy = c
where **_A_** can have any shape.
@@ -81,7 +81,7 @@ where **_A_** can have any shape.
[M A] [x] = [b]
- [Aᵀ -N] [y] [c]
+ [Aᴴ -N] [y] [c]
where **_A_** can have any shape.
@@ -94,7 +94,7 @@ where **_A_** can have any shape.
[B N] [y] [c]
-where **_A_** can have any shape and **_B_** has the shape of **_Aᵀ_**.
+where **_A_** can have any shape and **_B_** has the shape of **_Aᴴ_**.
**_A_**, **_B_**, **_b_** and **_c_** must be all nonzero.
Krylov solvers are particularly appropriate in situations where such problems must be solved but a factorization is not possible, either because:
diff --git a/docs/src/examples/tricg.md b/docs/src/examples/tricg.md
index e981c2f7e..61750de5f 100644
--- a/docs/src/examples/tricg.md
+++ b/docs/src/examples/tricg.md
@@ -14,7 +14,7 @@ N = diagm(0 => [5.0 * i for i = 1:n])
c = -b
# [I A] [x] = [b]
-# [Aᵀ -I] [y] [c]
+# [Aᴴ -I] [y] [c]
(x, y, stats) = tricg(A, b, c)
K = [eye(m) A; A' -eye(n)]
B = [b; c]
@@ -23,7 +23,7 @@ resid = norm(r)
@printf("TriCG: Relative residual: %8.1e\n", resid)
# [-I A] [x] = [b]
-# [ Aᵀ I] [y] [c]
+# [ Aᴴ I] [y] [c]
(x, y, stats) = tricg(A, b, c, flip=true)
K = [-eye(m) A; A' eye(n)]
B = [b; c]
@@ -32,7 +32,7 @@ resid = norm(r)
@printf("TriCG: Relative residual: %8.1e\n", resid)
# [I A] [x] = [b]
-# [Aᵀ I] [y] [c]
+# [Aᴴ I] [y] [c]
(x, y, stats) = tricg(A, b, c, spd=true)
K = [eye(m) A; A' eye(n)]
B = [b; c]
@@ -41,7 +41,7 @@ resid = norm(r)
@printf("TriCG: Relative residual: %8.1e\n", resid)
# [-I A] [x] = [b]
-# [ Aᵀ -I] [y] [c]
+# [ Aᴴ -I] [y] [c]
(x, y, stats) = tricg(A, b, c, snd=true)
K = [-eye(m) A; A' -eye(n)]
B = [b; c]
@@ -50,7 +50,7 @@ resid = norm(r)
@printf("TriCG: Relative residual: %8.1e\n", resid)
# [τI A] [x] = [b]
-# [ Aᵀ νI] [y] [c]
+# [ Aᴴ νI] [y] [c]
(τ, ν) = (1e-4, 1e2)
(x, y, stats) = tricg(A, b, c, τ=τ, ν=ν)
K = [τ*eye(m) A; A' ν*eye(n)]
@@ -60,7 +60,7 @@ resid = norm(r)
@printf("TriCG: Relative residual: %8.1e\n", resid)
# [M⁻¹ A ] [x] = [b]
-# [Aᵀ -N⁻¹] [y] [c]
+# [Aᴴ -N⁻¹] [y] [c]
(x, y, stats) = tricg(A, b, c, M=M, N=N, verbose=1)
K = [inv(M) A; A' -inv(N)]
H = BlockDiagonalOperator(M, N)
diff --git a/docs/src/examples/trimr.md b/docs/src/examples/trimr.md
index 2aa48be1e..adc4e82e5 100644
--- a/docs/src/examples/trimr.md
+++ b/docs/src/examples/trimr.md
@@ -14,7 +14,7 @@ m, n = size(A)
c = -b
# [D A] [x] = [b]
-# [Aᵀ 0] [y] [c]
+# [Aᴴ 0] [y] [c]
llt_D = cholesky(D)
opD⁻¹ = LinearOperator(Float64, 5, 5, true, true, (y, v) -> ldiv!(y, llt_D, v))
opH⁻¹ = BlockDiagonalOperator(opD⁻¹, eye(n))
@@ -34,7 +34,7 @@ N = diagm(0 => [5.0 * i for i = 1:n])
c = -b
# [I A] [x] = [b]
-# [Aᵀ -I] [y] [c]
+# [Aᴴ -I] [y] [c]
(x, y, stats) = trimr(A, b, c)
K = [eye(m) A; A' -eye(n)]
B = [b; c]
@@ -43,7 +43,7 @@ resid = norm(r)
@printf("TriMR: Relative residual: %8.1e\n", resid)
# [M A] [x] = [b]
-# [Aᵀ -N] [y] [c]
+# [Aᴴ -N] [y] [c]
ldlt_M = ldl(M)
ldlt_N = ldl(N)
opM⁻¹ = LinearOperator(Float64, size(M,1), size(M,2), true, true, (y, v) -> ldiv!(y, ldlt_M, v))
diff --git a/docs/src/gpu.md b/docs/src/gpu.md
index 4c9887f24..3c6bc1e29 100644
--- a/docs/src/gpu.md
+++ b/docs/src/gpu.md
@@ -50,7 +50,7 @@ using CUDA, CUDA.CUSPARSE
A_gpu = CuSparseMatrixCSC(A_cpu) # A = CuSparseMatrixCSR(A_cpu)
b_gpu = CuVector(b_cpu)
-# LLᵀ ≈ A for CuSparseMatrixCSC or CuSparseMatrixCSR matrices
+# LLᴴ ≈ A for CuSparseMatrixCSC or CuSparseMatrixCSR matrices
P = ic02(A_gpu, 'O')
# Solve Py = x
diff --git a/docs/src/index.md b/docs/src/index.md
index ce657436d..00694b4de 100644
--- a/docs/src/index.md
+++ b/docs/src/index.md
@@ -46,7 +46,7 @@ Overdetermined sytems are less common but also occur.
4 - Adjoint systems
```math
- Ax = b \quad \text{and} \quad A^T y = c
+ Ax = b \quad \text{and} \quad A^H y = c
```
where **_A_** can have any shape.
@@ -54,7 +54,7 @@ where **_A_** can have any shape.
5 - Saddle-point and symmetric quasi-definite (SQD) systems
```math
- \begin{bmatrix} M & \phantom{-}A \\ A^T & -N \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \left(\begin{bmatrix} b \\ 0 \end{bmatrix},\begin{bmatrix} 0 \\ c \end{bmatrix},\begin{bmatrix} b \\ c \end{bmatrix}\right)
+ \begin{bmatrix} M & \phantom{-}A \\ A^H & -N \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \left(\begin{bmatrix} b \\ 0 \end{bmatrix},\begin{bmatrix} 0 \\ c \end{bmatrix},\begin{bmatrix} b \\ c \end{bmatrix}\right)
```
where **_A_** can have any shape.
@@ -65,7 +65,7 @@ where **_A_** can have any shape.
\begin{bmatrix} M & A \\ B & N \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} b \\ c \end{bmatrix}
```
-where **_A_** can have any shape and **_B_** has the shape of **_Aᵀ_**.
+where **_A_** can have any shape and **_B_** has the shape of **_Aᴴ_**.
**_A_**, **_B_**, **_b_** and **_c_** must be all nonzero.
Krylov solvers are particularly appropriate in situations where such problems must be solved but a factorization is not possible, either because:
diff --git a/docs/src/warm_start.md b/docs/src/warm_start.md
index 030cad6c0..e1d680efd 100644
--- a/docs/src/warm_start.md
+++ b/docs/src/warm_start.md
@@ -41,14 +41,14 @@ Explicit restarts cannot be avoided in certain block methods, such as TriMR, due
```julia
# [E A] [x] = [b]
-# [Aᵀ F] [y] [c]
+# [Aᴴ F] [y] [c]
M = inv(E)
N = inv(F)
x₀, y₀, stats = trimr(A, b, c, M=M, N=N)
# E and F are not available inside TriMR
b₀ = b - Ex₀ - Ay
-c₀ = c - Aᵀx₀ - Fy
+c₀ = c - Aᴴx₀ - Fy
Δx, Δy, stats = trimr(A, b₀, c₀, M=M, N=N)
x = x₀ + Δx